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Recent fMRI studies have shown that analysis of the human brain’s spontaneous activity
may provide a powerful approach to reveal its functional organization. Dedicated methods
have been proposed to investigate co-variation of signals from different brain regions,
with the goal of revealing neuronal networks (NNs) that may serve specialized functions.
However, these analysis methods generally do not take into account a potential non-
stationary (variable) interaction between brain regions, and as a result have limited
effectiveness. To address this, we propose a novel analysis method that uses clustering
analysis to sort and selectively average fMRI activity time frames to produce a set of co-
activation patterns. Compared to the established networks extracted with conventional
analysis methods, these co-activation patterns demonstrate novel network features with
apparent relevance to the brain’s functional organization.
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INTRODUCTION
A growing body of neuroimaging research is reporting on the
phenomenon of spontaneous neural activity occurring during
rest, in the absence of overt behavior (Biswal et al., 1995; Arieli
et al., 1996; Leopold and Maier, 2012). Functional magnetic res-
onance imaging (fMRI) (Ogawa et al., 1992) studies of the nature
of this activity have revealed multiple spatial patterns of tempo-
rally correlated signal fluctuation that cover much of the brain,
and often align with the established systems that support spe-
cialized brain functions (Biswal et al., 1995; Cordes et al., 2000;
Hampson et al., 2002; Greicius et al., 2003; Fox et al., 2006).
Based on this, it has been hypothesized that these correlational
patterns of fMRI activity (often called “resting-state networks,”
or RSNs) (Fox and Raichle, 2007) indirectly result from spon-
taneous electrical activity in a number of distinct, large scale,
and function-specific neuronal networks (NNs). Interpretation of
RSNs in terms of the NNs supporting the major brain functions
is an important goal of current neuroimaging research (Fox and
Raichle, 2007; Biswal et al., 2010; Zhang and Raichle, 2010).

To tackle this challenging problem, a number of methods
have been applied to analyze resting-state fMRI signals, includ-
ing “seed”-based correlation analysis (Biswal et al., 1995; Fox
et al., 2006), clustering based on temporal characteristics (Cordes
et al., 2002; Mezer et al., 2009) and spatial or temporal indepen-
dent component analysis (ICA) (Kiviniemi et al., 2003; Beckmann
et al., 2005; Smith et al., 2012). These methods generally make
implicit or explicit assumptions about the source signals under-
lying spontaneous fMRI activity, including stationarity of inter-
regional interactions, and/or a statistical independence. The
extent to which these assumptions reflect the nature of NNs
determines how accurately they are represented by RSNs.

Recent studies have provided evidence that spontaneous brain
activity may be non-stationary (Chang and Glover, 2010; Allen
et al., 2012; Hutchison et al., 2012; Rack-Gomer and Liu, 2012),
and in fact may be dominated by brief instances of spontaneous
co-activation of brain regions (Tagliazucchi et al., 2012; Liu and
Duyn, 2013; Wu et al., 2013). This has inspired a novel analy-
sis approach that temporally decomposes conventional RSNs into
multiple co-activation patterns by selective averaging of single
fMRI time frames (Liu and Duyn, 2013). Here we extend this
approach and perform a comprehensive analysis of a publicly
accessible fMRI database to extract 30 spatial patterns of spon-
taneous activity (termed co-activation patterns or CAPs) that are
biologically plausible and show distinct differences from networks
extracted with conventional methods.

METHODS
ANALYSIS APPROACH
The proposed analysis approach is based on the notion that spon-
taneous activity may be dominated by brief activations and deac-
tivations involving many (possibly overlapping) brain regions. It
differs from point process analysis (PPA), which models activity
underlying fMRI signals as point processes and then examines the
conditional distribution of these processes given its occurrence at
a specific seed region (Tagliazucchi et al., 2012; Wu et al., 2013),
in that it is not specifically geared toward detecting neuronal-
avalanche type activity. Rather than selectively averaging time
points of activity increases in a seed region, the method proposed
here classifies and averages time points with similar spatial distri-
butions of activity using the k-means clustering algorithm. It thus
extends the seed-based approach presented in a previous study
(Liu and Duyn, 2013) to a data-driven, whole-brain analysis.
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Clustering is a procedure for classifying a set of objects into
different groups such that within group differences are smaller
than across group differences. An approach popular with fMRI
studies is the k-means clustering method, which has previously
been applied to classify brain voxels based either on their temporal
dynamics (Cordes et al., 2002; Mezer et al., 2009) or correlation
profiles (Anderson et al., 2010; Kelly et al., 2012). Here, in con-
trast, we apply k-means clustering to classify fMRI time points
(fMRI image volumes) based on their spatial similarity.

