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The anterior thalamic nuclei (ATN), a central component of Papez’ circuit, are generally
assumed to be key constituents of the neural circuits responsible for certain categories of
learning and memory. Supporting evidence for this contention is that damage to either
of two brain regions, the medial temporal lobe and the medial diencephalon, is most
consistently associated with anterograde amnesia. Within these respective regions, the
hippocampal formation and the ATN (anteromedial, anteroventral, and anterodorsal) are
the particular structures of interest. The extensive direct and indirect hippocampal-anterior
thalamic interconnections and the presence of theta-modulated cells in both sites further
support the hypothesis that these structures constitute a neuronal network crucial
for memory and cognition. The major tool in understanding how the brain processes
information is the analysis of neuronal output at each hierarchical level along the pathway
of signal propagation coupled with neuroanatomical studies. Here, we discuss the
electrophysiological properties of cells in the ATN with an emphasis on their role in spatial
navigation. In addition, we describe neuroanatomical and functional relationships between
the ATN and hippocampal formation.
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INTRODUCTION
That the hippocampal formation is vital for memory is unde-
niable. For this reason, understanding hippocampal learning
mechanisms remains one of the principal objectives in neu-
roscience. However, this problem must be addressed from a
broad perspective, i.e., one that includes the many connections
of the hippocampal formation, some of which are now known
to be critical for hippocampal mnemonic functions. The medial
diencephalon is extensively connected with the hippocampal for-
mation, damage to this area being frequently associated with
anterograde amnesia (Aggleton and Sahgal, 1993; Aggleton and
Brown, 1999). Within the medial diencephalon, the anterior tha-
lamic nuclei (ATN) are an important part of the neuronal systems
involved in spatial navigation (Clark and Taube, 2012), comple-
menting their role in mnemonic functions (Buzsáki and Moser,
2013). This review will summarize some recent data concerning
the anatomical and physiological properties of the anterior thala-
mic neurons, their role in spatial navigation, and their relevance
to pathophysiological conditions associated with the ATN.

GENERAL ANATOMY OF THALAMUS
The thalamus is a bilateral, symmetrical structure comprising the
majority of the diencephalon, with the medial thalamus being
bordered, and in places split, by the third ventricle. The thala-
mus is classically divided into several groups of nuclei, described
by their anatomical location: medial, lateral, ventral, and anterior,
as well as the posterior (pulvinar) nuclei. This review focuses on

the ATN, which is divided into the anterodorsal, anteroventral,
and anteromedial nuclei, all located in the rostral part of the dor-
somedial thalamus (Figure 1) (Morel et al., 1997; Wiegell et al.,
2003). There is some uncertainty about the nuclei that comprise
the ATN, with many authors regarding the lateral dorsal thalamic
nucleus as part of the ATN due to its limbic associations (Morel
et al., 1997). Some researchers have argued that the anterome-
dial nucleus is actually a part of the anteroventral nucleus (see
Alelú-Paz and Giménez-Amaya, 2007), although in rodents and
monkeys these two nuclei have clearly visible differences when
examined in histological and immunochemical preparations. The
three major nuclei within the ATN also have distinct patterns of
connectivity.

HISTOLOGY
While the human anteroventral thalamic nucleus is distinguished
by its homogenous and dense cell population (Morel et al., 1997),
the neurons in anteromedial nucleus are larger and more widely
dispersed. In contrast, the anterodorsal nucleus contains densely-
packed small cells (Morel et al., 1997). All areas of the ATN show
varying degrees of immunoreactivity to acetylcholinesterase, as
well as the calcium-binding proteins calretinin, calbindin-D28K
and parvalbumin (Morel et al., 1997; Fortin et al., 1998; Munkle
et al., 2000; Alelú-Paz and Giménez-Amaya, 2007). In humans,
the neuropil in ATN also stains variably in different areas for neu-
ropeptides. These neuropeptide analyses reveal numerous sub-
stance P positive varicose fibers scattered throughout the ATN,
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FIGURE 1 | The localization of the ATN in the rat brain. Top: coronal
and sagittal sections of rat brain are shown (Paxinos and Watson, 1998)
with the ATN indicated in green, red and blue and whole area of the
thalamus in gray. The dashed black lines depict the spatial relation
between presented sections. The dashed red rectangles denote the
extent of coronal and sagittal sections, respectively, presented below.
Abbreviations: 3V, 3rd ventricle; AD, anterodorsal thalamic nucleus; AV,
anteroventral thalamic nucleus; AM, anteromedial thalamic nucleus;
AMV, anteromedial thalamic nucleus, ventral part; CL, centrolateral

thalamic nucleus; IAM, interanteromedial thalamic nucleus; ic, internal
capsule; LD, laterodorsal thalamic nucleus; LP, lateral posterior thalamic
nucleus; MD, mediodorsal thalamic nucleus; mt, mammillothalamic tract;
PC, paracentral thalamic nucleus; PF, parafascicular thalamic nucleus; PT,
paratenial thalamic nucleus; PVA, paraventricular thalamic nucleus,
anterior part; RE, reuniens thalamic nucleus; RT, reticular thalamic
nucleus; sm, stria medullaris of the thalamus; st, stria terminalis; VA,
ventral anterior thalamic nucleus; VL, ventrolateral thalamic nucleus; VM,
ventromedial thalamic nucleus.

