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The cognitive control of behavior was long considered to be centralized in cerebral
cortex. More recently, subcortical structures such as cerebellum and basal ganglia have
been implicated in cognitive functions as well. The fact that subcortico-cortical circuits
for the control of movement involve the thalamus prompts the notion that activity in
movement-related thalamus may also reflect elements of cognitive behavior. Yet this
hypothesis has rarely been investigated. Using the pathways linking cerebellum to cerebral
cortex via the thalamus as a template, we review evidence that the motor thalamus,
together with movement-related central thalamus have the requisite connectivity and
activity to mediate cognitive aspects of movement control.
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INTRODUCTION
The majority of our knowledge of the primate thalamus at the
systems level is based on the study of circuits for sensation
(e.g., retinogeniculostriate pathway). Questions of how thalamic
circuits contribute to movement and cognition are largely unan-
swered. The more complex the behavior, the more that motor
and cognitive processes will need to interact with each other.
Imagine, as a brief example, the actions and calculations that are
intertwined as a driver merges into highway traffic. The degree
to which motor and cognitive processes may co-occur is con-
strained by environmental factors (Knoblich and Flach, 2001;
Pulvermüller and Fadiga, 2010; Filimon et al., 2013), but it is well
accepted that motor and cognitive systems must be able to share
information and run simultaneously (Cisek and Kalaska, 2010;
Koziol et al., 2012). Here we review evidence for cognitive pro-
cesses in movement-related thalamus, with special emphasis on
cognitive functions that are particularly developed in primates,
as opposed to more common functions such as associative learn-
ing that are found in all vertebrates, or even arthropods (Giurfa,
2013).

Motor thalamus is classically delineated according to cerebel-
lar and basal ganglia projection zones. This review will primarily
focus on the two juxtaposed thalamic regions that receive inputs
from so-called motor and non-motor domains of the dentate
nucleus, the output node of the lateral cerebellum. The first region
corresponds to typical cerebellar territories of the motor thalamus
(Figure 1A, left, and violet in Figure 1B), which are essentially
found posteriorly to basal ganglia territories, in the ventral lateral
complex (VL) of the thalamic nuclei (VLps and VLc subdivi-
sions as well as nucleus X) and the oral division of the ventral
posterolateral nucleus (VPLo). Those thalamic nuclei in turn
project to cortical motor areas [primary motor cortex (M1), pre-
motor cortex (PM) and the supplementary motor area (SMA)].
Additionally, projections from nucleus X and caudal regions of
VLc also target the pre-SMA and frontal and parietal associative

cortices (Wiesendanger and Wiesendanger, 1985a,b; Middleton
and Strick, 2001; Morel et al., 2005; Prevosto et al., 2010). The
second thalamic region considered in this review is composed of
the central thalamus (Figure 1A, right, and green in Figure 1B).
This region contains the rostral intralaminar complex [mainly
the central lateral nucleus (CL) and, for cerebellar territories,
to a lesser extent the paracentral nucleus (Pcn)] together with
paralaminar regions of the mediodorsal nucleus (MD) and VL
(Schlag-Rey and Schlag, 1989; Groenewegen and Berendse, 1994).
The posterior intralaminar system (centre médian and parafasci-
cular nuclei), heavily interconnected with basal ganglia, will not
be discussed here. The central thalamus targets association cor-
tices as well as motor cortices, with a gradient of projections
(Rouiller et al., 1999; Morel et al., 2005; Prevosto et al., 2010).
Most cortical regions that receive cerebellar inputs are recipients
of thalamic inputs from these two contiguous thalamic regions,
with different weights. As mentioned above, motor thalamus pre-
dominantly targets motor cortical regions. In contrast, central
thalamus has widespread access to both associative and motor
cortex.

CONTEXTUAL MODULATION OF ACTIVITY IN THALAMUS
AND CEREBELLUM
The influence of cognitive functions on the neuronal activity of
motor thalamus is far from established. It is well known, however,
that only a subset of neurons in the motor thalamus is concerned
solely with basic motor parameters. Many of the neurons con-
tribute, instead, to more elaborate features of movement planning
and execution. This functional distinction is in agreement with
findings that both cerebellum and basal ganglia are implicated in
higher level functions that expand and complement their role in
movement (Middleton and Strick, 1994; Aglioti, 1997; Haber and
Calzavara, 2009). Similarly, motor thalamus, as classically defined
by its subcortical inputs, has long been known to project to corti-
cal regions well beyond motor and PM (e.g., Kievit and Kuypers,
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FIGURE 1 | The motor thalamus and ascending cerebellar inputs to