After reformatting fMRI brain volumes into a set of
m-dimensional vectors {t1, t2, . . . , tn} (where m = the number
of brain voxels, based on a brain mask created from the 152-brain
MNI template), k-means clustering is applied to partition the vec-
tors into k clusters R = {R1, R2, . . . , Rk} (Gluck and Myers, 1997)
such that the sum of within-cluster distances J (Equation 1) is
minimized:

J =
∑k

i = 1

∑
tj∈Ri

d
(
tj, µi

)
(1)

where µi is the mean of fMRI volumes in Ri, and d(•) repre-
sents the distance between two vectors, which we define here to
be 1 minus their Pearson’s correlation coefficient.

DATASET
The resting-state fMRI dataset used in this study was obtained
from the 1000 Functional Connectomes Project (FCP)
(http://www.nitrc.org/projects/fcon_1000/) (Biswal et al.,
2010). It includes data from studies performed independently
at three different sites (Baltimore, Berlin_Margulies, and
Cambridge_Buckner) with approval from their respective ethics
committees. Due to computational limitations, we focused our
analysis on data from 102 subjects (mean age: 24.4 ± 6.6, range:
18-44; sex: 64 females) selected from all 3 sites. Detailed infor-
mation regarding each dataset and the major MR acquisition
parameters can be found at the FCP website.

PRE-PROCESSING OF RESTING-STATE fMRI SIGNALS
FCP analysis scripts (version 1.1-beta, available at http://www.
nitrc.org/frs/shownotes.php?release_id=938) (Biswal et al.,
2010), which employs AFNI (Cox, 1996) and FSL (http://www.

fmrib.ox.ac.uk/fsl/) (Smith et al., 2004) software packages, were
used to pre-process the fMRI signals (with minor modifications,
described below). The typical pre-processing steps for the analysis
of resting state data were applied, including image coregistration
to correct for head motion, spatial smoothing with a Gaussian
kernel (FWHM = 4 mm), temporal filtering with a band-pass
filter (0.005–0.1 Hz), and the removal of linear and quadratic
temporal trends. Additionally, the time series of ROIs in the
white matter and cerebrospinal fluid (CSF), 6 affine motion
parameters, as well as the brain-averaged (global) signal, were
used as nuisance variables to be regressed out from the data.
Given that global signal regression (GSR) may introduce artificial
anti-correlation between regions (Fox et al., 2009; Murphy et al.,
2009; Saad et al., 2012) our analysis was also performed without
the GSR step (Figure S1).

The fMRI data was first co-registered to the high-resolution
anatomical (T1-weighted) images acquired from the same sub-
ject and then normalized to the 152-brain Montreal Neurological

Institute (MNI) normalized space. Here, as departure from
the original FCP scripts, the registration between the func-
tional and anatomical images was implemented using the
“align_epi_anat.py” program (Saad et al., 2009) in AFNI, which
was found to provide a better registration in the superior-inferior
direction. The pre-processed fMRI data were then resampled at
the 3 × 3 × 3 mm3 resolution of the MNI normalized brain space.
Finally, for each voxel, the fMRI signal was temporally normal-
ized by subtracting its mean and then dividing by its temporal
standard deviation (SD).

EXTRACTION OF CAPs
The clustering was applied to all 13382 fMRI volumes acquired
from all 102 participants. After clustering, the fMRI volumes (also
referred to as “time frames”) assigned to the same cluster were
simply averaged, resulting in k maps that we define as CAPs. These
CAPs were then normalized by the standard error (within clus-
ter and across fMRI volumes) to generate Z-statistic maps, which
quantify the degree of significance to which the CAP map val-
ues (for each voxel) deviate from zero. We also calculated three
quantities for each CAP based on its raw map: (1) the occurrence
rate, which was calculated by dividing the number of fMRI time
frames belonging to a given CAP by the total number of time
frames; (2) the within-cluster similarity, calculated as the aver-
age spatial correlation of all within-cluster volumes to their mean;
and (3) the polarity, calculated as the sum of the mean of positive
map values and that of negative map values, such that the result-
ing sign indicates whether the CAP is dominated by activation or
de-activation.

To suppress the contribution of measurement noise, only the
largest signal changes were considered for calculation of distances
for the clustering procedure. This was achieved by applying a
mask to the fMRI volumes that only admitted the 10% high-
est and 5% lowest signal values, and discarded regions with less
than 6 inter-connected (in 3D) voxels. This masking was only per-
formed for the clustering and not for the within-cluster averaging
procedure for calculation of the grand-average CAPs. Although
this masking procedure was not strictly required and did not
affect the general observations in this study, it was found to result
in slightly more specific CAP patterns (Figure S2).

