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Thermodynamic criticality describes emergent phenomena in a wide variety of complex
systems. In the mammalian cortex, one type of complex dynamics that spontaneously
emerges from neuronal interactions has been characterized as neuronal avalanches.
Several aspects of neuronal avalanches such as their size and life time distributions
are described by power laws with unique exponents, indicating an underlying critical
branching process that governs avalanche formation. Here, we show that neuronal
avalanches also reflect an organization of brain dynamics close to a thermodynamic
critical point. We recorded spontaneous cortical activity in monkeys and humans at
rest using high-density intracranial microelectrode arrays and magnetoencephalography,
respectively. By numerically changing a control parameter equivalent to thermodynamic
temperature, we observed typical critical behavior in cortical activities near the actual
physiological condition, including the phase transition of an order parameter, as well as
the divergence of susceptibility and specific heat. Finite-size scaling of these quantities
allowed us to derive robust critical exponents highly consistent across monkey and
humans that uncover a distinct, yet universal organization of brain dynamics. Our results
demonstrate that normal brain dynamics at rest resides near or at criticality, which
maximizes several aspects of information processing such as input sensitivity and dynamic
range.
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The cerebral cortex of the mammalian brain consists of tens of
billions of neurons with interactions among them that exist at
many scales ranging from local microcircuits, to cortical areas,
and even across the entire cortex. These myriads of neuronal
interactions underlie various brain functions including motion,
perception, and cognition (Abeles et al., 1993; Vaadia et al., 1995;
Rodriguez et al., 1999; Singer, 1999). Understanding the general
principles governing these interactions and how they give rise to
emergent properties of information processing is one of the most
challenging questions in systems neuroscience.

For several decades, concepts and tools developed in statistical
physics have addressed the collective behavior of complex systems
by studying the interactions among the constituent microscopic
system components. Of the many states a complex system might
adopt, the critical state at thermodynamic equilibrium has been
extensively studied and this state might be particularly rele-
vant for the brain. Microscopically, the critical state represents
exquisitely balanced interactions among all system components
(Stanley, 1999). Macroscopically, such balanced interactions poise
the system at a transition between two contrasting phases (quan-
tified by the order parameter, M) and give rise to a number
of non-trivial emergent properties, including the divergence of
the sensitivity to external perturbations (quantified by the sus-
ceptibility, χ), and internal complexity/diversity (quantified by
the specific heat, C; Stanley, 1987; Binney et al., 1992; Sornette,
2006). For the cortex, these quantities have intuitive meanings
in terms of neuronal information processing. χ reflects the input

sensitivity of the system (Newman and Barkema, 1999), C reflects
the dynamic range of neuronal populations in representing inputs
(Tkacik et al., 2009; Macke et al., 2011), and M measures the over-
all neuronal activity level. The maximization of χ and C achieved
at criticality can thus be interpreted as optimizing input sensitiv-
ity (Houweling and Brecht, 2007; Huber et al., 2008; Shew et al.,
2009) and dynamic range (Shew et al., 2009; Tkacik et al., 2009;
Macke et al., 2011), respectively. At the same time, the changes
of M, i.e., the overall activity level, may reflect state changes of
the brain, such as transitions between sleep and wakefulness or
between focused attention and inattention (Cohen and Maunsell,
2009; Mitchell et al., 2009; Vyazovskiy et al., 2009; Harris and
Thiele, 2011; Grosmark et al., 2012).

Importantly, near the critical state, those emergent behav-
iors do not depend on the specific microscopic realization of a
system. It has been shown that a multitude of systems can be cat-
egorized into a small number of “universality classes” based on
only a few parameters, i.e., so called “critical exponents” (Stanley,
1987, 1999; Binney et al., 1992; Sornette, 2006). Within individual
classes, apparently different systems follow the same quantitative
rules. A major question thus arises, whether such universality of
critical behavior, encountered when studying physical systems,
might also include biological complex systems such as the cortex
that evolved to process information.

Recent studies of neuronal avalanches strongly suggest that
neuronal interactions, both at the mesoscopic scale (within tens
of mm2 of cortical tissue; Beggs and Plenz, 2003; Petermann
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et al., 2009) as well as macroscopic level (across the entire cor-
tex; Allegrini et al., 2010; Tagliazucchi et al., 2012; Palva et al.,
2013; Shriki et al., 2013), may position the cortex at or near a
non-equilibrium critical state in order to optimize information
processing (Kinouchi and Copelli, 2006; Rämö et al., 2007; Shew
et al., 2009, 2011; Yang et al., 2012). Neuronal avalanches are
intermittent cortical activity cascades that spontaneously form in
the normal brain. During an avalanche, spontaneous activation
of one neuronal group can trigger consecutive activations of other
neuronal groups within just a few milliseconds and the propaga-
tion of such activity spans both spatial and temporal domains.
This propagation is well-described by a non-equilibrium criti-
cal branching process, which successfully explains some of the
functional advantages of neuronal avalanches (Beggs and Plenz,
2003; Shew et al., 2009, 2011; Yang et al., 2012). However, it is
currently unclear if neuronal avalanches indicate cortical dynam-
ics close to a critical state in the equilibrium thermodynamic
sense and, if so, what universality class this form of cortical
activity might belong to. The current study is aimed to address
these questions and their potential functional implications for the
brain.

MATERIALS AND METHODS
LOCAL FIELD POTENTIAL (LFP) RECORDINGS IN MONKEYS
All experiments were carried out in accordance with NIH
guidelines for animal use and care. The protocol was
approved by the Animal Care and Use Committee of the
National Institute of Mental Health. Ongoing LFP activity
was recorded from two adult monkeys (Macaca mulatta).
Multi-electrode arrays (10 × 10; 400 μm inter-electrode dis-
tance; 1 or 0.6 mm electrode length; BlackRock Microsystems)
were chronically implanted in the left pre-motor (Monkey
1) or prefrontal (Monkey 2) cortex (Figure 1A). Twenty to
thirty min of ongoing LFP (1–100 Hz) signals were simul-
taneously obtained from each electrode while the animals
were sitting alert in a primate chair but not engaged in any
behavioral task. For more experimental details, see Yu et al.
(2011).

MAGNETOENCEPHALOGRAPHY (MEG) RECORDINGS IN HUMAN
SUBJECTS
All experiments were carried out in accordance with NIH
guidelines for human subjects. Ongoing brain activity

FIGURE 1 | Identifying avalanche dynamics in LFP signals. (A) Lateral
view of the macaque brain showing the position of the multi-electrode array
(square, not to scale) in pre-motor (Monkey 1; blue) and prefrontal (Monkey 2;
orange) cortex. PS, Principal Sulcus; CS, Central Sulcus. (B) Example period
of continuous LFP at a single electrode. Asterisks indicate peaks of negative
deflections in the LFP (nLFPs) that pass the threshold (Thr., broken
line; −2.5 SD). (C) Identification of spatiotemporal nLFP clusters and
corresponding spatial patterns. Left: nLFPs that occur in the same time bin or
consecutive bins of length �t define a spatiotemporal cluster, whose size is

given by its number of nLFPs (two clusters of size 4 and 5 shown; gray area).
Right: Patterns represent the spatial information of clusters only. (D,E)

Neuronal avalanche dynamics are identified when the sizes of activity
cascades distribute according to a power-law with slope close of −1.5. Four
distributions from the same original data set (solid line) using different areas
(inset), i.e., number of electrodes (n), are superimposed. The power-law
distributions vanish for shuffled data (broken lines). A theoretical power-law
with slope of −1.5 is provided as guidance to the eye (gray, broken line). (D)

is reprinted from Yu et al. (2011).