cerebral cortex. (A) Lateral view of the rhesus monkey brain with
hemispheres separated to expose mesial wall on top. Arrows schematically
represent cerebello-cortical pathways relayed via cerebellar territories in
lateral (left, violet) and central thalamus (right, green). Gradients of color on
cortex indicate relative strength of inputs. Left: PFc, MIP are set apart, as
inputs to such non-motor cortices are relayed via medial and dorsal regions
of the classic motor thalamus, topographically distinct from regions relaying
inputs to motor cortices. Names of cortical areas are color-coded as
follows: Primary motor cortex, orange; non-primary motor fields, black;
association cortices, white (non-exhaustive presentation). FEF and
Pre-SMA have dual color-coding, as they receive inputs from “non-motor”
cerebellar domains, but display some non-primary motor features as well.
(B) Two representative sections of the thalamus of Macaca mulatta, viewed
from a lateral anterior perspective (thalamic nuclei delineated according to
(Olszewski, 1952)). Only relevant nuclei are labeled. Reticular thalamic
nucleus (RTN) is not part of the motor thalamus but mediates cortical
inhibitory control of thalamic activity. Cerebellar domains in lateral and
central thalamus are presented in violet and green, respectively. The diffuse
borders of central thalamus encompass the rostral intralaminar group
(central lateral nucleus, CL, and the paracentral nucleus, Pcn) and
paralaminar regions of the VL complex and MD. (C) Same sections as (B),
but illustrating effector-related functional, as opposed to hodological,
compartments. Hatching shows the rough somatotopic locations of regions
related to arm (vertical) and eye (diagonal) movements. Other abbreviations:
DN, dentate nucleus; MIP, medial intraparietal area; LIP, lateral intraparietal
area; M1, primary motor cortex; PMd, dorsal premotor cortex; PMv, ventral
premotor cortex; FEF, frontal eye fields; PFc, prefrontal cortex; SMA,
supplementary motor area; pre-SMA, pre-supplementary motor area; VLo,
ventrolateral nucleus pars oralis; VPLo, ventroposterolateral nucleus pars
oralis; MD, mediodorsal nucleus; VLc, ventrolateral nucleus pars caudalis,
X, nucleus X of the thalamus.

1977). Conversely, top down cortical control that mediates cog-
nitive signals from the prefrontal cortex (Brunia, 1999) may also
influence movement-related activity in motor thalamus. This lat-
ter control is thought to be an important factor in volitional and
selective gating of ascending inputs (Nadeau, 2008). As will be
discussed below, volitional and context-dependent modulation of
activity are hallmarks of cognitive influence on movement-related
processing in the thalamus.

A classic demonstration that motor-related activity in tha-
lamus is not always tightly associated with specific movement
parameters came from oculomotor research (Schlag and Schlag-
Rey, 1984; Schlag-Rey and Schlag, 1984). In their seminal papers,
Schlag-Rey and Schlag introduced a bold proposal, namely the
central controller hypothesis, which proposed that eye-movement
related activity in the central thalamus specifies the timing of
particular actions. The activity modulations in central thalamic
regions are highly sensitive to context, and their specific sets of
projections have been shown to mediate aspects of cognitive pro-
cessing such as working memory (van der Werf et al., 2002).
Indeed, if the context in which a movement is made influences
neuronal activity during motor preparation and execution, this
information must be stored and effectively accessed; in other
words, working memory properties are needed (for more details
on primate working memory circuits, see Constantinidis and
Procyk, 2004).

Similar findings of contextually modulated activity, as well
as selective modulation of preparatory activity for volitional
movements, have been observed in the cerebellar dentate
nucleus (Grimm and Rushmer, 1974; Mushiake and Strick, 1993;
Ashmore and Sommer, 2013; Prevosto et al., 2013), the source
of cerebello-thalamic projections from the lateral cerebellum.
These results support the concept that some cerebello-thalamo-
cortical pathways may be involved in higher order aspects of
motor control and behavior. This suggestion raises two related
issues. First, considering the potential involvement of cerebello-
cortical circuits in cognitive functions that underlie complex
behavior (Diamond, 2000; Koziol et al., 2012), what evidence
exists that thalamus mediates the relevant activities? Then, for
those activities that motor thalamus conveys, does the thalamus
have an active, participatory role, or does it primarily act as a
relay?