in contrast to very few enkephalin positive varicose fibers (Alelú-
Paz and Giménez-Amaya, 2007). Heterogeneity in morphological
architecture and protein expression patterns within ATN may
reflect regional differences in their functional organization with
respect to the other thalamic nuclei and the cerebral cortex.
Moreover, the varied morpho-chemical structure of the various
ATN may underlie their different roles in the function of the
limbic system.

CONNECTIVITY TO OTHER STRUCTURES
The ATN sits in the middle of a complex array of cortical and sub-
cortical connections (Figure 2). Examples include the widespread
links with frontal cortical areas, much of the cingulate cortex,
and the hippocampal formation (Amaral and Cowan, 1980; Hicks
and Huerta, 1991; Van Groen and Wyss, 1995). Many of these
connections are reciprocal (Shibata and Naito, 2005). Especially
dense inputs to the ATN arise from the retrosplenial cortex,
the subiculum, and the mammillary bodies (Wright et al., 2010);
the latter reach the thalamus via the mammillothalamic tract. The
mammillary body inputs are particularly notable as it appears
that almost every neuron within the structure projects to the
ATN (Hopkins, 2005; Vann et al., 2007; Aggleton et al., 2010).
However, the various projections to the ATN are often topograph-
ically specific (Wright et al., 2013). Previous rodent and primate

studies had indicated that separate cell groups in the subiculum
project to either the mammillary bodies or the anterior thala-
mus (Naber and Witter, 1998; Ishizuka, 2001; Aggleton et al.,
2005). Wright et al. (2010) investigated this specificity and found
distinct bands of projection to each area, i.e., the inputs are seg-
regated. This same pattern of segregation extends to the inputs to
the anteroventral and anteromedial nuclei, which often arise from
the same structure but rarely from the same cells (Wright et al.,
2013). The finding that the direct hippocampal projections to the
mammillary bodies and ATN rely on the fornix (Aggleton et al.,
2005, 2010; Saunders et al., 2005) is important as it has a direct
bearing on how the impact of fornix damage upon cognition is
interpreted (Tsivilis et al., 2008). A brief summary of some of the
connections involving the different nuclei in the rodent anterior
thalamus is summarized as follows (see also Figure 2):

ANTEROMEDIAL
Anteromedial nucleus receives projections from:

• medial mammillary bodies (Watanabe and Kawana, 1980; Seki
and Zyo, 1984)

• rostral dorsal reticular nucleus (Shibata, 1992)
• prelimbic and medial orbital cortices (Shibata and Naito, 2005)
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FIGURE 2 | The color-coded diagram presents the main direct connections

of the anterodorsal (AD), anteroventral (AV), and anteromedial (AM)

thalamic nuclei in the rat brain. Black arrows depict reciprocal connections,
green efferents, and red afferents of the three anterior thalamic nuclei (ATN).

Structures in blue contain head direction cells, and so constitute a part of the
hierarchically organized head direction system (Clark and Taube, 2012). The
various indirect connections of the ATN, along with the connections between
other highlighted structures, are not included in this scheme.

• anterior cingulate and dysgranular retrosplenial cortex
(Shibata, 1993b; Shibata and Naito, 2005; Wright et al., 2010)

• secondary motor cortices (Shibata and Naito, 2005)
• entorhinal cortex (Wright et al., 2010)
• subiculum (Wright et al., 2010)

Anteromedial nucleus projects to:

• frontal area 2 (Shibata and Kato, 1993), frontal polar and
medial orbital cortex (Van Groen et al., 1999)

• anterior cingulate (Shibata and Kato, 1993) and dysgranular
retrosplenial cortex (Shibata and Kato, 1993; Van Groen et al.,
1999)

• entorhinal cortex (Shibata, 1993a; Shibata and Kato, 1993; Van
Groen et al., 1999);

• perirhinal cortex (Shibata, 1993a; Van Groen et al., 1999)
• presubiculum, subiculum (Shibata, 1993a; Van Groen et al.,

1999)
• visual cortex area 18 b (Van Groen et al., 1999)
• temporal area 2, occipital area 1 and 2 (Shibata, 1993a)
• (medial) secondary motor cortices (Shibata and Naito, 2005)

ANTERODORSAL
Anterodorsal nucleus receives projections from:

• lateral mammillary bodies (Watanabe and Kawana, 1980;
Shibata, 1992)

• subiculum, para-and postsubiculum (Seki and Zyo, 1984; Van
Groen and Wyss, 1990a,c; Wright et al., 2010)

• retina (Conrad and Stumpf, 1975; Itaya et al., 1981, 1986)