Frontiers in Systems Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 42 | 2

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Yu et al. Thermodynamic criticality in cortical activities

(∼30 min) was recorded from 3 healthy female partici-
pants. The sampling rate was 600 Hz, and the data were
band-pass filtered between 1 and 150 Hz. The sensor array
consisted of 275 axial first-order gradiometers. Two dys-
functional sensors were removed, leaving 273 sensors in
the analysis. Analysis was performed directly on the axial
gradiometer waveforms. For more details, see Shriki et al.
(2013).

AVALANCHE ANALYSIS
Negative deflections in the LFP (nLFPs) were detected by applying
a threshold at −2.5 standard deviations (SDs) of the LFP fluctu-
ations estimated for each electrode separately (Figure 1B). Such
a threshold is based on the non-linear relation between nLFP
amplitudes and ability of local neuronal groups to synchronize
with other, spatially separated ones (Thiagarajan et al., 2010; Yu
et al., 2011). The nLFP peak times were then binned using a time
window, �t. Results shown are based on �t = 2 ms (Monkey 1)
and 4 ms (Monkey 2) but they are similar across a wide range
of �t (2–16 ms tested). Spatiotemporal clusters of nLFPs, i.e.,
avalanches, were defined by consecutive bins such that each bin
contained at least one nLFP at any site in the selected group
(Beggs and Plenz, 2003). The size of a cluster, s, was defined as
the number of nLFPs in the cluster (Figure 1C). Similar analy-
sis was applied to identify avalanches from the MEG recordings,
for which a threshold at −3.0 SD of the MEG waveforms was
used to detect significant neuronal events. The time window �t
was 1.67 (1 × sampling period; subject 1) or 3.34 ms (2 × sam-
pling period; subjects 2, 3). For more details, see Shriki et al.
(2013). Avalanche patterns were obtained by collapsing all time
bins within an avalanche to form a corresponding spatial pattern
σ = (σ1, σ2, . . . , σn), where n is the number of recording sites,
i.e., system size, included in the analysis and σi = 1 if at least one
nLFP occurred at site i and σi = −1 otherwise (Figure 1C).

USING THE DICHOTOMIZED GAUSSIAN (DG) MODEL FOR ESTIMATING
PATTERN PROBABILITIES Pi

The DG model is a useful tool for capturing the statistics of
binary neural activity patterns (Amari et al., 2003; Macke et al.,
2009, 2011; Yu et al., 2011). It applies a threshold to multivariate
Gaussian variables: yi = 1 when ui > 0 and yi = −1 otherwise,
where u = (u1, u2, . . . , un) ∼ N (δ, λ), δ is the mean and λ

is the covariance of the Gaussian variables. In order to match
the rate, r, and covariance, �, of the observed binary variables,
i.e., avalanche patterns, δ and λ need to be adjusted according
to δi = �−1(ri) and λij as the solution for �ij = �2(δi, δj, λij)
– �(δi) � (δj), where � and �−1 are the cumulative proba-
bility function of a Gaussian distribution (� for 1-dimensional
and �2 for 2-dimensional) and its inverse function, respectively.
An implementation of the model in MATLAB can be found
in Macke et al. (2009). The pattern probabilities for the DG
model were obtained by calculating the cumulative distribution
of multivariate Gaussians (MATLAB function mvncdf ).

FITTING A POWER-LAW TO THE SIZE DISTRIBUTION
The exponent of the best fitting power-law, was estimated by
minimizing the Kolmogorov–Smirnov (KS) distance between the

empirical distribution and a power-law distribution (Klaus et al.,
2011). The KS distance (DKS) was defined as

DKS = max
s

|CDFemp (s) − CDFpower − law (s) |, (1)

where s is the pattern size and CDFemp and CDFpower−law rep-
resent the cumulative distribution function for the empirical
size distribution and the power-law function used for fitting,
respectively.

INFERRING pi FOR DIFFERENT VALUES OF T
To predict the pattern probabilities pi for different values of the
fictitious temperature, T, it is useful to express the state proba-
bility as a function of interactions that occur at different orders
(Nakahara and Amari, 2002; Amari et al., 2003). Let the pattern
probability be p(σ), where σ = (σ1, σ2, . . . , σn) and σn = {1, −1},
representing the states of individual components. Generally, we
can write p(σ), using the full log-linear expansion, as

p (σ) = 1

Z
exp

⎛
⎝∑

i

θiσi+
∑
(i<j)

θijσiσj+
∑

(i<j<k)

θijkσiσjσk+ · · ·
⎞
⎠,

(2)

where Z is the normalization factor and θ characterizes differ-
ent orders of interactions. The full log-linear expansion and its
lower-order approximations have been widely used in character-
izing neuronal interactions (Schneidman et al., 2006; Yu et al.,
2008; Ohiorhenuan et al., 2010).

Next, we define θ = θ0/T, where θ0 represent the
intrinsic interaction strength that does not depend on T. If

we denote E (σ) = −
(∑

i θ
0
i σi + ∑

(i<j) θ0
ijσiσj + ∑

(i<j<k)

θ0
ijkσiσjσk + · · ·

)
, Equation 2 can be rewritten as

p (σ) = 1

Z
exp

(−E (σ)

T

)
. (3)

We can then use the single histogram method (Ferrenberg and
Swendsen, 1988; Newman and Barkema, 1999) to infer pi for dif-
ferent T, an approach that was used for modeling natural image
statistics (Stephens et al., 2013) and was also recently introduced
to neuroscience (Tkacik et al., 2009). Specifically, if pi denotes
the probability of any given pattern i and Ei the corresponding
E, Equation 3 changes to

pi = 1

Z
e−Ei/T (4)

Setting T = 1 for the original recording, Equation 4 can be
expressed as

pi (1) = 1

Z (1)
e−Ei , (5)

which enables us to compute pi for different T as

pi (T) = 1

Z
e

−Ei
T = 1

Z

[
Z (1) pi (1)

] 1
T = Z (1)1/T

Z
pi (1)1/T (6)
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The normalization factor is determined by considering∑
pi(T) = 1.

COMPUTING THE SPECIFIC HEAT, SUSCEPTIBILITY, AND ORDER
PARAMETER
The specific heat, C, is:

C = 1

n

∂U

∂T
=

〈
E2

i

〉 − 〈Ei〉2

nT2
, (7)

where n is system size, U ≡ 〈Ei 〉 = ∑
piEi and Ei can be cal-

culated according to Equation 4. Given n and T, C reflects the
variance of log (pi), a useful metric for quantifying the capacity
of the system to represent information (Tkacik et al., 2009; Macke
et al., 2011).

The order parameter, M, is defined as:

M = 1

n

2n∑
i = 1

pimi, (8)

where mi = ∑n
j = 1 σi

j. σ
i indicates that the value of σ is taken

from the ith pattern. M has a very intuitive meaning for a cortical
system—it reflects the overall activity level of the system.

Finally, the susceptibility χ is a measure of the sensitivity of the
system to small external perturbations. χ is defined as the change
rate of M when a small external field H is applied:

χ = ∂M

∂H

∣∣
H = 0 =

〈
m2

i

〉 − 〈mi〉2

nT
(9)

The field H exerts its effect by changing the preference of the
units to be active or not, i.e., their likeliness to be involved in
an avalanche. Specifically, applying H is equivalent to adding a
term of H�σi to the Hamitonian (E). For cortical dynamics, H
can be thought as an approximation of a local perturbation, e.g.,
making a single or small group of neurons to fire [analog to flip-
ping a single spin in a model; see Newman and Barkema (1999)
and/or a weak common input from, e.g., distant cortical areas or
sub-cortical brain structures].