The number of clusters k was set to 30 after comparing the
outcomes of setting k equal to 20, 30, and 40. Although these three
cases generated largely similar CAPs, clustering with k = 30 led to
a few distinct CAPs that were not found with k = 20, while k = 40
led to several CAPs that were nearly indistinguishable. Thus, the
choice of k = 30 was a compromise between extracting too many
and too few distinct CAPs base on what was afforded by the data.

OCCURRENCE RATE OF CAPs
For each fMRI session, the number of fMRI time frames belong-
ing to a specific CAP was divided by the total number of frames in
order to quantify the occurrence rate of the CAP in a subject (only
one session for each participant). A permutation test was applied
to determine whether the occurrence rates of the CAPs were sig-
nificantly different between male and female subjects. Specifically,
the 102 subjects were randomly assigned to two groups with size
of 38 and 64, respectively, without considering their gender, and
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the difference in CAP occurrence rate between the two groups was
recorded. This process was then repeated 50,000 times to build up
distributions of the between-group difference for each CAP. The
probabilities (p-values) of seeing differences between the male
and female groups were then calculated by comparing the actual
observations to these distributions, and a Bonferroni correction
was applied to correct for multiple comparisons.

Head motion was also quantified for the male and female
groups based on two metrics (mean translation, mean rotation)
calculated from the 6 affine motion parameters. The mean trans-
lation was defined as the average displacement between any two
consecutive volumes (defined as the root-mean-square of the
translation parameters), and the mean rotation was calculated in
similar way using the rotation parameters (Van Dijk et al., 2012).

CORRELATION MAPS
For comparison, seed-based correlation maps were calculated by
correlating fMRI signals from all brain voxels to those from four
seed regions (6 × 6 × 6 mm3 cubes) centered at the following
locations (with coordinates given in MNI space): posterior cingu-
late cortex [PCC, (0, −53, 26)], medical prefrontal cortex [mPFC,
(0, 52, -6)], left intraparietal cortex [IPS, (−24, −58, 52)], and
motor cortex [(−36, −25, 57)], respectively (Van Dijk et al.,
2010).

SPATIAL ICs AND TEMPORAL FUNCTIONAL MODES (TFMs)
As another methodological comparison, group-level spatial
ICA with temporal concatenation was implemented with the
MELODIC program in the FSL software (Beckmann et al., 2005).
The number of components to be extracted was specified as 30,
matching the number of the clusters specified for the clustering.
The CAPs were also compared to 21 TFMs derived previously by
temporal ICA (Smith et al., 2012), which are available at SumsDB
(http://sumsdb.wustl.edu/sums/directory.do?id=8288032&dir_na
me=TFM_PNAS).

For comparison, the CAPs and ICs/TFMs that have highest
spatial correlation to each other among their own category were
paired up and shown in Figure 6 and Figure S7.

RESULTS
ACTIVITY DISTRIBUTION AT SINGLE TIME FRAMES
Exemplary activity time frames (T1-T13) from a resting-state
fMRI scan are shown in Figure 1, together with a map derived
by temporally correlating signals across the brain with that from
a “seed” region in the PCC. While the correlation map highlights
the PCC, medial frontal cortex (MF), and bilateral parietal cor-
tices (LPC), all recognized as primary nodes of an RSN known as
the “default mode” network (DMN) (Greicius et al., 2003), single
time frames often show clearly deviating patterns. For example,
while T6, T11, T12, and T13 resemble DMN, T1 and T7 show co-
activations at the visual cortex; T3 and T9 have high signal level
specifically at the sensorimotor and insular cortex; T2, T4, T5, and
T8 cover different sub-sections of the intraparietal sulcus (IPS) as
well as some frontal areas, including the frontal eye fields (FEF);
at T10, no apparent co-activation pattern is seen. It is worth
noting that some of the patterns include strong co-activation at
small but very specific brain structures, e.g., the hippocampus

(HI) and posterior parahippocampal gyrus (PHG) in T11 and
the ventral lateral nucleus (VL) of the thalamus in T3 (white
arrows in Figure 1). Although some of these differences may be
manifestations of experimental noise, their spatial characteristics
(e.g., bilaterality and anatomical specificity) are suggestive of a
neuronal origin.

SPONTANEOUS CO-ACTIVATION PATTERNS (CAPs)
To characterize stable, recurring co-activation patterns in sponta-
neous activity, single fMRI time-frames (13382 frames total) were
clustered into 30 groups based on their spatial characteristics,
after which within-group averaging was performed to calculate
canonical CAPs (see Methods). These 30 CAPs were ranked by
their similarity values, defined as the average correlation between
each fMRI time frame within a group and their mean (Figure S3).
Many of these CAPs resembled RSNs extracted with conventional
analysis, suggesting network activity in the DMN, sensory regions
with or without DMN involvement (see examples in Figure S3).