• anterior cingulate cortex (Shibata and Naito, 2005)
• granular retrosplenial cortex (Wright et al., 2010)
• caudal dorsal reticular nucleus (Shibata, 1992)

Anterodorsal nucleus projects to:

• pre-, para-, and postsubiculum (Van Groen and Wyss, 1990a,c,
1995)

• hippocampus (Wyss et al., 1979; Amaral and Cowan, 1980)
• granular retrosplenial cortex (Van Groen and Wyss, 1990b;

Shibata, 1993b; Van Groen and Wyss, 2003)

ANTEROVENTRAL
Anteroventral nucleus receives projections from:

• medial mammillary bodies (Watanabe and Kawana, 1980)
• caudal dorsal reticular nucleus and laterodorsal tegmental

nucleus (Shibata, 1992)
• subiculum and postsubiculum (Van Groen and Wyss, 1990c;

Wright et al., 2010)
• anterior cingulate cortex, granular and dysgranular retrosple-

nial cortex (Van Groen and Wyss, 1990b, 2003; Shibata and
Naito, 2005; Wright et al., 2010)

• secondary motor cortex (Shibata and Naito, 2005)

Anteroventral nucleus projects to:

• pre-, para-, and postsubiculum (Van Groen and Wyss, 1990c;
Shibata, 1993a; Van Groen and Wyss, 1995)

Frontiers in Systems Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 45 | 3

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Jankowski et al. Anterior thalamus in memory and navigation

• entorhinal cortex (Shibata, 1993a)
• anterior cingulate, granular and dysgranular retrosplenial cor-

tex (Shibata, 1993b; Van Groen and Wyss, 2003)
• secondary motor cortex (Shibata and Naito, 2005)

FUNCTIONAL CONSIDERATIONS
The circuit outlined by Papez (1937) is still highly relevant
when considering the functional and cognitive aspects of sys-
tems involving the anterior thalamus. This circuit highlighted
the following projections: hippocampal formation > mammillary
bodies > anterior thalamus > cingulate cortex > parahippocam-
pal gyrus > hippocampal formation. Since then, the anatomical
definition of Papez’ circuit has been further refined (Shah et al.,
2012). The ATN still occupy an important position as estab-
lished by studies using traditional fiber dissection techniques
(Shah et al., 2012), as well as in vivo diffusion spectrum imaging
(Granziera et al., 2011) of Papez’ circuit. Although Papez origi-
nally suggested that this pathway underlay emotional processing
by the brain, our current understanding of Papez’ circuit suggests
that it has a particular and special role in supporting the neural
substrates of explicit learning and memory (Vertes et al., 2001;
Shah et al., 2012). Aggleton and Brown (1999) developed the
idea of an extended hippocampal-diencephalic network for the

integration of information, with the ATN at its core. Subsequent
models have proposed that the individual ATN can be func-
tionally divided, forming a series of three parallel sub-systems
(Aggleton et al., 2010) (Figure 3): (1) The anteromedial nucleus is
predicted to form part of a largely feed-forward system that con-
veys integrated information from the hippocampal-diencephalic
network to prefrontal areas, thereby taking part in higher cog-
nitive and executive functioning; (2) The anteroventral system
largely comprises a return-loop, with the main purpose being
to perpetuate rhythmic theta activity to the hippocampal forma-
tion; (3) The anterodorsal nucleus is considered to encompass the
head direction system. This description arises because cells in this
nucleus exhibit electrophysiological compass-like properties, so
that they display tuning to specific head directions, but not to
location (Taube, 2007; Clark and Taube, 2012). The proposal is
that the combined properties aid both spatial and mental naviga-
tion, with a different emphasis in different species (Aggleton et al.,
2010).

SPATIAL NAVIGATION ROLE OF ANTERIOR THALAMIC
NEURONS—A CRITICAL PART OF THE HEAD DIRECTION
SYSTEM
Investigations into the roles of anterior thalamic neurons in
spatial navigation were triggered by the discovery of cells in

FIGURE 3 | The “extended-hippocampal system” proposed by Aggleton

et al. (2010). Color-coded diagram depicts how, in the rat, the hippocampal
formation is associated with three sets of parallel mammillary body—anterior
thalamic connections. Connectivity studies in the monkey brain (macaque)
support the same overall scheme for primates (e.g., Vann et al., 2007). The
connections solely conveyed in the fornix are shown as dashed lines.