FINITE SIZE SCALING (FSS) ANALYSIS
At the thermodynamic limit (n → ∞), a critical system can be
identified by power-law behaviors of its macroscopic quanti-
ties, including the correlation length ξ (a characteristic distance
beyond which correlations diminish), specific heat C, magnetiza-
tion M and susceptibility χ. These quantities follow a power-law
relation as a control parameter, such as the thermodynamic tem-
perature T, approaches a critical value Tc, with specific critical
exponents ν, α, β, and γ, respectively:

ξ ∼|t|−v (10)

C ∼|t|−α (11)

M ∼|t|−β (12)

χ ∼|t|−γ (13)

where t = (T − Tc)/Tc. In principle, one could directly measure
these relations to determine whether and when the system will be
critical, i.e., to determine Tc, and, at the same time, estimate all
critical exponents.

The complication comes with the fact that real systems are
finite in size. This so called “finite size effect” causes the system’s
behavior to deviate from the thermodynamic limit. A standard
procedure in statistical physics to solve this problem is Finite Size
Scaling (FSS; Binney et al., 1992; Newman and Barkema, 1999).
By analyzing the behavior of systems with different sizes, FSS
extrapolates the behavior for the thermodynamic limit and to
estimate Tc and critical exponents. Briefly, we can choose a unique
set of critical exponents to scale Equations 10–13 with different
linear sizes of the system L = d

√
n, where d is the dimensional-

ity, and then collapse the curves obtained for all sizes. Specifically,
t needs to be scaled by L1/ν, whereas C, M, and χ are scaled by
L−α/ν, Lβ/ν, and L−γ/ν, respectively. The critical exponents (ν,
α, β, and γ) and Tc that achieve the collapse are equivalent to
those expected for a measurement made at the thermodynamic
limit (see Appendix for detailed derivation). We identified the
best collapse by minimizing the distance among all functions with
different sizes using numerical optimization (MATLAB function
fminsearch). Initial conditions for optimization were systemati-
cally changed according to a grid search method within a large
parameter space and the resulting values for exponents were sta-
ble. These values were also stable for different values of T to
perform FSS. Results reported were based on T = 0.5 − 2.5.

MEASURING GOODNESS OF COLLAPSE
For different system sizes i, the dependency of a system param-
eter, e.g., susceptibility χi, on T was obtained. To quantify how
well such a series of functions can be collapsed by FSS, we com-
pared the “closeness” of them before (without scaling) and after
the collapse (the best results achieved by numerical optimiza-
tion). Specifically, the goodness of collapse (GC) is indicated by
the ratio of mean squared deviation (MSD) after and before
the collapse, i.e., GC = MSDafter/MSDbefore. Formally, MSD =〈〈
(χi − χ)2

〉
T

〉
i
, where χ is the point-wise average over all system

sizes, 〈〉T indicates the average across the range of T and 〈〉i indi-
cates the average across system sizes. Smaller GC indicates better
goodness of collapse.

RESULTS
AVALANCHE DYNAMICS AT THE MESOSCOPIC SCALE
We first investigated neuronal avalanches at the mesoscopic scale
(Beggs and Plenz, 2003; Petermann et al., 2009; Hahn et al.,
2010; Ribeiro et al., 2010; Yu et al., 2011). Ongoing neuronal
activity in two monkeys was recorded with 10 × 10 high-density
micro-electrode arrays chronically implanted in superficial lay-
ers of cortex (Figure 1A). Significant negative local field potential
deflections (nLFPs), which indicate synchronized activity of local
neuronal populations (Petermann et al., 2009; Yu et al., 2011),
were detected using an amplitude threshold of –2.5 SDs of the
LFP calculated for each electrode (Figure 1B). A spatiotemporal
nLFP cluster was identified if nLFPs on the multielectrode array
occurred within the same or consecutive time bins of width �t
(Figure 1C). Importantly, the cluster size s, defined as the number
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of nLFPs in a cluster, distributed according to a power-law with
an exponent close to −1.5. Moreover, the distribution exhibited
scale-free behavior, i.e., the power-law and its slope were stable
for different system size n, whereas the cut-off changed system-
atically with n (Figures 1D,E). This power-law demonstrates that
ongoing cortical activity at rest in awake monkeys organizes as
neuronal avalanches (Beggs and Plenz, 2003; Petermann et al.,
2009). It indicates the presence of significant correlations in neu-
ronal activity among cortical sites and, accordingly, is destroyed
when the times of nLFPs are shuffled randomly (Figures 1D,E,
broken lines).

CHARACTERIZATION OF THE CRITICAL BEHAVIOR
Next we investigated whether neuronal avalanches reflect a cor-
tical state close to criticality in the sense of a thermodynamical
equilibrium. Our approach is based on a method similar to
Monte Carlo simulations (Newman and Barkema, 1999). First,
we estimated the probability pi of individual configurations in
the system based on actual recordings. For an equilibrium sys-
tem, those probabilities would give a complete characterization
of the system’s behavior. Then, we infer the changes of pi with
the change of a control parameter, T, which is considered to be
equivalent to thermodynamic temperature. Finally, we compute
various macroscopic properties including susceptibility, specific
heat, and an order parameter, as a function of T to judge if the
actual T (the one associated with the original recording) is close
to the critical point.

More specifically, we define the configurations or states of the
system by the spatial avalanche patterns, obtained by collaps-
ing the spatiotemporal avalanche patterns along the temporal
domain. This mapping ignores the internal temporal structure of
individual avalanches. Each avalanche is originally represented by
an n by m activity matrix, where n is the number of electrodes and
m is the temporal duration of the avalanche. The activity matrix
is then turned into an n-component binary vector where an elec-
trode is set to 1 if it participates at least once in the avalanche
and to −1 otherwise [Figure 1C, see also Methods and Yu et al.
(2011)]. The finite duration of the recording limits the direct esti-
mation of pattern probabilities pi to n ∼ 10. Therefore, in order
to estimate pi for larger n, we take advantage of a parametric
model, the Dichotomized Gaussian (DG) model (Amari et al.,
2003; Macke et al., 2009, 2011; Yu et al., 2011), which considers
only the observed first-order (event rate) and second-order (pair-
wise correlations) statistics. This model estimates pi of avalanche
patterns more accurately than directly measuring it from the
limited data [Figure 2; see also Yu et al. (2011)]. Due to the expo-
nential increase in possible configurations with increasing n, we
restrict the calculation of pi to n = 20. In total, we analyzed four
20-electrode sub-groups recorded from each of the two monkeys.

After obtaining pi for the condition in which the actual
recording was taken, we introduce a control parameter T, which
changes both the likelihood of a given site to participate in an
avalanche and the correlation among activities between different
sites (Binney et al., 1992; Newman and Barkema, 1999). T is
similar to the thermodynamic temperature and allows us to
systematically estimate the system’s behavior for conditions dif-
ferent from the recorded, physiological condition. To infer pi for

FIGURE 2 | The DG model predicts state probability more accurately

than direct sampling. (A) Observed probability pi (thirty 10–electrode
sub-groups) is plotted against the prediction made by direct sampling and
the DG model. Solid line indicates equality. The comparison is based on
2-fold cross-validation (Yu et al., 2011). (B) JS divergence (Yu et al., 2011)
between the observed and predicted probabilities of spatial avalanche
patterns for the same thirty 10–electrode groups shown in (A). Linked dots
are the results obtained by direct sampling and the DG model for the
same group. The DG model has significantly smaller JS divergence
(21% reduction, p < 10−5, paired-sample signed rank test).

different T, we use the single histogram method (Ferrenberg and
Swendsen, 1988; Newman and Barkema, 1999), which accurately
predicts behavior of equilibrium system for different values of the
control parameter. We note that the equilibrium assumption for
the data is supported by the stable size distribution of avalanches
over time (Figure 3) and the demonstration of detailed balance
(Figure A1; see Appendix for more details). If we set T at which
the actual recording was taken to be 1, it can be shown that,
pi(T) = 1

