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The EEG of patients in non-convulsive status epilepticus (NCSE) often displays
delta oscillations or generalized spike-wave discharges. In some patients, these delta
oscillations coexist with intermittent epileptic spikes. In this study we verify the
prediction of a computational model of the thalamo-cortical system that these spikes
are phase-locked to the delta oscillations. We subsequently describe the physiological
mechanism underlying this observation as suggested by the model. It is suggested that
the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay
neurons and phase-locking is a consequence of differential excitability of relay neurons
over the delta cycle. Further analysis shows that the observed phase-locking can be
regarded as a stochastic precursor of generalized spike-wave discharges. This study thus
provides an explanation of intermittent spikes during delta oscillations in NCSE and might
be generalized to other encephathologies in which delta activity can be observed.
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INTRODUCTION

Non-convulsive status epilepticus (NCSE), also known as petit
mal status, absence status, or ictal confusion, refers to a prolonged
state in which the subject’s EEG displays epileptiform activity
(Brenner, 2004; Kaplan, 2006). It frequently occurs in elderly
patients both with and without a history of epileptic seizures
(Ellis, 1978; Lee, 1985; Bauer et al., 2007). NCSE is a highly het-
erogeneous pathological condition whose clinical manifestations
include confusion, euphoria, attentional and memory problems,
unconsciousness (van Putten and van Putten, 2007), visual and
auditory hallucinations, and paranoia (Granner, 1994). In fact,
in the past, patients in NCSE have mistakingly been diagnosed
as suffering from psychiatric syndromes, in particular psychosis,
and manic-depression (Ellis, 1978; Brenner, 2004). The etiology
of NCSE ranges from structural CNS lesions and toxic-metabolic
encephalopathies, to CNS infections, hypoxic-ischemic injury,
and anti-epileptic drug withdrawal (Treiman and Walton, 1990;
Tay et al., 2006).

Although NCSE is a highly dynamic process, as reflected in the
progression of EEG patterns (Treiman and Walton, 1990) four
main pattern types have been identified: typical, atypical, and
multiple spike-and-wave discharges, diffuse rhythmic delta activ-
ity (DRDA) with intermittent spikes (Ellis, 1978; Granner, 1994;
Brenner, 2004; Tay et al., 2006). DRDA, however, can also be
observed without spikes (Uthman and Bearden, 2008) suggesting
a possible relation with other forms of pathological delta activity,
for example, diffuse delta slowing and intermittent rhyhmic delta
activity, which can be observed in many types of encephalopathies

delta oscillation,

absence seizure, spike-wave discharge, phase-locking,

(Smith, 2005; Kaplan and Birbeck, 2006; Brigo, 2011). Most
studies, however, are empirical and not much is known about
the underlying mechanisms and the structures involved (Brigo,
2011).

In contrast to SWDs observed during generalized absence
seizures, which are thoroughly studied using macroscopic models
(Robinson et al., 2002; Suffczynski et al., 2004; Breakspear et al.,
2006; Rodrigues et al., 2006, 2009; Roberts and Robinson, 2008;
Kim et al., 2009; Marten et al., 2009) we are not aware of any the-
oretical studies focusing on DRDA (with or without intermittent
spikes). Some modeling is done, however, on frontal intermittent
rhythmic delta activity, which may be relevant for DRDA during
NCSE as well (Stam and Pritchard, 1999). In Stam and Pritchard
(1999) the authors used two coupled neural masses to show that
frontal intermittent rhythmic delta activity possesses limit-cycle
as opposed to fixed-point dynamics. Nevertheless, their modeling
suggests, or presupposes, the existence of local delta generators,
whose synapto-dendritic time-constants determine their oscil-
lation frequency. In this study we take a different approach
and argue that DRDA is tightly linked to SWDs. Since more is
known on the mechanisms underlying the generation of SWDs,
in particular their connection to pathological spindle activity
(Kostopoulos et al., 1981; Wang et al., 1991; Steriade et al., 1993;
von Krosigk et al., 1993; Bal and von Krosigk, 1995; McCormick
and Bal, 1997; Robinson et al., 2001) this might elucidate some
aspects of DRDA. We thus concentrate on the role of the tha-
lamus, which has already been shown to be involved in NCSE
(Druga et al., 2001; Fabene et al., 2003; Hamani et al., 2008).
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Using an EEG recording of a patient in NCSE, we show that
the spikes are phase-locked to the DRDA. Moreover, we employ
an established model of thalamo-cortical dynamics (Robinson
et al., 2001; Rennie et al., 2002) to suggest physiological mecha-
nisms underlying this phenomenon. It is argued that the spikes
reflect negative stochastic input to thalamo-cortical relay neu-
rons which can be transmitted only during a narrow temporal
window of the delta cycle. This window leads to the appear-
ance of phase-locked spikes in the EEG. We further argue that
the phase-locked spikes can be regarded as a stochastic precur-
sor generalized SWDs. The findings reported in this study link
generalized absence and tonic-clonic seizures (Breakspear et al.,
2006) to NCSE and thereby show that the employed model might
provide a common theoretical framework for studying different
epileptic syndromes.