Double-headed arrows depict reciprocal connections. Abbreviations: DtG,
dorsal tegmental nucleus of Gudden; MTT, mammillothalamic tract; VtGp,
ventral tegmental nucleus of Gudden, pars posterior. (Note, the lateral dorsal
thalamic nucleus has not been included above as, unlike the anterior thalamic
nuclei, it receives few, if any, mammillary body inputs. The interoanteromedial
nucleus has not been included given its uncertain status in the primate brain).
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the postsubiculum that discharge as a function of the animal’s
head direction in the horizontal plane, but independent of its
behavior and location in the environment (Ranck, 1984; Taube
et al., 1990). Knowing that the postsubiculum contains recip-
rocal connections with the ATN (anterodorsal nucleus in par-
ticular) led to the suspicion that the anterior thalamus might
also possess head direction cells. In 1995, Taube reported that
such cells, referred to as head direction cells (because they only
discharge whenever the animal points its head in a particu-
lar direction), were indeed present in the ATN (Taube, 1995).
Head direction cells are believed to encode primary information
for spatial orientation in the environment, namely an animal’s
perceived directional heading with respect to its environment
(for review see Taube, 2007; Clark and Taube, 2012). So far,
the largest proportions of head direction cells in the thalamus
have been found in the anterodorsal and lateral dorsal thalamic
nuclei, with additional head direction cells in the anteroventral
nucleus (Taube, 2007; Tsanov et al., 2011a; Clark and Taube,
2012). Moreover, head direction cells are also found in cortical
structures such as the postsubiculum, parasubiculum, retros-
plenial, and medial entorhinal cortex, as well as in subcortical
brain regions like the lateral mammillary nucleus (LMN) and
dorsal tegmental nucleus of Gudden (DTG) (Clark and Taube,
2012).

There is now considerable evidence that the ATN are part of
an interconnected circuit, which is organized hierarchically and
is responsible for the propagation of head directional signals in
the central nervous system (Taube, 2007; Clark and Taube, 2012).
Such a notion is supported by experiments in which lesions of
the lower structures of this circuitry (e.g., anterodorsal thala-
mus) completely abolished head direction cell activity in higher
components (e.g., postsubiculum, parasubiculum or superficial
layers of medial entorhinal cortex), whereas destruction of post-
subiculum did not disrupt head direction signals in subcortical
structures (Goodridge and Taube, 1997; Clark and Taube, 2011,
2012). Moreover, damage to the postsubiculum or retrosplenial
cortex disrupted anterodorsal nucleus head direction cell tuning
to visual landmark cues, suggesting that these cortical structures
are important for the visual regulation of head direction cells
activity in the anterior thalamus (Goodridge and Taube, 1997;
Clark et al., 2010; Yoder et al., 2011b). The medial entorhinal
cortex seems to be at the top of this hierarchical head direc-
tion system because, after lesion, the discharge characteristics
of anterodorsal head direction cells were only mildly affected.
Furthermore, entorhinal cortex lesions did not cause clear deficits
in landmark processing or angular path integration (neural inte-
gration of head angular velocity signals) by anterodorsal head
direction cells (Clark and Taube, 2011). Further evidence for the
hierarchical organization of head direction cell circuitry comes
from experiments in which lesions in “lower” structures, e.g.,
bilateral damage of the dorsal tegmental nucleus of Gudden or the
lateral mammillary nucleus, abolished head direction cell activ-
ity in the anterodorsal thalamic nucleus (Blair et al., 1998, 1999;
Bassett et al., 2007). In contrast to this general pattern of hierar-
chical organization, lesions in lateral dorsal thalamic nucleus had
little effect on the firing properties of head direction cells in post-
subiculum (Golob et al., 1998), whereas an intact anterodorsal

thalamic nucleus is necessary for the presence of head direc-
tion cell activity in the postsubiculum (Goodridge and Taube,
1997).

Thalamic head direction cells are influenced by both external
and internal sources of information (Taube, 2007; Yoder et al.,
2011a). Although external cues exert strong influences on anterior
thalamic head direction cells, these cells can maintain direc-
tional firing preferences in the dark and in new environments
(Taube and Burton, 1995; Goodridge et al., 1998). This obser-
vation suggests that head direction cells are strongly influenced
by internal sources of information, i.e., vestibular, propriorecep-
tion, or motor efference. One implication is that the vestibular
system may be particularly important for this aspect of spatial
navigation (Potegal, 1982). This hypothesis was verified exper-
imentally by (Stackman and Taube, 1997), who recorded from
head direction cells in the anterodorsal thalamus before and after
neurotoxic lesions that destroyed the hair cells in the vestibu-
lar labyrinth. As a result, head direction cells in the anterior
thalamus lost their directional specificity. Moreover, in lesioned
animals, a new subset of neurons, characterized by intermit-
tent firing bursts without specified directionality, was observed.
The appearance of a new subset of cells in lesioned animals that
were not recorded in intact animals suggests that head direc-
tion cells may alter their physiology in the absence of indirect
vestibular input, and that other sensory systems (e.g., visual,
somatosensory/tactile or olfactory) are unable to compensate
for the loss of vestibular information in order to retain direc-
tion. The absence of head direction cell activity in animals with
vestibular lesions persisted for up to 3 months post-surgery, indi-
cating that indirect vestibular inputs remain crucial for anterior
thalamic head direction cell function (Clark and Taube, 2012).
However, in the anterodorsal thalamic nucleus of transgenic oto-
conia deficient tilted mice, which exhibit an impaired sense of
linear acceleration and head tilt, directionally tuned cells were
recorded (Yoder and Taube, 2009). Nevertheless, the head direc-
tion cells recorded in tilt mice often appeared to be unstable.
These cells retained directional information for the duration of
a single recording session, but often lost directionality across sub-
sequent recording sessions. These experiments (Yoder and Taube,
2009) provided the first conclusive evidence that the otolith
organs are important for maintenance of a robust head direction
signal.