CEREBELLO-THALAMO-CORTICAL CIRCUITS HAVE THE
REQUISITE CONNECTIVITY FOR COGNITIVE INVOLVEMENT
Although it gradually emerged that motor regions of the thala-
mus project to a wide array of cortical targets outside agranular
(motor) cortex (Kievit and Kuypers, 1977; Wiesendanger and
Wiesendanger, 1985b; Schmahmann and Pandya, 1990; Shook
et al., 1991), relating those pathways to their subcortical sources
has proven difficult. Indeed, beyond the confusion arising from
diverse nomenclatures (Percheron et al., 1996), a structural defi-
nition of the motor thalamus has always been complicated by the
fact that ascending axonal arborizations cover regions that strad-
dle multiple cytoarchitectonically-defined nuclei (Kalil, 1981;
Percheron et al., 1996; Mason et al., 2000). Conversely, thala-
mocortical projections originate from longitudinal regions that
cross over nuclei borders (Kievit and Kuypers, 1977; Percheron et
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al., 1996). Therefore, the input-output arrangement of thalamic
pathways is one of tremendous complexity.

Only with the advent of transneuronal tracers has it been pos-
sible to map with precision the reciprocal, polysynaptic pathways
between cerebellar output nuclei and associative regions outside
of the motor cortices (Lynch et al., 1994; Clower et al., 2001; Kelly
and Strick, 2003; Ramnani, 2006; Strick et al., 2009; Hashimoto
et al., 2010; Prevosto et al., 2010; Lu et al., 2012) (Figure 1A).
It appears that the majority of cortical areas, notably prefrontal,
medial frontal, and posterior parietal regions providing inputs to
the cerebellum (via the pontine nuclei), in turn receive cerebello-
thalamo-cortical inputs (Strick et al., 2009; Ramnani, 2012).
Curiously, a number of cortical regions thought to be crucial for
cognition, such as the rostral temporal lobe and the ventrolateral
prefrontal cortex, do not participate in these closed loops. This
fact suggests a commonality between cortical areas that commu-
nicate with the cerebellum: it appears that they all contribute to
the planning, control, or monitoring of movement.

The diversity of lateral cerebellar output channels, however,
raises the question of their organization. Formerly, the loops that
traverse lateral cerebellum through VL (Figures 1A,B) (Asanuma
et al., 1983; Stein and Glickstein, 1992) were seen primarily as
pathways for posterior parietal areas to gain access to PM (Thach,
1987; Stein and Glickstein, 1992), in agreement with known VL
contributions to movement planning (Strick, 1976). However,
the modern understanding that cerebro-cerebellar connections
are largely reciprocal, and consequently target a variety of cor-
tical areas outside the motor cortices, forces a re-evaluation of
the ways in which lateral cerebellum, and its thalamic targets,
may contribute to behavior. As explained above, lateral cerebellar
ascending projections may be divided largely into two streams,
one relayed via motor thalamus, the other via central thalamus.
It is tempting to attribute the origin of each stream to motor
and non-motor domains of the dentate nucleus respectively, with
corresponding motor and cognitive functions. However, while
cerebellar output channels are essentially segregated from each
other, many cortical areas receive inputs from both central and
more lateral thalamic regions (Figures 1A,B), making it difficult
to separate both streams. In the two following sections, we will
attempt to illuminate how the two thalamic regions differ in their
contributions to the cognitive control of movement.

COGNITIVE-RELATED INPUTS TO CENTRAL THALAMUS
It is notable that identified cerebellar projections to central thala-
mic regions (formerly “non-specific” thalamus; Sasaki et al., 1979;
Kalil, 1981; Asanuma et al., 1983; Sultan et al., 2012) were first
considered to be potential output pathways for cerebellar cogni-
tive signals (Leiner et al., 1986). This hypothesis assumed that
inputs relayed through the central thalamus would constitute a
separate, “non-specific” pathway that would exert a general influ-
ence through widespread thalamocortical projections. This view
is compatible with the fact that central thalamus targets not only
association cortices but also PM, SMA, and pre-SMA with consid-
erable divergence (Figure 1A; Morel et al., 2005). This projection
system, however, has been shown to be much more specific than
previously conceived (van der Werf et al., 2002) and can influ-
ence selective regions, in addition to having a general impact on