MATERIALS AND METHODS

THALAMO-CORTICAL MODEL OF THE EEG

In this study we use the thalamo-cortical meanfield model of
EEG generation developed in (Robinson et al., 2001, 2002; Rennie
et al., 2002). The model comprises four types of neural pop-
ulations, consisting of cortical pyramidal, cortical inhibitory,
thalamo-cortical relay, and thalamic reticular neurons, which are
denoted by the subscripts e, i, s, and r, respectively. The model
describes the dynamics of the average membrane potentials Vi
and firing rates Qy of the different populations k = e, 1, s, . The
firing rates depend on the mean membrane potentials through
the activation function

Qmax

SV = T —wi—orm Ay

(1)

where Qp,yx is the maximal average firing rate, 6 is the average
spike threshold, and o quantifies the variation of spike thresholds
of population k.

Mean firing rates arriving at the neural populations induce a
synapto-dendritic impulse response & given by

h(t) = Ba—ia (670" — eiﬁt) , (2)

where f > o and B and a denote the synapto-dendritic rise and
decay rates, respectively (Robinson et al., 1997). The mean firing
rate Q. of cortical pyramidal neurons spreads over the cortical
sheet via long-range cortico-cortical fibers according to

2

ﬁ¢e+2v%¢e+y2¢e =V Qe (3)
where ¢, (#) is the mean firing rate of cortical pyramidal neurons
propagated to distant pyramidal neurons, y = v/l is the cortical
damping rate, v the axonal propagation velocity, and I the char-
acteristic axonal length of cortical pyramidal neurons (Robinson
et al., 1997). The absence of a spatial derivative in (3) implies
that we restrict to spatially-homogeneous dynamics on the cor-
tical sheet. Since we focus on modeling DRDA and generalized
SWDs which, by definition, are global cortical phenomena, this
restriction is justified (Robinson et al., 2002; Breakspear et al.,

2006; Hindriks and van Putten, 2012). The strength of synap-
tic connections from neurons of type I to neurons of type k
is denoted by vy (Robinson et al., 1997). Figure 1 provides an
illustration of the synaptic organization of the model. Following
(Robinson et al., 2002) we assume that experimentally recorded
EEG signals are proportional to —¢, (). Table 1 lists the parame-
ter values for which the model displays delta oscillations and we
will identify this parameter regime with DRDA during NCSE.

CLINICAL EEG DATA

On April 1, 2011, a 65-year old patient was seen at the emergency
department of the hospital Medisch Spectrum Twente, Enschede,
The Netherlands. History taking was hardly possible, due to a
severe dyspnoea. Oxygen saturation was 88%, with an arterial
pO, = 7.3kPa, pCO; = 6.8 kPaand apH = 7.50. He was initially
diagnosed with a decompensatio cordis and treated with diuret-
ics. His condition hardly improved, however, and he remained
confused. Soon after, he developed a pneumonia with a respira-
tory insufficiency, for which he was transferred to the Intensive
Care Unit on April 3, 2011. He was intubated and mechanical
ventilation was started. He was sedated with continuous infusion
of propofol. After a few days, his respiratory condition gradu-
ally improved, and sedation was stopped. A few hours later, he
suffered from a generalized tonic-clonic seizure, for which the
neurologist was consulted. On clinical examination, his Glasgow
coma score was minimal. There were no abnormal eye move-
ments, and pupil size was normal, with intact reactions to light. A
brain CT showed moderate generalized atrophia and diffuse white
matter abnormalities, without any signs of recent ischaemia or
hemorrhage. Under suspicion of a possible encephalitis, a lumbar
puncture was performed. The opening pressure was normal, and
the cerebrospinal fluid revealed no significant abnormalities.

cerebral cortex Neuron types

@ inter
A pyramidal
@ thalamic reticular

4@ thalamo-cortical relay

mem  excitatory (AMPA)
mmm  inhibitory (GABA)

reticular nuclei

relay nuclei

FIGURE 1 | Synaptic organization of the thalamo-cortical model.
lllustrated are the synaptic pathways that connect the different neuronal
populations within the model. The model contains four types of neuronal
populations which are connected through excitatory (green) and inhibitory
(red) synaptic projections.
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Table 1| Model parameters, their symbols, and nominal values.