Z pi (1)1/T where pi(T) is the state probability with the
thermodynamic temperature T and Z is a normalization factor
(Methods). After obtaining pi for a wide range of T, we use
finite size scaling (FSS) analysis (Newman and Barkema, 1999)
to investigate whether the avalanche state (T = 1) is close to a
thermodynamic critical point, i.e., if the critical “temperature”
Tc ≈ 1. We first analyzed the thermodynamic quantities χ, C,
and M as functions of T for different system sizes (n = 12 − 20;
Figure 4). Those functions measured for different n will be scaled
according to a unique set of Tc and critical exponents to test
if they can be collapsed. Specifically, T needs to be scaled by
L1/ν(T − Tc)/Tc, where L = d

√
n and d is the dimensionality

of the system. χ, C, and M need to be scaled by L−α/ν, Lβ/ν,
and L−γ/ν, respectively. Achieving such a collapse implies that,
at the thermodynamic limit, the system has a critical point at
Tc, which is characterized by the divergence of χ and C and
the phase transition of M. To illustrate this, we consider the
collapse of χ, which implies that, at Tc, the scaled quantity of χ,
i.e., L−γ/νχ, is a constant. When n → ∞, L−γ/ν = n−γ/νd → 0
because γ/νd > 0 (see below). Therefore, a finite product of
L−γ/ν and χ implies χ → ∞. We find an excellent collapse up
to n = 20 (Figure 4). Importantly, the values of Tc estimated
by the FSS method are close to 1 (Table 1), suggesting that
ensembles of neuronal avalanches are organized at the vicinity
of a thermodynamic critical point. In addition to Tc, FSS also
estimates the critical exponents, including ν, α, β, and γ. They
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FIGURE 3 | Stability of the power law size distribution during the

recording. (A) Avalanche pattern size distribution of the whole recording
(30 min) plotted in a double-logarithmic scale. ε, exponent of the best
fitting power law to the distribution. Avalanche pattern was identified
based on the activities recorded in the whole array (91 channels,
Monkey 1). (B) The full dataset as analyzed in (A) was split into 10
consecutive, non-overlapping segments, each of which lasted for 3 min.

Avalanche pattern size distributions were calculated for individual segments
and plotted (color coded). (C) The original dataset as analyzed in (A) was
shuffled in time (i.e., the sequence of activities was randomized) to
eliminate temporal dependencies and split into ten consecutive,
equal-sized segments. Avalanche pattern size distributions were calculated
for individual segments and plotted (color coded). In (B) and (C), ε is
represented as mean ± s.d. (across all segments).

FIGURE 4 | Critical behavior in susceptibility, specific heat, and order

parameter observed for neuronal avalanches at the mesoscopic level,

i.e., recorded by LFPs. Susceptibility (A), specific heat (B), and order
parameter (C) are plotted as a function of T for system size n = 12–20
(color code). Left: Original non-scaled functions. Right: Corresponding
collapse using FSS analysis. Scaled quantities plotted as a function of
t = (

T − Tc
)
/Tc , L = d√n, where d is the dimensionality of the system.

Critical exponents: α, β, γ, and ν. We note that the peaks for the scaled
variables χ and C are not expected to be at the location of L1/νt = 0.

characterize how χ, C, and M change as a function of T at the
thermodynamic limit. We find that ν ≈ (0.8 − −0.9)/d, α ≈ 0.7,
β close to 0 and γ close to 1. These results are consistent across
the datasets obtained from two monkeys (Table 1).

AVALANCHE DYNAMICS AT THE MACROSCOPIC SCALE
Seeking to extrapolate from these results, we applied the FSS anal-
ysis to neural dynamics manifested at the macroscopic scale—the
whole human brain—measured by MEG. In Figure 5, we show
that ongoing neuronal activity in human MEG reflects neu-
ronal avalanches, which reconfirmed our recent finding (Shriki
et al., 2013). Despite the dramatically different spatial scales
between the LFP and MEG signals from monkeys and humans
(>10,000-fold difference in recording areas), we found strik-
ingly similar behavior for the activity measured across the entire
human cortex when the control parameter, T, and system size,
n, change (Figure 6). Again, FSS analysis suggests that Tc ≈ 1
for the macroscopic system (Table 1). The results were consis-
tent across different human subjects and, importantly, both Tc

and the critical exponents of MEG recordings are very similar to
those obtained from the LFP recordings (Figure 7). Such similar-
ity, in terms of both the scaling behavior, i.e., collapse of curves,
and critical exponents, strongly suggests a universal organization
that underlies neuronal interactions at various spatial scales.

VALIDATING THE FSS METHOD THROUGH A SIMPLE MODEL
Next, we investigated a simple and understandable model, and
exemplified the sensitivity of FSS analysis to distinguish critical
from non-critical system dynamics. To this end, we used the DG
model in which all elements were embedded in a ring configura-
tion. Each element had a well-defined “distance” to every other
element (Figure 8A). We set the covariance of hidden variables
(Methods) i and j, λij, as a Gaussian function of the distance

rij between them: λij = λmax exp

[
− 1

2

(
rij

ω

)2
]

, where λmax is the

maximal covariance and ω is the SD of the Gaussian function.
For the limit of ω → ∞, all λij become identical and criticality is
ensured (Macke et al., 2011). Conversely, decreasing ω to 0 drives
the system to an independent state (Figure 8B).

We applied the FSS method to this system. To facilitate the
analysis, system sizes were set to be n = 6–10. In Figures 8C–F,
we plot the goodness of collapse, estimation of Tc, and criti-
cal exponents as a function of ω. We found that for this model,
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Table 1 | Critical temperature Tc and critical exponents νd , α, β, and γ estimated using finite size scaling analysis (FSS) for eight 20-eletrode

sub-groups in two monkeys (M1, M2) and six 20-sensor sub-groups in three human subjects (H1–H3).

Subject Group T c (χ) νd (χ) γ T c (C) νd (C) α T c (M) ν d (M) β

M1 A 1.13 0.88 1.04 1.15 0.92 0.72 1.16 0.84 −0.028

B 1.12 0.86 1.00 1.14 0.90 0.72 1.14 0.84 −0.021

C 1.12 0.86 0.98 1.14 0.88 0.72 1.13 0.84 0.001

D 1.12 0.86 1.02 1.15 0.88 0.73 1.16 0.80 −0.03

M2 A 1.10 0.82 1.05 1.14 0.84 0.71 1.16 0.76 −0.03

B 1.11 0.90 1.10 1.13 0.96 0.71 1.13 0.84 0.001

C 1.10 0.84 1.06 1.14 0.84 0.71 1.12 0.78 0.001

D 1.11 0.82 1.05 1.15 0.86 0.72 1.13 0.78 0.000

H1 A 1.16 0.84 1.20 1.22 0.86 0.67 1.20 0.74 0.0006

B 1.20 1.04 1.18 1.23 1.06 0.64 1.24 0.96 −0.02

H2 A 1.17 0.82 1.21 1.22 0.84 0.68 1.20 0.74 −0.0007

B 1.18 0.98 1.17 1.22 1.00 0.66 1.20 0.92 −0.0003

H3 A 1.14 0.82 1.09 1.17 0.86 0.67 1.16 0.78 0.0007

B 1.18 0.98 1.02 1.20 1.00 0.65 1.17 0.98 0.0001

Arguments in brackets indicate that Tc and νd were estimated by applying FSS to susceptibility χ , specific heat C and order parameter M, respectively.