One of the main questions that emerged after the discov-
ery that the anterodorsal head direction signal is dependent on
indirect vestibular inputs was: Are anterodorsal head direction
cells activated in the same manner during active and passive
movement? Initially, (Knierim et al., 1995) and Taube (1995)
both reported substantial reductions in firing rates during pas-
sive rotation, producing near or complete suppression of the
anterodorsal head direction response when the animal’s body
was tightly restrained except its head. Reductions in firing rates
during passive rotation were also observed in the postsubicu-
lum and retrosplenial cortex (Chen et al., 1994; Golob et al.,
1998). In contrast to these observations, (Zugaro et al., 2001)
found only mild inhibition of anterodorsal head direction cell
firing, with peak firing rates reduced by only 27% and no loss
of directional responding during unrestrained passive movement.
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(Bassett et al., 2005) found only a 23% reduction in the peak fir-
ing rates of anterodorsal head direction cells when the animals
were passively moved while loosely restrained. The above obser-
vations suggest that the tight restraint of the animal may, in itself,
be a factor which decreases firing rate of anterodorsal head direc-
tion cells. However, in the studies by Knierim et al. (1995) and
Taube (1995), the head of the animal was not fully immobilized
while the trunk was tightly restrained. Therefore, Shinder and
Taube (2011) prepared a rotatable, horizontal plane platform that
was equipped with an immobilizing tube for the trunk and holder
for the head. Before the recording session, the rat was immobi-
lized and its head fixed to the platform by a bar connected to the
restraint bolt, which had been previously mounted to the skull.
Experiments revealed that passive movement during head-fixed
restraint did not reduce anterodorsal head direction cell firing,
relative to active movement (Shinder and Taube, 2011). Moreover,
anterodorsal head direction cell responses were also maintained
during passive movement in the dark, suggesting that visual,
motor, and proprioceptive inputs are not necessary to generate
direction-specific responses in head direction cells. This exper-
iment further supports the hypothesis that indirect vestibular
input is crucial for head direction cell activity in the anterodorsal
thalamus.

Another cell type relevant for spatial navigation is the “place
cell.” Place cells discharge when an animal is in a particular loca-
tion in the environment (O’Keefe and Dostrovsky, 1971). So far,
“true” place cells have only been recorded in the hippocampus
(Clark and Taube, 2012). However, the anterior thalamus, as part
of the limbic system and head direction system, may contribute to
the function of hippocampal place cells. Several theories have sug-
gested that place cells use the signal from the head direction sys-
tem to establish and maintain place-field activity (McNaughton
et al., 1996; Touretzky and Redish, 1996; Sharp, 1999). Calton
et al. (2003) reported that, after lesions of the anterodorsal tha-
lamic nucleus, place cells continued to exhibit location specific
activity, but the place fields were somewhat degraded and cells
were more directionally-sensitive. These observations suggest that
input from anterodorsal head direction cells may be important
for processing and integrating spatial information within the
hippocampal circuits containing place cells.

THETA RHYTHM IN THE ANTERIOR THALAMIC NUCLEI
The nuclei within Papez’ pathway that mediate head direction
signals are closely paralleled by those adjacent nuclei mediating
theta rhythm (a sinusoidal oscillation of 6–12 Hz). Theta rhythm
is considered to play a critical role in spatial and non-spatial
mnemonic functions of the limbic system (Burgess et al., 2002;
Buzsaki, 2005). Both circuits (HD vs. theta) include the tegmental
nuclei of Gudden (dorsal vs. ventral), the mammillary bodies (lat-
eral vs. medial), the ATN (anterodorsal vs. anteroventral) and the
subicular/entorhinal cortices (Swanson and Cowan, 1977; Witter
et al., 1990; Shibata, 1993b; Van Groen and Wyss, 1995; Gonzalo-
Ruiz et al., 1997; Van Groen et al., 1999). Electrophysiological
studies in rats support this idea, because plasticity between
sequentially-activated hippocampal place cells occurs during
theta epochs (Mehta et al., 2000; Ekstrom et al., 2001), implicat-
ing the theta cycle as an information quantum (Skaggs et al., 1996;

Buzsaki, 2002). Theta rhythm commonly modulates the spike
trains of spatially-tuned neurons such as hippocampal place cells
(O’Keefe and Dostrovsky, 1971), entorhinal grid cells (Hafting
et al., 2005), and border cells (Savelli et al., 2008; Solstad et al.,
2008). These neurons, together with HD cells, are believed to par-
ticipate in computing the animal’s location in the environment by
integrating its movement velocity over time, the process referred
to as path integration (McNaughton et al., 1996; Etienne and
Jeffery, 2004).