Parameter Symbol Nominal value
Maximal firing rate Qrmax 2505
Average spike-threshold 0 15 mV
Spike-threshold deviation o 3.3mV
Synaptic decay rate o 505!
Synaptic rise rate B 200s~"
Synaptic strength from e to e neurons Vee TmVs
Synaptic strength from i to e neurons Vej —1.8mVs
Synaptic strength from s to e neurons Ves 3.2mVs
Synaptic strength from i to i neurons Vji —1.8mVs
Synaptic strength from e to i neurons Vie TmVs
Synaptic strength from s to i neurons Vis 3.2mVs
Synaptic strength from r to s neurons Vsr —-0.8mV's
Synaptic strength from e to s neurons Vse 22mVs
Synaptic strength from s to r neurons Vrs 0.6mVs
Synaptic strength from e to r neurons Vre 1.6mVs
Average noise level Vsn@n 2.0mV
Noise standard deviation on 0.2mV
Cortico-thalamic delay T 0.04s
Cortical damping rate Y 100s~"

He was treated with diphantoine, but consciousness did not
return. The differential diagnosis included a non-convulsive
status epilepticus (NCSE) and continuous EEG recording was
started. This showed rhythmic, high voltage (150 WV) delta
activity, with a left hemispheric dominance. Sometimes, spikes
were observed, as well. This pattern was interpreted as elec-
troencephalopgraphic seizure activity. After about 40 min, the
rhythmic delta activity evolved into rhythmic spikes, and the
patient suffered from a second generalized seizure. Propofol
was restarted, but non-convulsive seizure activity continued.
Therefore, midazolam and sodium valproate were added, too.
Eventually, after 2 days, all epileptiform discharges disappeared.

After gradual reduction of the sedation with propofol and
midazolam, our patient eventually recovered consciousness.
Initially, he showed a severe bradyphrenia, with a mild right-
sided hemiparesis. A repeat CT cerebrum showed two subcortical
infarctions in the right hemiphere, that did not explain his mild
right-sided paresis. For more than a week, he was successfully
weaned from the ventilator and his condition further improved.
He was discharged from our ICU on April 14, 2012. In sum,
this 65-year old patient suffered from both convulsive and
non-convulsive seizure activity, where the EEG showed rhythmic
delta activity with intermittent spikes. This is a relatively rare
EEG pattern, that should not be interpreted as post-ictal slowing,
but as an ictal phenomenon. All data were obtained as part of our
routine patient care.

The EEG was recorded using 21 silver-silverchloride cup elec-
trodes placed on the scalp according to the international 10/20
system and using the average montage. Recordings were made
using a Neurocenter EEG recording system (Clinical Science
Systems, Voorschoten, The Netherlands). Electrode impedances
were below 5k and the sampling frequency was set to 250 Hz.
We selected a 1000-s time-series of electrode Fz displaying DRDA

activity. The corresponding spectrogram is shown in Figure 2A.
The time-series were filtered between 0.5 and 20Hz using a
fourth-order zero-phase Butterworth filter. For subsequent analy-
sis, we selected the high signal-to-noise epochs marked by white-
circles. The length of the selected epochs where 16, 12, 11, and
10s. The epochs are shown in Figure 2B.

PHASE-LOCKING STATISTICS

To quantify the extent of locking of spikes to ongoing delta
oscillations, both in real EEG time-series as well as simulated
time-series, we proceed as follows. Let x = x1, . .., x,, denote the
samples of a recorded or simulated time-series. We extract the
spike locations by first selecting all local maxima and then dis-
carding those above a chosen threshold. The threshold effectively
isolates the spikes from the peaks of the delta oscillations. Let
t1, ..., tx be the samples that correspond to the spikes. To iden-
tify these samples with phases of the ongoing delta oscillations,
we first bandpass-filter x within the frequency band 1-3 Hz using
a second order zero-phase Butterworth filter, thereby obtaining
a filtered time-series y = y1, ..., yN. The instantaneous phases
®1, ..., b of y are obtained through the analytic signal y* of
¥, which is defined as

yA=y4iyf, (4)

where y' denotes the Hilbert transformation of y (Pereda et al.,
2005) and then taking the radial angles

by = arg(y), (5)

forn =1,..., N in the interval [—7t, 1t]. The phases of the spikes
Py, are now given by ¥, = ¢y, form=1,..., k.