FIGURE 5 | Power law size distribution of neuronal avalanches

recorded with MEG for the human brain at resting state. (A) Neuronal
avalanche dynamics are identified when the sizes (s) of all clusters
distribute according to a power law with slope close of −1.5 (the results for
subject 2 are shown here). Four distributions from the same original data
set using different areas (insets), i.e., number of MEG sensors (n), are
superimposed. (B) The whole array of sensors (gray dots) and two
sub-groups of sensors that were used for finite-scaling analysis (red dots)
are illustrated. Top, sub-group (A); bottom, sub-group (B). The sub-groups
were identical across all three subjects.

the deviation from the critical state (ω = ∞) is detectable for
ω <7∼8. Given that all r ≤ 5, we consider the sensitivity of
the FSS for detecting deviations from criticality as satisfactory.
We note that with increasing system sizes in the analysis, even
higher sensitivity will be achieved. We also compared these results
with real data (n = 6–10) and found that the actual results we
obtained for cortical activities are very close to a true critical state
(Figures 8C–F), further supporting the previous results that neu-
ronal avalanches represent a cortical state close to thermodynamic
criticality.

CORRELATION STRUCTURE IN NEURONAL AVALANCHE DYNAMICS
The results based on this simple model also provide testable pre-
dictions for the empirical data. First, if we remove all correlations

in activities between cortical sites, the critical behavior observed
in the original data should be abolished. To test this prediction,
we used independent Poisson processes to generate nLFPs at the
empirically measured rate for each cortical site. χ, C, and M were
then calculated as a function of T and n in the same way as for the
original data. As expected, all three quantities did not depend on
system size anymore and thus did not show any scaling behavior
(Figure 9). Another important prediction is that the original data
should contain long-range spatial correlations. In Figure 10, we
plot the correlation G, defined as Gij = 〈

σiσj
〉 − 〈σi〉

〈
σj

〉
, as a func-

tion of the Euclidian distance r between sites i and j in both linear
and log-log coordinates. We found that the correlation slowly
decreases with increase in distance and that the rate of decay fur-
ther decelerates at larger distance. As a result, for an increase in
distance by one order of magnitude, the correlation decreases by
less than 50% (Figures 10A,B), demonstrating that fluctuations
in activity between very distant cortical sites are still correlated.
For critical systems, theory predicts that the decay in spatial cor-
relation should be a power law function with an exponent close
to zero, which ensures the existence of long-range correlations
(Binney et al., 1992). In line with theory, the spatial correla-
tions in monkey 1 and those with distance >1 mm in monkey 2
exhibit a linear tendency in log-log coordinates, with exponents
of −0.24 ± 0.05 (Figures 10C,D). The 10 × 10 recording array
with interelectrode distance of 0.4 mm limits our investigation of
the spatial correlation function to roughly one order of magni-
tude from 0.4 to 4.5 mm of distance. On the other hand, 4.5 mm
already captures a relatively large distance within one cortical area
of a macaque’s brain. A more definitive conclusion about whether
a power law is a good approximation awaits future studies with
the capability to record from a much wider spatial extent. It is
interesting that the data and the model with ω = ∞ share the
same set of critical exponents (Figures 8E,F), despite their dif-
ferences in correlation structure. Whereas G was constant in the
model (for ω = ∞), it changed systematically as a function of r
in the data. Consequently, all patterns with the same size were
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FIGURE 6 | Critical behavior in susceptibility, specific heat, and order

parameter observed for neuronal avalanches in the human brain at

macroscopic level, i.e., recorded with MEG. Susceptibility (A), specific
heat (B), and order parameter (C) are plotted as a function of T for system
size n = 12–20 (color code). Left: Original non-scaled functions. Right:
Corresponding collapse using FSS analysis. Scaled quantities are plotted as
functions of “reduced temperature,” t = (

T − Tc
)
/Tc , L = d√n, where d is

the dimensionality of the system. Critical exponents: α, β, γ, and ν.

equally probable in the model (Macke et al., 2011), whereas these
probabilities differed in the data by up to 2 orders of magnitude.
Therefore, the fact that the model and the data share the same
set of exponents is non-trivial, suggesting that they belong to the
same universality class.

RELATION BETWEEN THE POWER-LAW SIZE DISTRIBUTION AND
THERMODYNAMIC CRITICALITY
The equilibrium critical behavioral revealed here is not simply
implied by the power-law distributed avalanche sizes. This can
be demonstrated by studying the probability p0 of the quiescent
state, i.e., all sites are inactive. This probability is not constrained
by the power-law distribution in avalanche patterns (because it
leads to divergence for a power-law), but nevertheless is impor-
tant in order to obtain proper scaling and collapse using FSS.
In the original data, p0 decreased in a unique way with increase
in system size n (Figure 11). When p0 was changed randomly
with n, the functions could not be collapsed anymore despite the
preservation of the power-law in size distribution (Figure 12).
Furthermore, we know that a system is not required to have

FIGURE 7 | Tc and critical exponents α, β, γ, and ν estimated using

finite size scaling analysis in two monkeys and three human subjects.

Four (two) different 20-electrode/sensor sub-groups were analyzed for each
monkey (human) dataset resulting in the sample size of 8 (6). Values are
mean (center circle) ± s.d. (error bars omitted for s.d. smaller than center
circle).

power-law distributed avalanche sizes in order to exhibit fea-
tures of equilibrium criticality. For example, Macke et al. (2011)
has shown that for a system with (1) higher order interactions
and (2) infinite correlation length, thermodynamic criticality is
ensured, regardless of the pattern size distribution. Although the
power-law size distribution is not necessarily associated with ther-
modynamic criticality, by testing a wide range of T, we found
that the particular value of T that minimizes the distance from
a power-law and the actual distribution is very close to 1 (0.99
± 0.03; mean ± SD across eight sub-groups from 2 monkeys
for the best fitting power-law and 1.03 ± 0.10 for the power-
law with slope −1.5; Figure 13), demonstrating that there is a
unique “temperature” associated with the avalanche dynamics.
Given that there is no trivial relation between the power-law size
distribution and the thermodynamic criticality, our finding that
cortical dynamics exhibit these two features simultaneously is
intriguing.

DISCUSSION
Our results suggest that neuronal avalanches at both mesoscopic
and macroscopic scales manifest a cortical state near thermody-
namic criticality. The critical exponents found are highly con-
sistent among different subjects and are reasonably consistent
across the two different scales and species. Our results are reminis-
cent of the well-known fact that, near the critical state, emergent
behaviors do not depend on the specific microscopic realiza-
tion of a system and, therefore, a multitude of systems can be
categorized into a small number of universality classes based
on their critical exponents (Stanley, 1987, 1999; Binney et al.,
1992; Sornette, 2006). Our results thus suggest a general princi-
ple governing the collective behavior of cortical activities across
spatial scales.

METHODOLOGICAL CONSIDERATIONS
We demonstrated previously that the nLFP correlates with local
neuronal synchrony and increased spiking activity from local
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FIGURE 8 | Validating the FSS method by a simple model. (A) All
elements are configured in a ring and the distance between any adjacent
elements is 1. (B) the covariance of the hidden variables in the DG model,
λ, is plotted as a function of the distance, r, that separates corresponding
elements for different choices of the standard deviation of a Gaussian
function, ω. (C–F) Goodness of collapse, Tc and critical exponents
measured for various systems are plotted against ω (open circles). In all
systems, λmax and mean event rate were set such that when ω = ∞, the
average covariance and the event rate match what we empirically observed
for Monkey 1. Corresponding results obtained from actual data for Monkey
1 (averaged across four sub-groups) are shown for comparison
(broken lines).

neuronal populations (Petermann et al., 2009; Yu et al., 2011).
However, the exact spatial extent of the LFP is still debated. While
some studies suggest that the LFP reflects neuronal activities
within the vicinity of the microelectrode (<0.2 – 0.4 mm radius;
Katzner et al., 2009; Xing et al., 2009), some evidence has been
provided that even distant (>1 mm) neuronal activities might
contribute to the LFP due to volume conduction (e.g., Kajikawa
and Schroeder, 2011). Similar concerns are also related to MEG
signals, as one sensor of the MEG can detect signals generated by
multiple sources. A question thus arises as to what extent linear
mixing of signals from different sources might affect the results
presented in the current study? In general, volume conduction
and/or signal mixing cannot produce genuine critical behavior.