In various brain regions, CAPs showed interesting differences
from RSNs (Figure 2). For example, DMN CAPs 1 and 15 selec-
tively involved the HI, CAP 7 selectively involved the posterior
PHG, and CAP 13 involved both. This distinct involvement of HI
and PHG in DMN is not observed with conventional analysis. In
addition, CAP 1 showed an asymmetric activation at the superior
portion of the left middle frontal gyrus (MFG) even though its
general pattern is fairly symmetric between hemispheres; CAP 7
has very specific activation along the superior frontal gyrus (SFG),
and its LPC components localize more posteriorly compared to
the others; and CAP 15 shows clear co-activations at the caudate
nucleus (CN). Moreover, co-activations at the PCC/Precuneus
regions in CAPs 7 and 13 appear to be patterned differently from
those in CAPs 1 and 15. All these DMN-related CAPs are also
associated with strong de-activations in a set of “task-positive”
regions (Fox et al., 2005), although to varying spatial extent.

A second group of CAPs showed de-activations in DMN-
related regions combined with strong co-activations in a set of
“task-positive” regions (Figure 3). Their patterns appeared more
distinct from one another as compared to the DMN-activated
CAPs. While CAPs 2 and 3 are both related to the visual sys-
tem, CAP 2 overlaps more on the high order visual area and
FEF. CAPs 4 and 6 looks almost identical in some axial slices,
but a close comparison reveals that CAP 4 covers the central
opercular cortex (CO), parietal operculum (PO), insular, tha-
lamus, and supplementary motor area (SMA), whereas CAP 6
involves more anterior regions, including the frontal operculum
(FO) and paracingulate gyrus (PCG). Moreover, even though all
these CAPs show activations in the IPS, they cover very differ-
ent sub-sections. There are also CAPs showing highly lateralized
patterns (Figure S4) or strong activation in the primary sensory
regions (Figure S5).

Several CAPs showed focal activity in thalamic and cerebel-
lar structures. For example, CAPs 2 and 3, both of which involve
higher order visual and visual association areas, include spatially
distinct thalamic nuclei, with the ones in CAP 2 located more
superior, medial, and anterior than those in CAP 3 (Figure 4A).
In both CAPs, this thalamic activity appears to occur within the
pulvinar. In contrast, CAP 26, whose activity shows a preference
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FIGURE 1 | Spontaneous activity at single fMRI time frames is

suggestive of varying network involvement. Sample frames (T1-T13) from
a representative fMRI scan show clear, distinct spatial patterns, some of
which (red points) resemble the DMN pattern demonstrated by the
PCC-based correlation map of this subject (right). The fMRI time course

represents signal from the PCC seed region (green square). Small structures
indicated by white arrows are the hippocampus (HI) and posterior
parahippocampal gyrus (PHG) in T11 and the ventral lateral nucleus (VL) in T3.
The color bar represents normalized BOLD signal for the sample frames and
correlation values for the seed-based correlation map.

FIGURE 2 | Comparison of CAPs with the DMN derived from

conventional analysis methods. CAPs 1,7,13,15 coarsely resemble
the DMN pattern, but differ in detail. For example, CAP 1, 3, and
15 show specific co-activations at the hippocampus (HI),
parahippocampal gyrus (PHG), and caudate nucleus (CN), respectively.

For comparison, the DMN was also derived from PCC-based
correlation (PCC-CorrMap, bottom left) and ICA (IC 14, having the
highest spatial correlation with the PCC-CorrMap, bottom right). Both
methods failed to extract multiple patterns of DMN seen in the
CAPs.
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FIGURE 3 | CAPs showing distinct co-activation in “task-positive”

regions (i.e., activated with common tasks) but consistent

de-activation in the “task-negative” areas (i.e., de-activated with

common tasks). Their patterns appeared more distinct from one
another as compared to the DMN-activated CAPs. While CAPs 2 and
3 are both related to the visual system, CAP 2 overlaps more on the
high order visual area and frontal eye fields (FEF). CAPs 4 and 6

looks almost identical in some axial slices, but a close inspection
reveals that CAP 4 covers the central opercular cortex (CO), parietal
operculum (PO), insular, thalamus, and supplementary motor area
(SMA), whereas CAP 6 involves more anterior regions, including the
frontal operculum (FO) and paracingulate gyrus (PCG). Moreover, even
though all these CAPs show activations in the IPS, they cover very
different sub-sections.