To quantify the extent of phase-locking, we compute the
variable z, which is defined as

z= % Z evm (6)

and takes on values in the unit-disk in the complex plane. The
extent of phase-locking is quantified by the phase-coherence Q
which is defined as

Q= |z, (7)

where the vertical bars denote absolute value. The phase-
coherence 2 takes values in the interval [0, 1], where Q =0
reflects absence of phase-locking and € =1 reflects complete
phase-locking. Furthermore, the phase-angle W is defined as

U = arg(z), (8)

which takes values in the interval [0, 27] and specifies the phase
of the ongoing delta oscillations at which the spikes concentrate.
Figures 3A,B provide illustrations.

Since the distribution of phase-coherence values under the
null-hypothesis of no phase-locking is unknown, we assess sta-
tistical significance through the use of appropriate surrogate data
(Schreiber and Schmitz, 2000). The general idea behind surro-
gate data-testing is to repeatably construct time-series under the
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FIGURE 2 | Diffuse rhythmic delta activity during non-convulsive
status epilepticus. (A) Spectrogram of electrode Fz over the entire
recording-length. The activity is almost completely confined to
frequencies in the delta band (1-3Hz). The four white circles
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schematically denote the selected epochs. These epochs are shown in
(B), displaying DRDA with frequencies between 2 and 2.5Hz and
amplitudes up to 150 wV. The oscillations are dispersed with
intermittent spikes.

3n/2

FIGURE 3 | Phase-locking of spikes to ongoing delta oscillations.
(A) lllustration of the variable z, phase-coherence €, and phase-angle
W which are obtained from z by taking its absolute value and
argument, respectively. (B) llustration showing a delta oscillation and
two phase-distributions (red and green areas). The red and green

coherence at
coherence at 0

=== high phase:
m=m  lOw phase

delta oscillation

.mlliiﬂﬂ“""“" ||||||||||||!iilllln-~ y

v il
p S

distribution results from phase-locking at phase = and 0, respectively.
Thus, the location of the peak of the distributions determines the
phase-angle W.The heigth of the distributions determined the
coherence, which is strong and weak the green and red distributions,
respectively.

null-hypothesis, which are used to simulate the distribution of
phase-coherence values under the null-hypothesis. These surro-
gate time-series should have the same statistical properties as the
original time-series, but lack the property that is tested for, in this

case phase-coherence between intermittent spikes and ongoing
oscillations. Phase-coherence is regarded as significant with p =
0.05 if the phase-coherence of the original time-series is con-
tained in the 95% upper-quantile of the simulated distribution
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of phase-coherence values. In the present context, appropriate
surrogate time-series contain the same number and timing of
intermittent spikes but the phase-structure of the ongoing delta
oscillations is destroyed. This is done by randomizing the Fourier-
phases of x while leaving the spike-times ¢, ..., fx unchanged
(Pereda et al., 2005). The surrogate distributions were based on
1000 randomizations of the recorded EEG time-series.

RESULTS
DIFFUSE RHYTHMIC DELTA ACTIVITY
The top-row of Figure 4A shows a 10-s sample of the first of
the selected epochs. The time-series is dominated by delta oscil-
lations with a frequency of about 2.5Hz. Using the parameter
values listed in Table 1, we simulated the time-series shown in the
bottom-row of Figure 4A. Note the presence of strong delta oscil-
lations similar to those observed in the recorded EEG time-series.
In the recordings as well as in the simulated time-series, small
epileptic spikes can be observed, occurring mostly on the down
slopes of the delta oscillations. We treat these spikes in detail in
Phase-locking of epileptic spikes and Physiological mechanism.
Figure 4B displays the average firing rates of pyramidal,
thalamo-cortical relay, and thalamic reticular neurons during
two delta oscillations, which, for better visibility, are normal-
ized by their respective means. The mechanism underlying their
generation is described in Robinson et al. (2001). In short, the
mechanism consists of a periodic switching of the functional state
of the thalamus, driven by periodic cortical feedback. Specifically,
the thalamus periodically provides positive and negative feedback
to the cortex, where positive thalamic feedback is characterized by
high firing rates of relay neurons and near silence of reticular