FIGURE 9 | Shuffled data does not exhibit scaling behavior. Original
data was the same as shown in Figure 4. At T = 1, we calculated the
individual pattern probabilities based on independent Poisson processes to
generate nLFPs with the same empirically measured rate for each cortical
site. Using the same method applied to original data, we calculate χ, C, and
M as functions of T. In contrast to the original data, the curves for systems
of different sizes are almost identical for χ (A), C (B), and M (C). For visual
clarity, curves with different sizes have different widths.

FIGURE 10 | Correlation function for avalanche activities. Pair-wise
covariance, G, of nLFP activities is plotted against the physical distance
between the corresponding recording sites. (A,B) Linear coordinates. (C,D)

Double-logarithmic coordinates. G is normalized by the value of the G(0.4),
i.e., the covariance with the nearest neighbor. In all panels, the data are
represented by circles and red lines indicate the best power law fit. The
range of power-law fitting is either all possible distances (monkey 1) or
r > 1 mm (monkey 2). ε, the exponent of the best fitting power law.

Criticality relies on long-range correlations that emerge from cas-
cades of local interactions. That is, the activity of unit A affects
unit B, which in turn affects unit C, and so on. As a result, the
activity of unit A will be correlated (with some temporal delay)
with a distant unit X (Stanley, 1999). If measured interactions
solely arose from volume conduction and/or signal mixing, the
activity of a local unit will not causally affect nearby units and,
therefore, causal chains of interactions cannot form. Accordingly,
volume conduction and/or linear signal mixing should not lead
to the appearance of critical dynamics. We verified this statement
by modeling volume conduction in a 10 × 10 array configuration,
in which even fairly strong volume conduction fails to reproduce
long-range correlations as observed in our neuronal data (see
Appendix Figure A2). Furthermore, the FSS method we used here
to identify criticality is robust to a potential contribution from
volume conduction. This can be easily seen in the ring model we
used to identify scaling collapse. Introducing volume conduction
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FIGURE 11 | Change in the probability of the quiescent state as a

function of system size in the data. For 4 sub-groups analyzed in
monkey 1, probability of the quiescent state measured for the original data
(blue) is plotted as a function of systems size (from 1 to 20). Probability of
the quiescent state measured for corresponding shuffled data (orange) is
plotted for comparison. Shuffled data were obtained by randomizing the
activity sequence for individual electrodes, which eliminates the correlation
among different electrodes but preserves the probability of being active for
all electrodes.

FIGURE 12 | Dissociation between the scaling/collapse and the

power-law size distribution. Pattern probabilities of the original data (as
shown in Figure 4) were modified so that the probability for the quiescent
state, p0, was set randomly from a uniform distribution (0, 1) while the
probabilities for all other states were renormalized, i.e., pi = pi/(1 − p0).
Therefore, the power-law size distribution was preserved. (A), Specific
heat, C, is plotted as a function of T for system size n = 12 – 20 (color
coded). (B) No collapse can be achieved.

into the ring model is equivalent to an increase in ω, which con-
trols the spatial extent of covariance between nearby elements.
Our simulations demonstrated that even strong volume conduc-
tion (ω = 5) failed to produce the critical behavior as observed in
our neuronal data (cf. Figure 8). These analyses suggest that our
conclusions are unlikely to be affected by volume conduction or
signal mixing.

A recent study (Mastromatteo and Marsili, 2011) reported
that experimental data might falsely imply criticality due to (1)
the limitation of finite sampling and (2) the bias introduced
when choosing parameters to achieve best accuracy in the infer-
ring procedure. However, neither aspect applies to the current

FIGURE 13 | Size distributions of avalanche patterns computed for one

20-electrode sub-group (taken from data set in Figure 1D) for different

T and plotted in double logarithmic coordinates. T changes from 0.5 to
1.5 with a step of 0.05. Distribution at T = 1 is marked by red. Inset:
Kolmogorov–Smirnov distance (DKS, a goodness-of-fit measure) between
the actual pattern size distributions and best fitting power law (purple) or
power law with slope −1.5 (blue) is minimized for T ≈ 1.

study. The pair-wise correlation we observed for nLFPs that con-
stitute neuronal avalanches are within the range of 0.2 – 0.6
(Pearson’s r) and, given our sample sizes, the margin of error
is <0.05 (95% confidence interval). Therefore, our sample sizes
were large enough to infer even lower or higher correlation
strengths [indicating larger distances from the critical state, see
Mastromatteo and Marsili (2011)], if they actually existed in the
system. This suggests that the proximity to a critical state is a
true feature of the cortex. Furthermore, in the current analy-
sis, no parameter for analyzing the data was chosen according
to the criterion of inferring accuracy. Taken together, the cur-
rent results are robust, in light of the known methodological
biases.

SUGGESTIONS OF A NEW UNIVERSALITY CLASS FOR THE RESTING
BRAIN
One of the key steps in our analysis was the use of the single his-
togram method to infer system behavior for different values of the
control parameter T. This is a well-established method and has
been widely applied to study various empirical systems and mod-
els at, or close to equilibrium (Tkacik et al., 2009; Macke et al.,
2011; Stephens et al., 2013). Using the same method, Stephens
et al. (2013) recently found that the spatial pattern of natural
images contains indications of criticality. Macke et al. (2011)
found that if a system exhibits higher-order interactions, its spe-
cific heat will diverge as long as the correlation does not decay
as a function of the distance. In a study of spiking activities in
salamander retina (Tkacik et al., 2009), it was found that the
maximal heat capacity increased with system size and the corre-
sponding T(Tpeak) approaches 1. This was suggested as evidence
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for criticality (Tkacik et al., 2009). Heat capacity, though, is an
extensive quantity and thus, an increase in heat capacity with
increasing system size is difficult to interpret. It does not necessar-
ily indicate an increase in specific i.e., normalized, heat capacity.
Furthermore, without a sound extrapolation of Tpeak for n → ∞,
it is difficult to give an accurate estimation of Tc. In the cur-
rent study, we took several steps to avoid such ambiguities. First,
specific heat C was analyzed directly. More importantly, we used
FSS to estimate both Tc and the critical exponents, providing a
quantitative characterization of the system’s behavior.

Interestingly, the critical exponents derived for the cortical
activities are different from those that are commonly found in
physics such as the Ising model, Heisenberg model or Spherical
model (Binney et al., 1992). Cortical activity has distinctive fea-
tures, including a currently unknown dimensionality and a spe-
cial structure of higher-order interactions (Yu et al., 2011), which
may underlie its unique critical exponents. We also notice that the
value of β is close to zero, which in some cases indicates that the
phase transition is a discontinuous one (Achlioptas et al., 2009).
However, recently it was found that some continuous phase
transitions have β so close to zero that it is practically indistin-
guishable from a discontinuous one (Riordan and Warnke, 2011).
To further elucidate this issue, future work with approaches that
can analyze much larger systems, i.e., larger n, would be needed
to increase the precision in estimating Tc and critical exponents.