for primary visual cortex, includes bilateral focal structures that
are much more inferior, lateral, and anterior than the thalamic
structures seen in CAPs 2 and 3. We tentatively attribute these
focal structures to the lateral geniculate nuclei (LGN). In contrast
to the vision-related CAPs, thalamic nuclei in sensorimotor-
related CAPs tend to show activity opposite to the cortical regions.
Strong de-activations (or activations) are observed in the anterior
and medial dorsal nuclei (AN/MDN, big arrows in Figure 4B),
and in some regions surrounding posterior thalamus (small
arrows), when the sensorimotor cortex shows activation (resp.
de-activation) in CAP 19 (resp. CAP 8). These regions are much
less distinct (for the AN/MDN) or even absent (for the thalamus
surrounding areas) in maps derived by seed-based correlation
or ICA (note: the display thresholds for these latter maps were
adjusted, base on the whole brain, to include approximately the
same spatial extent of significantly negative regions). It should
also be noted that a pair of thalamic nuclei showing co-activation
with cortical regions could also be clearly seen in CAP 19 when
lowering the display threshold (Figure 4C). This pair of nuclei
is attributed to the ventral posterolateral nuclei (VPL), located
about 6 mm posterior to the ventral posteromedial nucleus (VL)
shown in CAP 23 (Figure 4C).

The 30 CAPs are available at our website (http://
amri.ninds.nih.gov/pub/xiao/CAPs_30_2mm.nii.gz).

OCCURRENCE RATE OF CAPs
An interesting aspect of the proposed analysis approach is that
it not only provides spatial maps of co-activating brain regions,
but also allows extraction of incidence rates of spatially distinct
co-activations, information that is not explicitly available with
conventional analysis methods. This incidence or occurrence rate
of CAPs may facilitate distinction between subject populations.
To illustrate this, we examined the possibility of distinguish-
ing between spontaneous brain activity in males (n = 38) and
females (n = 64) based on differences in occurrence rates of all 30
CAPs. For this purpose, the occurrence rate of a CAP was deter-
mined from the fraction of total volumes that were classified into
the CAP’s associated cluster.

CAP 23, which primarily covered sensorimotor areas corre-
sponding to head regions, was found to occur more frequently
(p < 0.01, Bonferroni corrected, permutation test) in the male
members than in the female members (Figure 5). However, the
males (mean motion: 0.048 ± 0.021 mm) had a little more (p =
0.038, 2-sample t-test) head motion than the females (mean
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FIGURE 4 | The involvement of thalamic nuclei in CAPs. (A) CAPs in
visual areas show co-activations in the LGN (CAP 26) and in different
subdivisions of the Pulvinar (CAPs 2-3) each with different involvement of
visual cortex. (B) CAPs in sensori-motor areas showing anti-phase activity at
the AN/MDN of the thalamus (big arrows) and some areas surrounding the
posterior thalamus (small arrows). The correlation map (CorrMap) seeded in

the motor cortex (green square) and IC 6 less clearly shows anti-phase
activity in these thalamic regions. Note: the display thresholds for CorrMap
and IC 6 were adjusted in order to display approximately the same number of
negative voxels as in CAP 19. (C) Sensorimotor-related CAPs also show
co-activations at the thalamic nuclei, including the VPL (CAP 19) and VL (CAP
23), which are separated by only a few millimeters.

motion: 0.040 ± 0.018 mm), which may have affected this result
(Van Dijk et al., 2012). To exclude this confounding factor, the
same comparison was repeated between 30 males and 39 females
whose mean motions exceeded 0.03 mm, which resulted in sub-
groups with insignificant difference in their mean motion (p =
0.25) (we were unable to generate subgroups with similar mem-
ber counts based on upper threshold for motion). These two sub-
groups continued to show a significant difference in occurrence
rates of CAP 23 (Figure S6).

COMPARISON TO OTHER DATA-DRIVEN APPROACHES
A more comprehensive comparison of CAPs with independent
components (ICs) derived from the same dataset is presented
in Figure S7 and Figures 6A,B. ICs typically cover a small but
specific set of brain areas with very high z-statistics. As a result
of the spatial independence criterion, there is little overlap of
the regions having high z statistics in different ICs (Figure S7),

resulting in a spatial correlation very close to zero (Figure 6A).
In contrast, several CAPs, particularly those related to DMN
or task-positive regions (Figure S3, CAPs 1,7,12,15, and CAPs
2,3,4,6,9, respectively), cover relatively large brain areas and show
substantial spatial correlations with one another (Figure 6A).
The CAPs in this category do not have clear correspondence to
the patterns seen in the 30 ICs. In contrast, the CAPs covering
small but specific regions, e.g., those related to primary sen-
sory systems, tended to more closely resemble ICs (Figure S7,
CAPs 16,19,23,26,29). Judging from their mutual spatial cross-
correlation, at least a third of the CAPs did not pair up with
any of the ICs (Figure 6A). Another noticeable difference between
CAPs and ICs is asymmetric tails observed for the distribution of
ICA map statistics (Figure 6B), which corresponds to the lack of
significantly negative values in the ICs (Figure S7).