neurons and negative thalamic feedback is characterized by high
firing rates of reticular neurons and near silence of relay neurons.
A delta oscillation is generated as follows: active pyramidal neu-
rons excite, after a delay t, both reticular and relay neurons, which
enhances their firing rates. The activation of reticular neurons
inhibits the relay neurons, shifting the thalamus to its negative
feedback state. The near silence of relay neurons, on their turn,
leads, after a delay T, to in-activation of pyramidal neurons. Again
after a delay T, the induced absence of cortical feedback to thala-
mus in-activates the reticular neurons, allowing the relay neurons
to repolarize and become re-activated by the constant afferent
excitation. The thalamus has now switched to its positive feedback
state. After a delay T, as a consequence of the activation of thala-
mic relay neurons, the cortex becomes active again, completing
the delta cycle. This chain of events is illustrated in Figure 4C.

PHASE-LOCKING OF EPILEPTIC SPIKES

To assess the extent of phase-locking of the epileptic spikes
observed in the simulated EEG time-series, we computed the
mean phase-coherence €2 and phase-angle W as a function of the
efficacy vg. For each value of v, the phase-coherence and phase-
angle were computed as averages over 100 simulated time-series,
each of 18s duration. The results are displayed in Figure 5A,
which shows that the phase-coherence increases as a function
of v, reflecting increased locking of the spikes to the phase
of the delta oscillations. Furthermore, it shows that the spikes
phase-lock to the down slopes of the delta oscillations, just
before their troughs and that the phase-angle slightly decreases
for increasing values of vg.. Importantly, the dispersion of phase-
coherence and phase-angle values around their respective means

A Observed
< 100 T T T T T T T T T
-\—;'_ 0
'<:, 1 1 1 1 1 1 1 1
g 1 2 3 5 7 8 9 10
Time (s)
Theoretical
T T T T T T T T T
s
T -2f B
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)
B C
— pyramidal active cortex
relay
m— reticular
03
B2
5 I~ =<~ _—= positive thalamic negative thalamic
g 0 feedback feedback
h -1
0 0.1 02 03 04 05 06
Time (s) R .
n-active cortex
FIGURE 4 | Mechanism suggested to underly diffuse rhythmic delta neurons (blue) during two delta cycles. The firing rates are normalized by their
activity. (A) 10-s epochs of recorded (top-row) and simulated (bottom-row) mean values. (C) lllustration of the mechanism underlying the generation of
EEG time-series. The simulated time-series were generated using the delta oscillations in the model. The cycle of events corresponds to one delta
parameter values listed in Table 1. (B) The firing rates of cortical pyramidal oscillation and illustrates that it is generated by a periodic switching of the
neurons (red), thalamo-cortical relay neurons (green), and thalamic reticular functional state of the thalamus, driven by periodic cortico-thalamic excitation.
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FIGURE 5 | Phase-locking of epileptic spikes. (A) Mean phase-coherence
Q and phase-angle V¥ as a function of v (solid lines), respectively. The
parameter vgse Was increased from 2.2 to 3.4 mV s in steps of 0.2mV s. For
each value of vg, the displayed values were obtained by computing the
average phase-coherence and phase-angle over 100 simulations, each of
length 18's. Their standard deviations are indicated by dashed lines. (B)
Radial distributions of the spike-phases for the four selected EEG epochs.
(C) lllustration using the first epoch. Shown is the EEG time-series and the
epileptic spikes (black circles). The vertical red lines mark the time-span of
the close-up.

reflects stochasticity of the underlying phase-locking mechanism.
Specifically, the spikes are not present in each delta oscillation,
and if they are, they are dispersed around it (which is evident
from the fact that the phase-coherence values are less than 1).
The stochastic nature of the epileptic spikes is confirmed by the

fact that in the absence of afferent noise (o, = 0), the spikes are
absent (see Figure 7A).

To assess whether the epileptic spikes observed in the recorded
EEG data are indeed phase-locked to the delta oscillations, we
identified the spikes using a threshold of 30 wV and estimated
the phase-coherence and phase-angle from the four selected EEG
epochs (see Figure 2B). We found that in all four cases, the phase-
locking was significant (p < 0.001, p < 0.003, p < 0.001, and
p < 0.004, respectively). The mean phase-coherence was 0.71 and
the mean phase-angle 2.56 radians. Furthermore, all four phase-
angles were contained in the interval [1t/2, 1], which corresponds
to the lower part of the downslope of the delta oscillations. This
agrees reasonably with the model simulations. Figure 5B shows
the corresponding distributions of the spike-phases, relative to the
phase of the delta oscillations for all four epochs. Figure 5C shows
the first EEG epoch, together with the epileptic spikes (designated
by black circles). Observe that, similar to the simulated time-
series, the spikes are not present at every delta oscillation and
are dispersed, indicating the stochastic nature of the underlying
spike-generation mechanism.