cortical activation levels. Specific influences carried via central
thalamus, such as the modulation of preparatory activity men-
tioned above, would likely have different temporal dynamics than
motor-related signal carried by the motor thalamus. Functional
distinction between central and motor thalamus is less obvious
at the transition zone in medial and dorsal parts of VL. Indeed,
the fact that cerebellar inputs to prefrontal cortex seem to be
relayed via caudal VLc and nucleus X (Middleton and Strick,
2001) argue for an involvement of motor thalamic regions in
higher-level functions (see below). Accordingly, it has been pro-
posed that cerebellar-recipient neurons of the caudal regions of
central thalamus may be considered part of a functional contin-
uum with more lateral “motor” cerebellar territories (Percheron
et al., 1996). It has also been suggested that the mediodorsal
(MD) thalamic nucleus, the main source of thalamic inputs to
prefrontal cortex (Giguere and Goldman-Rakic, 1988; Ray and
Price, 1993), may convey cerebellar signals (Sasaki et al., 1979;
Tian and Lynch, 1997). If so, cerebellar inputs to MD would be
expected to be found alongside motor signals from the supe-
rior colliculus (SC), which are relayed by the lateral MD to the
frontal eye fields (FEF) (Sommer, 2003). Paralaminar regions of
MD, however, are dominantly innervated by basal ganglia inputs,
and cerebellar projections there are limited (Stanton, 1980; Kalil,
1981; Percheron et al., 1996; Mason et al., 2000; Erickson et al.,
2004). It is thus likely that the majority of ascending cerebellar
projections to frontal associative cortex is transmitted either via
central thalamus or more lateral cerebellar territories (formerly
“classical” motor thalamus).

Eye-movement related circuits show the limitations in dis-
tinguishing these pathways purely based on connectivity. The
oculomotor thalamus largely overlaps with central thalamus
(Schlag-Rey and Schlag, 1989; Tanaka and Kunimatsu, 2011)
(Figures 1B,C, right) and targets both the lateral intraparietal
area (LIP) and the FEF (Kievit and Kuypers, 1977; Huerta et al.,
1986; Prevosto et al., 2010) (Figure 1A), two prominent nodes in
the cortical circuits for the selection and control of eye movement.
Both of these cortical regions receive inputs from the same caudal
dentate region (Lynch et al., 1994; Prevosto et al., 2010). However,
in comparison to LIP, dentate inputs to FEF may also be relayed
via more lateral (paralaminar) thalamic regions (Okuda, 1994).

How this functional ensemble may contribute to higher level
function is starting to be understood. For instance, central tha-
lamus is known to contribute to working memory via its action
on forebrain arousal (Mair et al., 2011). This action has often
been related to the ascending reticular activation system, which
notably provides intralaminar nuclei with profuse cholinergic
inputs (Groenewegen and Berendse, 1994). Central thalamus,
however, has the requisite connectivity to mediate subcortical
influence on selective cortical circuits. Recent results showing
that intact cerebello-thalamo-cerebral pathways are crucial for the
normal functioning of working memory (Law et al., 2011) are
compatible with this view.

Recent data implicate the lateral cerebellum in verbal working
memory, but also point out contributions to spatial processing,
timing, and executive functions (Leiner et al., 1989, 1993; Chen
and Desmond, 2005; Strick et al., 2009; Schmahmann, 2010;
Bellebaum et al., 2012; Ramnani, 2012; Stoodley, 2012). The exact
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involvement of central thalamus in these functions is not yet
clear, although there is evidence that it contributes to timing, in
addition to working memory. Saccade-related neurons in central
thalamus have been shown to display early activity that is partic-
ularly associated with the timing of self-initiated eye movements
(Tanaka, 2007a; Tanaka and Kunimatsu, 2011). Complementary
saccade-related activity patterns have been found in central thala-
mus that could signal the timing for acquisition and processing
of reafferent information following saccades (Schlag-Rey and
Schlag, 1984). Although neuronal activity related to self-initiated
eye movements has been observed in basal ganglia, the thala-
mic neurons related to the timing of proactive movements were
found predominantly in cerebellar territory (Tanaka, 2007a), in
agreement with the putative involvement of the dentate nucleus
in the initiation of volitional movements (Shibasaki et al., 1986;
Ashmore and Sommer, 2013) (Figure 2). Thus, central thalamus
appears well suited to transmit anticipatory activity related to
volitional, self-timed movements from the lateral cerebellum to
connected cortical areas (Maimon and Assad, 2006; Fried et al.,
2011).

COGNITIVE-RELATED INPUTS TO VL/VPLo THALAMUS
While encouraging, the above conclusions were based largely on
oculomotor studies. An important issue is the extent to which
those findings generalize to skeletomotor movements, which are
associated with thalamic activity in the VL and VPLo nuclei
(Figures 1B,C, left).