NON-EQUILIBRIUM AND EQUILIBRIUM PERSPECTIVES OF NEURONAL
AVALANCHE DYNAMICS
Our current approach did not address the organization of activi-
ties within individual avalanches. It has been previously demon-
strated that such activities can be effectively understood in the
framework of a critical branching process (Beggs and Plenz,
2003; Shew et al., 2009, 2011; Friedman et al., 2012; Yang et al.,
2012). That approach considers the spatiotemporal organization
of events (nLFPs) that occur in an avalanche to be the result of bal-
anced cascades and correctly predicts the power-law distribution
in avalanche size with the exponent of –1.5. The critical branch-
ing process is a well-studied, non-equilibrium critical condition,
which belongs to the universality class of directed percolation
(Buice and Cowan, 2007). By collapsing the temporal dimension,
we compressed the spatiotemporal pattern of neuronal cascades
into spatial-only patterns and thus ignored the non-equilibrium
cascading process in our present study. At the same time, we ana-
lyzed the ensemble of all cascades as a whole. Thus, our approach
focused on the organization of avalanche activities at a different
level. With this regard, the current results provide a complemen-
tary view to better understand cortical dynamics, suggesting a
highly organized, hierarchical organization of cortical activity. We
propose that cortical dynamics are organized close to criticality
from both the non-equilibrium, branching process perspective
and the equilibrium thermodynamic perspective. The former is
indicated by a power-law size distribution, whereas the latter is
indicated by Tc close to 1. Interestingly, recent studies that inves-
tigated large scale (across the entire brain) neuronal dynamics
have also reported evidence for criticality in an equilibrium as
well as non-equilibrium context (Deco and Jirsa, 2012; Haimovici
et al., 2013; Shriki et al., 2013). Future studies to investigate how
the brain can achieve both types of criticality, at different spatial

as well as temporal scales hold great promise to uncover a more
complete picture of cortical dynamics.

For the non-equilibrium critical state characterized by power-
law probability distributions, theoretical as well as empirical stud-
ies have revealed functional advantages for neuronal information
processing (Kinouchi and Copelli, 2006; Rämö et al., 2007; Shew
et al., 2009, 2011; Tsubo et al., 2012; Yang et al., 2012). The
equilibrium, thermodynamic criticality also has direct functional
implications. From an information-theoretical point of view, the
maximal specific heat, i.e., maximal variance of log(pi), implies
largest dynamic range for population coding (Tkacik et al., 2009;
Macke et al., 2011). This is also consistent with the finding that
the dynamics of the brain reach highest signal complexity near
the equilibrium criticality (Deco and Jirsa, 2012). The maximal
susceptibility has an even more straightforward interpretation:
it means that cortical networks have obtained largest sensitiv-
ity to small perturbations. This may play an essential role in
allowing the organism to be able to detect and respond to sub-
tle environmental changes. Such a high sensitivity of cortical
networks has been demonstrated empirically for both spiking
activity (Houweling and Brecht, 2007; Huber et al., 2008) and
neuronal population activity reflected in the LFPs (Shew et al.,
2009). The current results provide new insights into these intrigu-
ing phenomena of cortical dynamics.

POTENTIAL FUNCTIONAL ROLE OF THE CONTROL PARAMETER T IN
THE BRAIN
In systems studied in statistical mechanics, increasing the tem-
perature T drives the system toward a state of higher activity
and weaker effective interactions among the system compo-
nents. Similar changes in activity and interactions have also been
observed in the brain, specifically the cortex. For example, an
increase in firing rate that is accompanied by a decrease in pair-
wise correlation has been documented in transitions from a less
vigilant state to a more vigilant state, e.g., from sleep to wake-
fulness (Vyazovskiy et al., 2009; Grosmark et al., 2012) and from
an inattentive to an attentive state (Cohen and Maunsell, 2009;
Harris and Thiele, 2011; Mitchell et al., 2009). These observa-
tions suggest that there might be intrinsic neural mechanisms
for adjusting cortical states roughly along the same dimension as
changing T.

It is well-known that neuromodulators, such as acetylcholine
(ACh) and dopamine (DA) produce numerous diverse effects
at the receptor, synaptic transmission, and single neuron level
(Picciotto et al., 2012; Tritsch and Sabatini, 2012). On the other
hand, when studying the effect of e.g., ACh in the context of
cortical state changes (Himmelheber et al., 2000; Jones, 2005;
Brown et al., 2011), effects brought about by an increase in the
tone of ACh are quite reminiscent of the effects of increasing T
in our framework. In particular, ACh drives cortical networks
toward a state of high activity and weak coupling both in vitro
(Chiappalone et al., 2007; Pasquale et al., 2008) and in vivo
(Goard and Dan, 2009; Thiele et al., 2012). Similarly, the neuro-
modulator dopamine was shown to control neuronal avalanche
dynamics via an inverted-U profile typical for the regulation
of working memory (Stewart and Plenz, 2006). At moderate
dopamine D1-receptor stimulation, neuronal avalanche dynam-
ics was established, whereas lower or higher receptor stimulation

Frontiers in Systems Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 42 | 11

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Yu et al. Thermodynamic criticality in cortical activities

abolished avalanche dynamics and reduced the number of local
synchronized events reminiscent of weaker coupling between
neurons.

The control parameter T might not capture the effects of
changing the balance of fast excitation to fast inhibition (E/I)
in a network. Experimentally, it has been shown that a proper
E/I balance is required to maintain avalanche dynamics in cor-
tical networks (Beggs and Plenz, 2003; Shew et al., 2009, 2011;
Yang et al., 2012). Neuronal simulations have demonstrated
that such proper E/I balance, in addition, establishes long-
range temporal correlations in the network (Poil et al., 2012)
as identified in the human EEG (e.g., Linkenkaer-Hansen et al.,
2005; Montez et al., 2009). An increase in excitation, e.g., by
reducing inhibition, increases activity. However, it also leads
to an increase, not a decrease, in coupling (Shew et al., 2009,
2011).

CONCLUDING REMARKS
By studying neuronal avalanches in non-human primates and
human subjects, we demonstrated that ongoing resting activ-
ity in the cortex organizes close to a thermodynamic critical
point. We derived the cortical equivalents of the three parame-
ters, including susceptibility, specific heat capacity and an order
parameter that are commonly used in statistical mechanics to
capture the behavior of systems near a thermodynamic critical
point. By investigating the scaling behavior of these parameters
we uncovered a potentially new universality class for the brain
and propose that this endows cortical networks with maximized

input sensitivity and dynamic range for representing informa-
tion. Our results reveal, in a quantitative manner, how the
interactions among individual neurons in cortex collectively give
rise to emergent behavior that is highly non-trivial. With ever
increasing capacity of monitoring activities of large neuronal
networks, we anticipate that the framework provided here will
be instrumental for understanding how cortical states are reg-
ulated through myriads of neuronal interactions to optimize
information processing.
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APPENDIX
A. EXAMINING THE ASSUMPTIONS ABOUT STATIONARITY AND

EQUILIBRIUM
Thermodynamic equilibrium implies that the macroscopic prop-
erties of the system keep stable and do not change with time.
As the distribution of avalanche sizes captures the essential fea-
ture of cortical dynamics (Beggs and Plenz, 2003; Petermann
et al., 2009; Shew et al., 2009, 2011; Yang et al., 2012), we exam-
ined the stability of this size distribution. In Figure 3 (main
text), we show that the avalanche size distribution, measured
for 10 consecutive, equal-sized segments of recording, is sta-
ble across the whole recording period (30 min). To contrast this
with the true equilibrium condition, we shuffled the original
avalanche raster (i.e., randomized its sequence) and repeated
the same analysis. The variability of the estimated power law
exponent, ε, across all segments is small for both the original
and shuffled datasets. F-test statistics also revealed no signif-
icant difference in the variance of ε between the two condi-
tions (p = 0.13), suggesting a stable organization of the system
over time.