PHYSIOLOGICAL MECHANISM
The simulations described in Diffuse rhythmic delta activity show
that there may be epileptic spikes at the downslopes of the
delta oscillations (Figure 4A, bottom row). Here we describe the
underlying physiological mechanism suggested by the model. In
Phase-locking of epileptic spikes we have seen that the distribu-
tion of phase-angles of the spikes, although concentrated around
a certain phase angle, has non-zero width, which reflects the
stochastic nature of the spikes. Indeed, when the noise-level is
set to zero, i.e., 6, = 0, the spikes are absent (Figure 4B). This
implies that they result from filtering of the stochastic affer-
ent sensory input by the thalamo-cortical system and are not
intrinsically generated by the model in this parameter regime.
First, we discuss the difference and similarity between these
stochastic spikes and the deterministic spikes described in
Robinson et al. (2001); Rennie et al. (2002); Breakspear et al.
(2006). Figure 6A shows a simulation for v,, = 2.2 mV s display-
ing DRDA with intermittent spikes. We first note that when the
relay cells are active, i.e., Vs & —1 mV, this is not sufficient to
directly activate the reticular cells. Instead the pyramidal cells
are driven first and subsequently the reticular cells are activated
through cortical feedback. We observe an epileptic spike on two
of the delta cycles shown. Observe that the spikes are preceded
by a trough at the maxima of V i.e., during the active state of
the thalamus. When vy, is increased, the thalamic relay cells are
slightly more active, sufficient to already interact with the retic-
ular cells to generate a small plateau oscillation (see Figure 6B
around ¢ = 450 ms). In both cases the waveform of V; displays
a dip around its maximum. This negative deflection is transmit-
ted to cortex and integrated by the pyramidal cells. If sufficiently
large, this leads to a spike in —¢,, that is, in the EEG. For high
values of v, there is little variation in the timing of the spike as it
is generated in a deterministic fashion, i.e., by the interaction of
relay and reticular cells. For lower values, the reticular cells are not
sufficiently active and the stochastic fluctuations are responsible
for the spikes. We conclude that the deflection in the waveform of
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FIGURE 6 | Physiological mechanism suggested to underly the
generation of intermittent epileptic spikes. (A) Numerical simulation of the
model equations with vge = 2.2 mV s, showing four delta cycles. (Vs blue, V;,
red, and —ge green). (B) Similar to (A) but for vse = 4.4 mV s. For visibility, all
variables have been scaled by the absolute value of their means. (C) For

A B -V
] 2
\/\/W\ ! =
4 =)
2 = (/)a
R E
- = -1
4
6
8
1
10 — =0h
( 500 1000 1500 0 500 1000 1500
Time (ms) Time (ms)
1 500
400
—~ 300
<
> 200
- 100
,; X 0
] o
= =
< S -100
S 200
< 300
400
500

0 01 02 03 04 05 06 07 08 09

Phase t,/T

vse = 2.2mV s and in the absence of noise, a perturbation with amplitude

A = =500 (solid) and A = —500 (dashed) is applied. The negative perturbation
leads to a spike, while the positive perturbation merely advances the delta
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firing rate (1/s )

Time (s)

FIGURE 7 | (A) Simulated EEG time-series for two different values of
cortico-thalamic excitation (vse). Top row: vge = 2.2mV s, for which the EEG
displays ongoing delta oscillations. Bottom row: vse = 4.4 mV s, for which the
EEG displays 3-Hz spike-wave-discharges. In both simulations the afferent
noise-level was set to zero (o, = 0). (B) Bifurcation diagram of the
deterministic model for varying vse. Steady state values of ¢¢ are indicated
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by the thin curve. Minimal and maximal values of ¢, of periodic solutions are
indicated by the thick curves. The steady state is stable up to vge & 2mV's
where a Hopf bifurcation occurs and a stable periodic solution appears. At
vse ~ 4.3mV s the waveform shows an inflection point (see main text for
details). The vertical lines correspond to the values vse = 2.2 mV s and

vse = 4.4mV s.

V in the active state of the thalamus—either by fluctuations or by
interaction with reticular cells—is the origin of the spike.