Recently, temporal ICA was applied to the components gen-
erated from spatial ICA in order to generate a set of temporal
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functional modes (TFMs) (Smith et al., 2012). Similarity between
TFMs and CAPs may be expected, since temporal independence
between TFMs is, to some degree, similar to the exclusive relation

FIGURE 5 | Occurrence rates of the CAPs in males and females. Error
bars represent the standard error across participants. The asterisk and light
blue shadow indicates CAPs showing a significant difference in their
occurrence (p < 0.01 with Bonferroni correction, permutation test) between
these two groups.

of a time point to a specific CAP. To investigate this, we performed
a spatial similarity analysis comparing the 30 CAPs with 21 TFMs
derived in Smith et al. (2012). Although there were several CAP—
TFM pairs with high similarity (CAP 2 and TFM 8, CAP 12 and
TFM 19, and CAP 26 and TFM 2), most CAPs did not have a
matching TFM (Figures 6A,C).

DISCUSSION
In this report, we demonstrated a method to extract brain func-
tional information by identifying regions that spontaneously
co-activate during resting conditions. The method is based on
the notion that co-activation of functionally related brain regions
may not be a continual, stationary phenomenon (is implicitly
assumed in conventional analysis) but rather occur sporadically
over the course of a few seconds. The method also extends its
previous version of seed-based analysis targeting specific net-
works (Liu and Duyn, 2013) to a data-driven, whole-brain
approach.

By applying this approach to a large dataset of resting state
fMRI studies, we identified at least 30 reproducible, spatially dis-
tinct co-activation patterns (CAPs). These CAPs in some aspects
resemble canonical RSNs and TFMs extracted with ICA, but also

FIGURE 6 | Comparison between CAPs, ICs, and TFMs. (A) Spatial cross
correlation matrices indicating substantial differences between CAPs (middle)
on one hand and ICs and TFMs on the other (top and bottom, respectively).
Cross-modality correlations were sorted based on correlation strength. (B)

Distributions of map statistics (z-statistics) for CAPs (white), ICs (red), and
TFMs (blue). IC statistics show a very non-Gaussian distribution with a
elevated right tail, consistent with the independence assumption of ICA. (C)

A selection of best-matched CAPs and TFMs, based on spatial similarity.
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show distinct differences in various brain regions. These dif-
ferences are partly attributed to methodological differences, for
example the fact that the proposed method does not assume
statistical independence between CAPs, as is the case for RSNs
and TFMs extracted with ICA. Thus, the proposed method
may lead to an alternative interpretation of the NNs underlying
resting-state fMRI signals.

DISTINCT CO-ACTIVATION PATTERNS AND DYNAMIC FUNCTIONAL
CONNECTIVITY
A series of recent studies has attempted to reveal dynamic changes
in RSNs by examining the temporal variability in fMRI signal cor-
relations (Chang and Glover, 2010; Allen et al., 2012; Hutchison
et al., 2012; Rack-Gomer and Liu, 2012). Considerable variations
in RSN characteristics were found even over the duration of a
typical (several minute) resting scan, suggesting that the under-
lying NNs may dynamically assemble and disassemble over this
time window. Such temporal variations may pose significant chal-
lenges for correlational approaches for the extraction of RSNs, as
it may render them strongly dependent on the choice of analysis
window. For example, the PCC-seeded correlation map within a
16.1-s window (only 7 time points) including T11 shows a DMN
pattern with high correlations at the HI and the posterior PHG
(Figure S8) because they co-activated at T11 (Figure 1); their
functional connectivity to the PCC seed, however, nearly van-
ishes when the time window is shifted forward by 23 s to cover
T12 instead. Likewise, the thalamic nucleus seen in T3 is only
present in correlation maps seeded at the motor cortex for time
windows including T3 (Figure S8). This dependence on position
of the analysis window can be mitigated or avoided by increasing
the window duration, which leads to more stable, reproducible
RSN, but on the other hand can result in the loss of network
information contained in single time frames.