Secondly, we demonstrate that the data satisfy two crucial
criteria that will lead to equilibrium: (1) detailed balance (micro-
reversibility) and (2) accessibility/ergodicity (Binney et al., 1992).
Detailed balance is achieved in a system if the following relation
holds: pipi→j = pjpj→i, where i and j are possible states (config-
urations) of the system; pi is the probability of states i and pi→j

is the transition probability from state i to state j. For avalanche
patterns defined by clustering a period of activity flanked by qui-
escent periods before and after it (Beggs and Plenz, 2003), it
is clear that the detailed balance strictly holds for systems with
arbitrary sizes. As in this condition, every transition from a qui-
escent state (i.e., all sites are inactive) to an active state (i.e.,
at least one of the sites is active) would be accompanied by a
reverse of that transition. In other words, the system will sat-
isfy pqpq→i = pipi→q, where q is the quiescent state and i is
any active state. Such a feature, combined with the fact that all
pi→j = 0 when i and j are both active states, ensures the detailed
balance.

To study whether the detailed balance still holds when we
release these constraints set by the rules that identify avalanches,
we examined the relation between pipi→j = pjpj→i in the data
with quiescent periods removed. In such case, both constraints,
i.e., the symmetrical transition from a quiescent state to an active
state and zero transition probability between active states, are
removed. In Figure A1, we plotted the measured pipi→j against
pjpj→i for systems with different sizes (n = 2–5). Overall, the data
points are fairly close to the identical line, suggesting the fulfill-
ment of the equality. For comparison, we constructed a shuffled
data set, in which the sequence of avalanche patterns was random-
ized. For this shuffled data set, any possible temporal dependency
was removed so it is in a truly equilibrium state and, therefore, ful-
fills the detailed balance. The same analysis was then performed
for the shuffled data and we found that the results are similar to
those from the original data, indicating that the deviation from
the identical line for the original data is largely due to finite
sampling, and not due to a violation of the detailed balance. To
quantify this effect, we computed the ratio r = Ddata/Dshuffled,

FIGURE A1 | Detailed balance approximately holds for the data with

quiescent periods removed. For differently sized systems (n = 2–5),
empirically measured pi pi→j is plotted against pj pj→i for both the original
data (blue) and shuffled data (red). For every size, 100 different systems
(i.e., different combinations of electrodes) were analyzed. The solid lines
represent equality. r is a measure of the distance from the equality, relative
to that of the shuffled data (see Appendix text A for details). It is
represented as mean ±s.d. (across 100 systems). (A–D), system size
equals 2, 3, 4, and 5, respectively.

where

D = 2
∣∣pipi→j − pjpj→i

∣∣
pipi→j + pjpj→i

(A1)

We found that for n > 2, this ratio is very close to one (Mann–
Whitney U test, p > 0.05), indicating that the violation to the
detailed balance is sufficiently small so it is not detectable within
the current recording length. Due to the lack of sufficient data, the
direct check of detailed balance cannot be performed for larger
systems (n >> 5). However, with the results we obtained for n =
2–5, and given the fact that with the increase of system size, expo-
nentially more samples would be needed to detect the same level
of violation, it is clear that the detailed balance among the active
states, i.e., avalanche patterns, should be a good approximation
for even larger systems.

Regarding the accessibility/ergodicity assumption, it requires
that from any given state, the system should be able to evolve
(after a sufficiently long time) to any other state. Although the
direct test for ergodicity is not possible due to limited length of the
recording, the power-law distribution in avalanche sizes provides
strong empirical evidence to support it. Such a heavy-tailed dis-
tribution indicates that even large systems can visit configurations
that cover all possible avalanche sizes.
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FIGURE A2 | Volume conduction does not introduce long-range

correlations. In a simulated 10 × 10 array configuration, we introduce
volume conduction by mixing the independent signals from nearby sites
according to S′

i = ∑
wij Sj , where S represents independent signals

from individual site and S’ represents the signals after mixing. The

mixing weight wij = exp

[
− 1

2

(
rij
ω

)2
]

, where rij is the distance

between site i and j. (A) Spatial configuration of the simulated array.
(B–D), For an example site (the red square in A), the mixing weight
wij (color corded) with different spatial extend (ω) are shown, with the
reference to the whole array. (E) Correlation, G, between mixed
activities are plotted as a function of the separation distance for
different ω (color-coded). To facilitate comparison, G is normalized by
the correlation between the nearest neighbors, i.e., r = 1.

Taken together, various empirical tests strongly suggest that
the stationarity and even the equilibrium assumption can be
considered a reasonable first approximation for our data.

B. ANALYTICAL DERIVATION OF FINITE SIZE SCALING METHOD
For readers who are not familiar with the finite size scaling, we
illustrate the method using susceptibility χ as an example. In the
vicinity of the critical temperature Tc, χ can be expressed as a
function of correlation length ξ.

χ = ξγ/v (A2)

In finite size system, correlation length ξ is comparable to system
size L, and therefore has a cut off. Consequently, χ also has a cut
off. If we use ξ to represent the correlation length at the thermo-
dynamic limit, then the cut off takes place when ξ > L. Then, we
can rewrite χ as

χ = ξγ/vχ0(L/ξ), (A3)

which satisfies the conditions above. Then define

χ0(x) ∼ χγ/v, for x < 1

χ0(x) ∼ c, otherwise, where c is a constant. (A4)

Therefore, when the system size is finite,

χL = ξγ/v(L/ξ)γ/v = Lγ/v, (A5)

And the correlation length is comparable to the system size.
Otherwise, when the system size is infinite, the correlation length
is actually ξ,

χ = cξγ/v. (A6)

Now we can rewrite the equation in order to remove ξ, because we
do not know its exact value, and also to introduce a dimensionless
function χ̄(x), which will be the scaling function for χL

χ = ξγ/vχ0
(
L |t|v)

= ξγ/vχ0

[(
L1/v |t|)v

]
= |t|−γχ0

[(
L1/v |t|)v

]
= Lγ/vL−γ/v |t|−γ χ0

[(
L1/v |t|)v

]
= Lγ/v (

L1/v |t|)−γ
χ0

[(
L1/v |t|)v

]
. (A7)

Set x = L1/v|t|, which will be the scaling variable

χ = Lγ/vx−γχ0(xv) (A8)

Define scaling function χ(x) = x−γχ0(xv), then

χ = Lγ/v χ(L1/v |t|). (A9)

Note when ξ ∼ L,

χ(x) = x−γχ0(xv)

= (
L1/v |t|)−γ

χ0

[(
L1/v |t|)v

]
= L−γ/v |t|−γ χ0

(
L |t|v)

= L−γ/v |t|−γ c
(
L |t|v)γ/v

= L−γ/v |t|−γ cLγ/v |t|γ
= c (A10)
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Thus, the scaling function is a constant and independent of the
system size.

The scaling function also can be written as

χ
(
L1/v|t|) = L−γ/v|t|−γc

(
L|t|v)γ/v

= L−γ/v (|t|−γ
)γ/v

c

(
L

|t|−v

)γ/v

(A11)

Recall ξ ∼|t|−v, so we have

χ
(
L1/v|t|) = L−γ/v ξγ/vc

(
L

ξ

)
γ/v (A12)

Also recall, when system size is finite,

χL = ξγ/v(L/ξ)γ/v, (A13)

So

χ
(
L1/v|t|) = L−γ/vχL = c (A14)

From Eq. A14, we can measureχL(t) for various system sizes L in
a temperature range close to Tc, and rescale χL(t) by L−γ/v for
each L to obtain the scaling functionχ(L1/v|t|), with L1/v|t| as the
scaling variable. If we choose the correct Tc , ν and γ, the scaling
functions for different system sizes will fall on the same curve.
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