Recordings in the cerebellar dentate nucleus (a dominant
contributor to VL, see above) have described a population of
neurons with long-lead activity (Grimm and Rushmer, 1974;
Strick, 1983). Correspondingly, among arm-movement VL units,
most cerebellar-recipient neurons increase their discharge before
movement initiation, sometimes before the first change in elec-
tromyographic potential (Strick, 1976; Anderson and Turner,
1991). While the cerebellum is known for its role in the timing

FIGURE 2 | Similar patterns of activity found in caudal dentate nucleus

(top) and oculomotor thalamus (bottom) for self-initiated eye

movements. Activity aligned to the initiation of self-timed saccades.
Oculomotor thalamus data reproduced from Tanaka (2007a); dentate
nucleus data from our lab (see Ashmore and Sommer, 2013).

of movement (Salman, 2002), the involvement of cerebellar-
recipient motor thalamus in the timing of volitional arm-
movement is less clear. Notably, arm-movement neurons in
cerebellar-recipient thalamus are commonly found to be more
responsive to visually cued movement than to spontaneous or
memory-based movement (van Donkelaar et al., 1999). Similar
contextual modulation has been described in neurons from the
“motor” domain of the dentate that target ventral premotor
cortex (Mushiake and Strick, 1993) as well as in the medial
intraparietal area (Colby and Duhamel, 1996), a region of the
posterior parietal cortex that receives dentate inputs via motor
thalamus (Prevosto et al., 2010). However, comparable effects
have been described across effectors and brain structures, as
exemplified by greater response to visually-guided than to spon-
taneous arm movements (van Donkelaar et al., 1999, 2000) and
saccades (Mano et al., 1996) in thalamus and cerebellum, respec-
tively. Thus, context dependency of neuronal activity may reflect
a widespread influence found across functional divisions of the
thalamus. Notably, a growing body of imaging and clinical studies
(Ide and Li, 2011; Peterburs et al., 2011; van der Salm et al., 2013)
indicate that cerebellar territories of the motor thalamus provide a
critical contribution to executive control functions of the frontal
lobe. This contribution could rely on motor thalamic inputs to
non-primary motor regions and (less densely) to associative cor-
tical regions, or central thalamic inputs to the same regions, or
both (Figure 1A).

More speculative is the potential role of motor thalamus in
coordinating cognitive and motor aspects of language produc-
tion. Results from stimulation studies found that language deficits
can be induced at the same thalamic location as motor effects
related to language production (Johnson and Ojemann, 2000).
This intriguing finding is in agreement with the demonstra-
tion that ventral premotor cortex contains neurons specifically
activated during vocalization (Coudé et al., 2011), in a region
that receives dense projections from cerebellar-recipient thalamus
(Matelli et al., 1989). This ventral premotor region is consid-
ered homologous to the motor portion of Broca’s area in humans
(Binkofski and Buccino, 2004) and is part of a dual cerebello-
cortical system supporting verbal working memory (Chen and
Desmond, 2005).

THE THALAMUS AS A SITE FOR MOTOR/COGNITIVE
INTERACTIONS
If the motor and central thalamic neurons are involved in higher-
order functions, the question remains whether their activities are
driven mainly by their ascending inputs (i.e., whether thalamic
neurons are just relays), or if these inputs, coupled with descend-
ing cortical modulation, results in thalamus-specific information
processing.

Evidence from the well-characterized circuit from the SC to
FEF via MD thalamus mentioned above (Sommer and Wurtz,
2004a,b) offers a template for a relay function: SC-receiving MD
relay neurons essentially behave as a high-pass filtered version of
SC inputs (Sommer and Wurtz, 2004a). This is fitting with the
role of this circuit as a corollary-discharge pathway, i.e., carrying
copies of a motor command.

Cerebellar-receiving thalamic neurons, which are not necessar-
ily part of a corollary-discharge pathway, may behave differently.
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It is known that the activity of motor thalamic neurons is shaped
by cortical inputs (Guillery, 1995). This is evidenced, for exam-
ple, by the high baseline firing rate of pallidal-recipient thalamic
neurons, which likely results from a dual modulatory cortical con-
trol, one direct and excitatory, the other indirect and inhibitory
(Selemon and Goldman-Rakic, 1988; Anderson and Turner, 1991;
Guillery, 1995; Band and van Boxtel, 1999). Similarly, the activ-
ity of eye position thalamic neurons reflects properties of both
brainstem inputs (separate horizontal/vertical channels; delays
compatible with ascending inputs) and cortical inputs (hystere-
sis; long lead activity) (Schlag and Schlag-Rey, 1984; Tanaka,
2007b), in agreement with the view of intralaminar nuclei as a
site of convergence of subcortical and cortical inputs (Kemp and
Powell, 1971). It is thus conceivable that cortical inputs modulate
cerebellar-recipient neurons’ activity at least as strongly as their
primary drive.