INFORMATION IN CAPs
Using the method proposed in this study, the analysis window was
effectively reduced to include only a single time point, and sen-
sitivity was subsequently improved through selectively averaging
the fMRI volumes with similar patterns. By averaging selectively
rather than continually (as implicitly occurs with correlation
analysis), one may extract finer detail regarding spontaneous co-
activations of multiple brain regions. For example, correlation
analysis with a seed in the PCC and a typical analysis window
of a few minutes generally reveals a functional connection with
HI and posterior PHG but little other information. In contrast,
the multiple DMN-related CAPs extracted with the proposed
method suggests that the two regions at times independently
connect to the PCC. A possible explanation for these regions’
differential involvement with DMN is their distinct roles in mem-
ory storage and retrieval (Gluck and Myers, 1997). Similarly, the
varying involvement of sensory regions with the DMN appar-
ent from CAPs (Figure 3) may signify that the brain may not be
simply organized into two anti-correlated NNs spanning “task-
positive” and “task-negative” regions, as concluded previously
from correlation analysis (Fox et al., 2005).

Many CAPs included small structures in the thalamus
and cerebellum that appeared to localize to specific anatomic

subregions. The vision-related CAPs included thalamic nuclei
that were well-separated and corresponded to established targets
of functional connections with specific regions of the visual cortex
that co-occurred in the CAPs. Similarly, the sensorimotor CAPs
corresponding to the head (CAP 23) and lower body (CAP 19)
regions showed specific co-activations at the VL and VPL, respec-
tively, despite their limited anatomical separation of only a few
millimeters. Anti-phase interaction was also observed between
thalamic nuclei and sensorimotor cortex in CAPs 8 and 19. The
AN/MDN in these CAPs has been shown to positively correlate
with the alpha-band (8-13 Hz) electroencephalography (EEG)
power, which is, in turn, negatively correlated with multiple sen-
sory regions, including the sensorimotor cortex (Liu et al., 2012).
These thalamic regions have non-specific connections to the cor-
tex and may participate in the process of alertness and arousal
(Van Der Werf et al., 2002). The second set of thalamic regions
showing negative correlation to the sensorimotor cortex was
around the LGN. Lowering the display threshold exposed mul-
tiple diffuse areas encompassing the posterior thalamus, which
we suspects to be the thalamic reticular nucleus (TRN), partly
because the anti-phase activity with sensorimotor cortex is, to
some extent, consistent with the established inhibitory influence
of TRN over other thalamic nuclei.

A few CAPs included isolated cortical structures that were dis-
tant from regions of major activity. For example, CAP 16, which
includes areas associated with peripheral vision, showed small
co-activation in the SMA, motor cortex, and medial IPS. This is
plausible considering the critical role of the medial IPS in visuo-
motor coordinate transformation (Grefkes et al., 2004). These
subtle aspects of CAPs are generally not captured with ICA or cor-
relation analysis, indicating potential advantages of the proposed
analysis approach.

Since hemodynamic response function (HRF) has been
demonstrated to vary spatially (Wu et al., 2013), a potential
concern is that different CAPs may actually represent the same
neuronal co-activation event at different hemodynamic delays.
This is, however, unlikely for the following two reasons. First,
the fact that CAPs, particularly those covering similar or close
cortical regions, show specific co-activations in distinct thalamic
and/or cerebellar structures and that many of these CAP pat-
terns are consistent with known organization of the brain argue
strongly against their origin being attributable to vascular effects
(e.g., hemodynamic delay differences between regions). Secondly,
the analysis of temporal precedence of CAPs failed to find any
pair of CAPs occurring in a specific order (Figure S9), which is
also inconsistent with the confounding effect of the HRF delays.
Conversely, co-activation in the same CAP does not guarantee the
exact synchronization of neural activity at corresponding regions.
Therefore, the “co-activation” in CAP refers to synchronization of
fMRI signals rather than that of the underlying neural activity.

We found both co-activation and co-deactivation CAPs for
some brain regions (e.g., CAP 8 and CAP 19), which are actu-
ally averages around fMRI signal peaks and troughs, respectively.
Although these two types of CAPs often show very similar spa-
tial patterns with reversed sign, a close inspection revealed that
the co-activation at the fMRI peaks is significantly more synchro-
nized than the co-deactivation at the troughs (Figure S10). The
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implication of this observation remains unclear, but the peaks and
troughs are clearly corresponding to distinct cortical states.

An attractive aspect of the proposed analysis is that it provides
a simple quantifiable measure of CAP occurrence rate that facil-
itates comparison between subject populations. As example of
this, we demonstrated that CAP 23, which overlaps the sensori-
motor cortex, occurs more frequently in males than in females.
Although far from providing a physiological explanation, this
finding is consistent with a previous study reporting sex differ-
ences in the fluctuation amplitude of resting-state fMRI signals
in similar brain regions (Biswal et al., 2010). We also make pub-
licly available the 30 CAPs derived in our study, which can be
directly used as templates for future studies intending to examine
and compare their occurrence rates in different groups or under
different conditions.