So far, the anterodorsal thalamic nucleus is the best-described
thalamic nucleus with respect to the electrophysiological proper-
ties of its neurons in freely moving animals. A particular focus on
this nucleus stems from the fact that it contains high numbers of
head direction cells (Taube, 2007; Clark and Taube, 2012). Single-
unit recordings in other ATN (anteroventral and anteromedial)
in urethane-anesthetized rats reveal that some anteroventral neu-
rons tend to fire in theta-rhythmic manner (Vertes et al., 2001).
This observation was confirmed by single-unit recordings both in
freely moving rats foraging for food pellets and during naturally
occurring sleep (Tsanov et al., 2011b). An identified subgroup
of anteroventral neurons was strongly entrained by theta oscil-
lations and synchronized their bursting activity in theta range.
Moreover, theta and spindle oscillations differed in their spa-
tial distribution within the anteroventral nucleus, suggesting that
separate cellular sources are responsible for these oscillations.
Approximately 23% of anteroventral neurons were assigned to
the slow- and fast-spiking bursting units that are selectively
entrained to theta rhythm (Tsanov et al., 2011b). Importantly,
Tsanov et al. (2011a) also reported large subpopulation of head
direction cells (39%) in the anteroventral thalamic nucleus that
exhibit rhythmic spiking in the theta range. This class of units is
termed head direction-by-theta cells, which discharge predom-
inantly in spike trains at theta frequency whenever the animal
is heading/facing in the preferred direction (Figure 4). Neurons
possessing both theta and head-directional properties have been
described earlier at the higher level of this circuitry, namely the
presubicular/parasubicular region (Cacucci et al., 2004; Boccara
et al., 2010). Tsanov et al. (2011a) showed for the first time that
the integration of head-directional and theta information takes
place at the level of the anteroventral thalamic nucleus. It is likely
that this integrated information is sent in an ascending projec-
tion within Papez’ circuit and so contributes to the complex firing
properties of the presubiculum and parasubiculum as well as
other parts of the extended hippocampal formation. Moreover,
it is possible that non-directional theta cells from anteroventral
thalamic nucleus may contribute to the priming of retrosple-
nial cells, thus magnifying the influence of anterodorsal head
direction cells on neurons in retrosplenial cortex (Albo et al.,
2003). Directional information may also be particularly impor-
tant for animals engaged in locomotor/exploratory behaviors
(theta states) and less during non-locomotor activities (non-theta
states). This notion is supported by work of Zugaro et al. (2001),
who reported that anterodorsal head direction cells fire at signif-
icantly higher rates during active, compared to passive, motion
of rats. However, Shinder and Taube (2011), using their plat-
form for full immobilization of the rat, found that the firing of
anterodorsal head direction cells does not differ between active
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FIGURE 4 | Head direction-by-theta cells recorded in anteroventral

thalamic nucleus (Tsanov et al., 2011a). (A) Anatomical location of
chronically implanted tetrodes aimed at anteroventral nucleus (bundle of
eight tetrodes). On the left, the histological slide showing the location of
chronically implanted tetrodes marked with the black arrow. Area of
anteroventral nucleus is indicated with white dashed line and anterodorsal
nucleus with green dashed line. On the right, location of anteroventral and
anterodorsal nuclei is shown on the modified section from the rat brain atlas
(Paxinos and Watson, 1998). The dashed blue rectangle denotes the extent
of the histological section on left. (B) On the left, the path of the animal (black
line) with superimposed firing activity of head direction-by-theta unit (blue
dots) recorded during 16-min session in a square arena (64 × 64 × 25 cm).
On the right, the polar plot represents the distribution of time heading in

different directions across all time bins of the trial (yellow) and the distribution
of head directions for time bins when a spike was recorded from the cell
(black). (C) The same signal can be plotted as firing rate vs. head direction
tuning plot for head direction-by-theta units. (D,E) The spike waveform (D)

and the autocorrelogram of spiking activity calculated for 10/10 ms (E) for four
anteroventral head direction-by-theta units, respectively. For the spike
waveform, the solid curve represents the mean, and the dashed curve
represents the SD. The clear isolation of the neuronal extracellular response
was identified by the absence of correlations within the first 2 ms of the
refractory period. (F) The 1000 ms autocorrelograms of four head
direction-by-theta units. The fitted vertical red line indicates the relative
amplitude of the sinusoid component of the autocorrelogram, visualizing the
degree of autocorrelogram rhythmicity.

and passive movement. The contradictions concerning the activ-
ity of HD cells in active vs. passive movement in fully vs. partially
restrained animals still needs to be clarified. Available data suggest
that HD cells from anterodorsal thalamic nucleus respond solely

to the perceived head direction. However, the available data does
not allow one to fully exclude the influence of other factors on
HD cells activity such as theta oscillations or input information
from other structures that may appear during active movement.
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Clearly, the role of theta oscillations in the ATN on the function of
head direction cells at all levels of the hierarchical head direction
circuitry remains to be fully elucidated.