From these simulations we deduce three conditions for spikes
to appear in the EEG. First, the relay cells should be in the active
phase. Otherwise any fluctuation in V; is ineffective as it is too
negative so that their mean firing rate Q; = S(V;) does not fluc-
tuate. So we see that dQ,/dV i.e., the excitability of the relay cells,
should be high. This is satisfied only during the active state of
the thalamus. Second, at the beginning of the active phase, the
mean afferent input dominates the drive of the relay cells, while
at the end, the reticular cells exert their inhibition. In between,
when dQ,/dt is small, fluctuations can appear in their firing rate
Q. Third, and similar to the first condition, the pyramidal cells

should be sufficiently active. Indeed, also fluctuations in the wave-
form of the pyramidal cells should be visible in their firing rate Q,.
The second condition informs us about the timing of the spikes.
In the linear approximation, the time constants of the pyrami-
dal cells and the cortical field are 1/a 4+ 1/ and 2/y, respectively.
Thus, taking into account the thalamo-cortical delay t, fluctua-
tions in V in the active state of the thalamus appear about T +
1/aa+1/B +2/y ~ 85 ms later in the EEG. This argument is
essentially the same as given in (Robinson et al., 2002) for estimat-
ing the period of petit-mal cycles. This limits the appearance of
spikes to the second quarter of the delta cycle, i.e., in particular on
the downslopes of the delta oscillations, in reasonable agreement
with the experimental findings (see Figure 5B).
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To understand the timing and nature of the spikes in more
detail, we consider a deterministic perturbation impinging on
relay cells of the form ¢(t) = vy, @, + A8(¢ — ty), where ty ranges
from 0 to the period Tof the delta oscillation. If A is sufficiently
large and tj is in the right temporal window, —¢,, that is, the
EEG, exhibits a positive deflection, i.e., a spike (see Figure 6C).
Choosing t in the beginning of the positive feedback phase of
the thalamus, negative A merely delays the increase in ¢, as the
potential V; drops the relay cells exert almost no influence on the
pyramidal neurons. Here, sufficiently large positive A leads to an
initially faster increase in ¢, followed by a decrease as the delta
oscillation lags behind, resulting in a spike. In the middle of the
positive feedback phase, positive A advances the increase of ¢, and
does not lead to spikes, while negative A slows down its increase as
the input is temporally weaker and if A is sufficiently large, leads
to a spike. Finally, choosing #y near the end of the positive state
of the thalamus, negative A reduces the already decreasing input
even faster so that no spikes occur. Positive A can induce a spike
if strong enough to increase ¢,. Note that the first and third parts
of the active thalamic state have a much smaller duration com-
pared to the middle part. Figure 6D shows which values of #; and
A result in a spike (the black regions). For large positive A this is
at the beginning and end of the active phase, but their temporal
window is narrow. For negative A, the temporal window is wider
and smaller absolute amplitudes lead to spikes. These regions are
consistent with the above description and show that negative per-
turbations are most likey to result in spikes that are observable in
the EEG.

RELATION TO SPIKE-WAVE DISCHARGES

In NCSE, besides DRDA, SWDs can often be observed (Ellis,
1978; Granner, 1994; Brenner, 2004; Tay et al., 2006). In the
currently used model, SWDs are generated for higher values of
cortico-thalamic excitation levels v, as illustrated in Figure 7A.
To be more specific, in (Breakspear et al., 2006) the authors
demonstrate that SWDs emerge through an inflection point. In
Figure 7B the bifurcation diagram from (Breakspear et al., 2006)
is replicated. It shows the emergence of delta oscillations through
a supercritical Hopf bifurcation for v & 2mV s and the emer-
gence of the inflection point for vs, ~ 4.3 mV s leading to 3 Hz
SWDs. In (Breakspear et al., 2006), the SWDs were used as a
model for generalized absence seizures. In the case of DRDA
with intermittent spikes during NCSE, the spikes are the result of
thalamo-cortical filtering of afferent stochastic fluctuations, while
in the case of SWDs, the spikes are intrinsically generated within
the thalamo-cortical system and are integrated into one (patho-
logical) waveform. We thus may interpret the intermittent spikes
as a stochastic precursor of genuine SWDs. Moreover, this suggests
that SWDs during NCSE and generalized absence seizures arise
through similar mechanisms.