COMPARISON WITH CONVENTIONAL METHODS
As mentioned above, the extraction of CAPs based on single-time
frame analysis may allow one to better capture temporally local-
ized spontaneous co-activations as compared to conventional
correlation analysis. The method presented here resembles spa-
tial ICA in the sense that both are spatial-domain methods that
regard fMRI time frames as the basic units of analysis. However,
ICA assumes that the fMRI volumes comprise weighted combina-
tions of a set of statistically ICs, the best fit of which can be found
by maximizing the independence of the latter. The independence
assumption yields ICs that typically cover a relatively small extent
of the brain with very high statistical scores (Figure S7), because
such a pattern has high non-Gaussianity (Figure 6B), an impor-
tant factor underlying ICA based signal separation. At the same
time, independence maximization yields ICs with minimal pair-
wise spatial correlations, as shown in Figure 6A. Together, these
two features suggest that the ICs present a spatial parcellation of
the brain rather than distinct states of functional connectivity. In
addition, ICs may exhibit considerable pairwise temporal corre-
lation as exemplified by the often negative correlation observed
between the ICs covering task-positive and task-negative regions.

To overcome these limitations and gain more knowledge about
the brain’s spontaneous co-activations, temporal ICA has been
further applied to spatial ICs to recombine them into a set of
TFMs (Smith et al., 2012). The TFMs are perhaps more closely
related to the CAPs, since the concept of temporal independence
is similar to the exclusive presence of a given CAP at any given
time. However, a direct comparison between TFMs and CAPs
indicated substantial differences (Figure 6). This may not be sur-
prising, given the rather different methodology and assumptions
used to generate these network measures.

A practical advantage of the proposed method is that it
involves few assumptions and transformations of the data. The
classification procedure (clustering) does not perform any trans-
formation on the data, and the CAPs are simply averages of time
frames classified into groups based on spatial activity patterns.
Therefore, they are easy to interpret and reflect the underlying
brain activity in a rather direct way.

NEURAL ORIGIN OF CAPs
Since the co-activation patterns are clear even in single fMRI
volumes, they likely reflect large-scale neural activity occurring

within brief time periods. One candidate is large-scale neuronal
avalanching activity, defined as spontaneous activity initiating at
a specific location in the form of a brief burst, and taking with it,
like an avalanche, other connected regions that are near activation
threshold (Beggs and Plenz, 2003; Tagliazucchi et al., 2012). The
previous analysis on spatiotemporal dynamics of spontaneous
fMRI signals confirmed its scale-free property, consistent with
avalanche types of activity at smaller time-scales (Tagliazucchi
et al., 2012). However, it is also possible that other types of neu-
ronal activity underlie such brief co-activations of the brain. For
example, since the dataset we analyzed here was acquired during
wakefulness, it is possible that neural activity associated certain
conscious processes, e.g., mind wandering, may also contribute
to spontaneous co-activations of the brain. The analysis of fMRI
signals acquired under brain states with reduced consciousness
would help to partially clarify these issues. Nevertheless, uncov-
ering the precise neuronal origin and functional relevance of the
CAPs will likely require acquisition of electrophysiological data
concurrently acquired with the fMRI.

TECHNICAL LIMITATIONS
A challenge for clustering analysis is selection of k, i.e., the num-
ber of CAPs to be extracted from the data. The current value of
30 was chosen somewhat arbitrarily from a comparison of results
obtained with k = 20, 30, and 40. We have also attempted to select
k by evaluating the corresponding cluster structures with more
objective indices, including the Silhouette, Calinski-Harabasz,
Davies-Bouldin methods, which, however, yielded inconsistent
recommendations that also tend to underestimate the number of
CAPs present in the data. This may be due to the two following
reasons: first, the distance (dissimilarity) among the CAPs is likely
to have a very skewed distribution, with a portion of the CAPs
being much closer to one another than to the others (Figure 6A),
which increases the difficulty in finding a clear division. Secondly,
the noisy fMRI volumes mentioned above will further blur the
boundaries between different CAPs. Nevertheless, the CAPs in the
current dataset were found to be rather insensitive to this parame-
ter, as the majority of the CAPs shown for the case of k = 30 were
also observed in the cases of k = 20 and k = 40.

The computational load of the k-means clustering increases
quickly with the number of fMRI volumes (time points).
Therefore, the application of the proposed method to fMRI
datasets with very high sampling rate, e.g., those acquired with the
newly developed multi-band technique, would either be limited
to a relatively small population or have to require more computa-
tional resources and/or more efficient computational algorithms.
This could be a challenge for future studies attempting to uti-
lize the ultra-high temporal resolution of fMRI data for special
research purposes.
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