Vertes et al. (2001) initially reported that, in urethane-
anesthetized rats, it was not possible to record theta modulated
cells in the anteromedial and anterodorsal thalamic nuclei, as
opposed to the anteroventral nucleus. However, in later experi-
ments also performed in urethane-anesthetized rats, Albo et al.
(2003) found theta-modulated cells in the anteromedial and
anterodorsal thalamic nuclei. Our unpublished observations from
recordings in freely-moving rats implanted with driveable micro-
electrodes confirm the presence of theta modulated cells in the
anteromedial thalamic nucleus (see Figure 5 for examples of
recorded units). Moreover, in the ATN, (Welday et al., 2011)
recorded theta-modulated cells with theta cell burst frequencies
that varied as the cosine of the rat’s movement direction, and this
directional tuning was influenced by landmark cues.

NEUROPATHOLOGICAL CONSIDERATIONS
The importance of the ATN for memory was shown by Harding
et al. (2000), who studied the post-mortem brains of Korsakoff ’s
psychosis patients. This condition, which is typically seen in
alcoholics, causes an amnesic syndrome characterized by per-
sistent anterograde episodic memory loss, but with a relative
preservation of semantic memory, intelligence, and procedural
behavior. Harding et al. found that ATN atrophy was consis-
tent with the amnesia in Korsakoff ’s patients, but was not found
in other, closely-related alcoholic conditions (e.g., Wernicke’s
encephalopathy) that do not produce a persistent amnesia.
Anterograde memory impairments (e.g., in delayed recall) were
reported in twelve patients with infarcts involving the ATN
(Ghika-Schmid and Bogousslavsky, 2000), while a review of tha-
lamic stroke patients confirmed that damage involving the mam-
millothalamic tract was the best predictor of amnesia (Carlesimo
et al., 2011).

Both lesion and stimulation studies have played a vital role in
accruing knowledge about the function of certain brain struc-
tures. With regards to the ATN, the importance of these nuclei
for spatial functioning and memory has been demonstrated in
many experiments over the last two decades. One of the primary
arguments for the functional significance of the hippocampus-
diencephalic linkage is found in rodent studies, where discrete
lesions in the hippocampus, mammillary bodies, fornix, and ATN
all disrupt performance on spatial learning tests such as alter-
nation, but with varied severity (Aggleton and Sahgal, 1993;
Aggleton et al., 1995, 2010; Byatt and Dalrymple-Alford, 1996;
Sziklas and Petrides, 1998; Vann and Aggleton, 2003). Deep-brain
stimulation (DBS) of the ATN can also disturb spatial alterna-
tion performance by rats (Hamani et al., 2010). Moreover, lesions
in the hippocampus, fornix, and ATN disrupt performance on
tests of temporal order discrimination (Fortin et al., 2002; Charles
et al., 2004; Wolff et al., 2006; Aggleton et al., 2010).

The functional importance of the ATN in some frequent
neuropathological problems has been shown by applying DBS
to these nuclei in epilepsy patients, a procedure of particular
relevance for those who are not eligible for respective surgery
(Hodaie et al., 2002). The world-wide prevalence of epilepsy

is approximately 1% and approximately 30% of patients do
not respond to current pharmaceutical interventions (Kwan and
Brodie, 2000). Further clinical studies have shown significant
reductions in event frequency (Lee et al., 2012) after DBS of ATN.
Although the clinical study by Lee et al. also tested for effects
on seizure types and for anticonvulsant actions, the low number
of participants resulted in no significant results for these cate-
gories. The exact mechanism of the clinical benefit of DBS to the
ATN is unclear, but it is more likely to concern a larger network
effect involving several brain regions, rather than being simply a
local effect within the ATN and hippocampal-diencephalic sys-
tem. Evidence for this can be taken from the change in motor
excitability seen in epileptic patients who received bilateral DBS in
the ATN, while their TMS-evoked motor potentials were recorded
(Molnar et al., 2006).

In the pilocarpine epilepsy rodent model, stimulation of the
ATN reduced seizure activity (Fisher et al., 2010; Jou et al., 2013)
and protected against status epilepticus (Hamani et al., 2004). In
another rodent epilepsy model, where seizures were induced by
electrical stimulation of the basolateral amygdala, low-frequency
bilateral ATN stimulation significantly reduced the severity and
incidence of seizures (Zhong et al., 2011). Application of bilateral
high-frequency stimulation in rats to the ATN after amygdala-
induced seizures (e.g., replicating clinical post treatment applica-
tion) decreased the incidence and duration of subsequent seizures
(Zhang et al., 2012a). Another study by the same group showed
that unilateral high frequency stimulation of the ATN before
amygdala-induced seizures inhibited the induced seizures, and
was concluded to suppress susceptibility to seizures (Zhang et al.,
2012b). However, Lado (2006) reported that the effects of DBS
in acute chemoconvulsant model of seizures in rodent may dif-
fer from chronic epilepsy conditions. Lado used kainate-induced
chronic seizures in rats and tested the effects of bilateral ante-
rior thalamic DBS. In contrast to previously reported benefits,
Lado (2006) showed a 2.5 times increase in seizure frequency,
compared to their chronic baseline after DBS in the ATN. The
author highlighted this difference in their results as important
with regards to both the location of the epileptic focus, phe-
notype, neuronal injuries present, and the difference between
species. Since then, several clinical studies have shown the ben-
efits of applying DBS in the ATN in epileptic patients; the recent
SANTE trial review (Stimulation of ATN for Epilepsy) concluded
that bilateral stimulation of the ATN reduced seizures on average
by more than 50% through two years of this study (Fisher et al.,
2010).