DISCUSSION

In this study we have verified the prediction of a computational
model of the thalamo-cortical system that the epileptic spikes
that can be observed in the EEG of patients during NCSE (Ellis,
1978; Granner, 1994; Uthman and Bearden, 2008) are locked to
the phases of the background delta oscillations using EEG data

from a single patient. We subsequently used the model to uncover
the underlying physiological mechanisms. It is suggested that the
spikes originate from inhibitory stochastic fluctuations impinging
on thalamo-cortical relay cells, which are transmitted to cortex
and observed in the EEG. In particular, although the emergence,
morphology, and phase-relationship of the spikes to delta oscil-
lations are shaped by the thalamo-cortical system, it does not
generate the spikes intrinsically. The observed phase-locking is
a consequence of the fact that relay neurons are excitable only
during a narrow temporal window of the delta cycle.

In Phase-locking of epileptic spikes, Physiological mecha-
nism, and Relation to spike-wave discharges we have shown that
when the strength of cortico-thalamic excitation is increased,
phase-locking becomes stronger and the stochastic spikes deform
smoothly into deterministic spikes, which separate the spike and
wave of 3Hz SWDs. In this sense, the spikes observed dur-
ing NCSE can thus be interpreted as stochastic precursors of
SWDs, where the strength of phase-coherence reflects how near
the thalamo-cortical system is in generating SWDs. Since these
latter are generally interpreted in the context of generalized
absence seizures (Robinson et al., 2002; Suffczynski et al., 2004;
Breakspear et al., 2006; Rodrigues et al., 2006, 2009; Kim et al.,
2009; Marten et al., 2009) we speculate that the SWDs observed
during NCSE and generalized absence seizures might share a
common mechanism.

The modeling conducted in the present study makes a num-
ber of predictions that can be verified experimentally. First, as we
have seen in Diffuse rhythmic delta activity it is suggested that the
phase-coherence and phase-angle between the spikes and delta
oscillations increase and decrease, respectively, as the thalamo-
cortical system progresses in the direction of generating SWDs. A
direct test of this prediction requires EEG recordings of patients in
NCSE that show a gradual transition between DRDA with inter-
mittent spikes and SWDs. Second, in Physiological mechanism
we have seen that the epileptic spikes can be observed in cortical
pyramidal neurons as well as in neurons within thalamo-cortical
relay nuclei. Such a simultaneous involvement of cortex and tha-
lamus has already been demonstrated during generalized SWDs
(see (McCormick and Contreras, 2001) for a review). Moreover,
they can be observed in thalamo-cortical relay nuclei before they
become apparent in cortical EEG recordings, something that has
already been observed in the WAG/Rij rat model of generalized
SWDs (Inoue et al., 1993) and investigated using a detailed bio-
physical model of the thalamo-cortical system (Destexhe, 1998).
Finally, we have suggested that the thalamo-cortical mechanisms
underlying NCSE and generalized absence seizures might be sim-
ilar. If this is true, a third prediction of the model is that the
rhythmic delta activity observable during generalized absence
seizures, especially in children (Lee and Kirby, 1988) might con-
tain phase-locked spikes. Verification of these predictions allows
one to determine to what extent the model captures the key
physiological mechanisms involved.

There are a number of possible directions for future research
that seem promising. First, following previous modeling stud-
ies (Breakspear et al., 2006; Rodrigues et al., 2006, 2009; Marten
et al.,, 2009) epileptiform activity was generated by increasing the
cortical-thalamic excitation-level. The physiological basis for this
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choice is debatable and it cannot be excluded that other parame-
ters also play a role. Thus, a possible future direction of research
is a systematic investigation of parameter variations that lead to
epileptiform activity. A second possible direction of research is
the incorporation of physiological mechanisms that are suspected
to underly neuronal damage following prolonged seizure activity
(Sankar et al., 1998; Druga et al., 2001). In this way, hypothet-
ical mechanisms derived from recordings in animal models of
NCSE can be analyzed quantitatively and allow the formulation
of novel predictions. Third, to increase the relevance of the cur-
rent study to clinical practice, the mechanisms responsable for
the relative successfulness of anti-epileptic agents (Claassen et al.,
2002) might be investigated by incorporating their pharmaco-
logical action into the model, similarly as in Steyn-Ross et al.
(2004); Bojak and Liley (2005); Liley and Bojak (2005); Hutt and
Longtin (2010); Hindriks and van Putten (2012) in the context
of modeling the action of general anaesthetic agents. Such an
investigation might point to currently unknown mechanisms by
which the thalamo-cortical system can progress into epileptiform
activity.
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