Another type of thalamic-specific interaction potentially
occurs through converging ascending inputs from multiple sub-
cortical sources. Demonstrated convergence patterns of this type,
such as between dentate and interpositus nucleus projections
(Shinoda et al., 1985), or cerebellar and basal ganglia projections
(Sakai et al., 2002), have been studied only within pathways con-
tributing to motor cortical areas, and are essentially inconclusive
for the question of motor-cognitive interaction in the thalamus.
However, the thalamus also has been shown to convey cerebellar
inputs to striatum that derive from both motor and non-motor
regions of the dentate nucleus (Kemp and Powell, 1971; Hoshi et
al., 2005). Interestingly, the central thalamus seems to be the main
relay for this pathway (Ichinohe et al., 2000; Hoshi et al., 2005).
It is conceivable that, reciprocally, basal ganglia inputs to cere-
bellar thalamic regions contribute to both motor and non-motor
circuits.

The two preceding types of interactions (subcortico-cortical
and subcortico-subcortical) point to a dominant role of central
thalamus in mediating cognitive aspects of movement control.
Another aspect of thalamic connectivity suggest a third way by
which both motor a central thalamic regions could actively con-
tribute to cognitive control of movement. There is evidence that
single thalamic regions provide inputs to functionally separate
cortical areas, such as motor and associative cortices (Wannier et
al., 1992). This divergence seems to represent a final sorting of
signals that arise from selective regions of the dentate nucleus.
Data from separate studies suggest that dentate regions where
output channels overlap could target distributed cerebral corti-
cal regions. Such is the case for caudal dentate projections to
the FEF and LIP (Lynch et al., 1994; Prevosto et al., 2010), for
dentate projections to the anterior intraparietal area, PMv, and
M1 (Clower et al., 2005), and possibly for ventral dentate to the

medial intraparietal area and the pre-SMA (Wiesendanger and
Wiesendanger, 1985a; Akkal et al., 2007; Prevosto et al., 2010).
While this organization does not validate a specific role for the
thalamus in motor-cognitive interaction, it indicates that there
may be a unique and overlooked role of motor thalamus in
conveying such signals to separate regions. How those dentate
projections interact in the thalamus with top-down cortical con-
trol and ascending inputs from other subcortical regions is not
known, although it can be construed that this arrangement would
likely contribute to behavioral flexibility.

CONCLUSIONS
Concordant results from a variety of studies indicate that
movement-related thalamus takes part in circuits for higher-level
control of behavior. A prior, parsimonious viewpoint was that dis-
tinct subcortico-thalamo-cortical pathways were likely to mediate
separate functions (e.g., Sommer, 2003). Recent findings seem to
paint a more nuanced picture.

First, each pathway consists of sub-streams, both in the tha-
lamus and in the subcortical networks leading to it. These
sub-streams may play differing roles in movement, or perhaps
have differing contributions according to behavioral context.
Accordingly, cerebellar-receiving thalamic neurons are possibly
involved in both straightforward visuomotor control and higher
level modulations of that control, such as the initiation of self-
timed movements (Figure 2). The degree to which these conclu-
sions hold across effectors, however, is still unclear. Second, the
discovery of reciprocal, disynaptic connections between the cere-
bellum and the basal ganglia (Bostan and Strick, 2010) imply
direct communications between these two principal pathways to
cerebral cortex. The fact the central thalamus is posited as the
main relay for cerebellar inputs to striatum underlines its rele-
vance for high-level behavior in association with “core” motor
thalamus.

Hence the overall conclusion from clinical, physiological, and
anatomical studies is that the thalamus appears suited to relay,
or perhaps even to mediate, the influence of cognitive processes
on motor processes. Because in mammals, and particularly in
primates, most behaviors comprise a cognitive component, it is
not surprising to find prevalent cognitive modulation of motor
circuits. The surprise comes perhaps from the fact that cir-
cuits beyond the cerebral cortex, including nuclei of the motor
and central thalamus, seem to be so critical for cognitive-motor
interactions.
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