SUMMARY
The ATN form a pivotal part of Papez’ circuit, with widespread
limbic connections forming an “extended hippocampal forma-
tion.” Based on existing anatomical and electrophysiological data,
we suggest there are, at least, three parallel hippocampal—
anterior thalamic circuits (Aggleton et al., 2010). Studies of
diencephalic amnesia reinforce the crucial role of the ATN for
memory, although the ATN are also considered as important for
the pathophysiology of epilepsy and serve as a possible target for
DBS treatment in this condition (Aggleton et al., 2010; Fisher
et al., 2010). The presence of slow- and fast-spiking bursting
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FIGURE 5 | Theta modulated cells from the anteromedial thalamic

nucleus. (A) Recording sites and three examples of theta modulated cells
recorded in the superficial part of anteromedial nucleus. On the left, the
histological slide showing the location of chronically implanted tetrodes
marked with the black arrow. In this case, three theta modulated cells were
recorded in the superficial part of anteromedial nucleus. Estimated location of
recorded cells is marked below by green dots on the section from rat brain
atlas (Paxinos and Watson, 2006). On the right, parameters of three theta
modulated cells recorded in this rat are presented. From the top for each cell,
the waveform, autocorrelation for 10 ms, autocorrelation for 1000 ms and
interspike interval histogram (ISIH) are presented. All three cells exhibit
different firing rate and waveforms, but all are modulated in the theta rhythm
frequency, which is visible as 6–10 peaks on 1000 ms autocorrelogram. The
ISIH indicates that recorded cells were not bursting neurons (there is no peak
of firing before 5 ms). (B) Recording site and example of theta modulated cell

recorded in the bottom part of anteromedial nucleus. In the top, the
histological slide shows the location of chronically implanted tetrodes,
marked with the black arrow. In this case, a theta modulated cell was
recorded in the bottom part of anteromedial nucleus (see also estimated
position of the cell on the right). Below, the waveform, autocorrelation for
10 ms, autocorrelation for 1000 ms, and ISIH are presented. The 1000 ms
autocorrelogram indicates that this cell was modulated in the frequency of
theta rhythm and ISIH clearly shows that this cell is a bursting neuron.
Recordings were performed in rats chronically implanted with driveable
32-channel microelectrodes organized in tetrodes. Each recording session
lasted 20 min and was performed in freely moving rats foraging for food
pellets in a circular arena (96 cm diameter). Abbreviations: AM, anteromedial
thalamic nucleus; 3 V, third ventricle; AMV, anteromedial thalamic nucleus,
ventral part; f, fornix; mt, mammillothalamic tract; sm, stria medullaris of the
thalamus.

anterior thalamic units, which discharge within the theta fre-
quency, suggest that the anterior thalamus is involved in the
propagation of theta signals through Papez’ pathway (Vertes
et al., 2001; Tsanov et al., 2011b). Such theta propagation could

have resulting mnemonic functions. The large populations of
head direction cells recorded in the anterodorsal and anteroven-
tral thalamic nuclei indicate that the anterior thalamus plays an
important role in spatial navigation. Furthermore, the central
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position of the anterodorsal and anteroventral thalamic nuclei
in the hierarchically-organized head direction circuitry (Clark
and Taube, 2012) and the apparent integration of theta and
head direction information at the level of anteroventral tha-
lamic nucleus (Tsanov et al., 2011a) underline the impor-
tance of this region for spatial orientation. Evidence to date
suggests that the ATN serve as a subcortical gate for infor-
mation used in path integration processes by cortical struc-
tures. A final point is that, by framing the contributions of
the ATN within Papez’ circuit, there is the strong implica-
tion that the functions of these nuclei are principally driven

by the hippocampus. In fact, actions in the opposite direc-
tion may prove to be equally crucial. Just as the head direction
system relies on inputs from “lower” sites within the tegmen-
tum, i.e., inputs independent of the hippocampus, so there is
reason to believe that other tegmental inputs (e.g., from the
ventral tegmental nucleus of Gudden and from the lateral dor-
sal tegmental nucleus) will prove vital in understanding the
broader role of these diencephalic nuclei in supporting mem-
ory (Vann, 2009). Consequently, these tegmental inputs may also
prove to be of considerable importance for medial temporal lobe
activity.
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