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Harm avoidance (HA) and novelty seeking (NS) are temperament dimensions defined
by Temperament and Character Inventory (TCI), respectively, reflecting a heritable bias
for intense response to aversive stimuli or for excitement in response to novel stimuli.
High HA is regarded as a risk factor for major depressive disorder and anxiety disorder.
In contrast, higher NS is linked to increased risk for substance abuse and pathological
gambling disorder. A growing body of evidence suggests that patients with these
disorders show abnormality in the power of slow oscillations of resting-state brain activity.
It is particularly interesting that previous studies have demonstrated that resting state
activities in medial prefrontal cortex (MPFC) are associated with HA or NS scores,
although the relation between the power of resting state slow oscillations and these
temperament dimensions remains poorly elucidated. This preliminary study investigated
the biological bases of these temperament traits by particularly addressing the resting
state low-frequency fluctuations in MPFC. Regional hemodynamic changes in channels
covering MPFC during 5-min resting states were measured from 22 healthy participants
using near-infrared spectroscopy (NIRS). These data were used for correlation analyses.
Results show that the power of slow oscillations during resting state around the dorsal
part of MPFC is negatively correlated with the HA score. In contrast, NS was positively
correlated with the power of resting state slow oscillations around the ventral part of
MPFC. These results suggest that the powers of slow oscillation at rest in dorsal or ventral
MPFC, respectively, reflect the degrees of HA and NS. This exploratory study therefore
uncovers novel neural bases of HA and NS. We discuss a neural mechanism underlying
aversion-related and reward-related processing based on results obtained from this
study.

Keywords: low-frequency fluctuations, resting state, medial prefrontal cortex (MPFC), personality, reward,

aversion, harm avoidance, novelty seeking

INTRODUCTION
Temperament and character are the basic elements of person-
ality that vary among individuals. In contrast to character,
which is strongly influenced by experiential factors, temperament
is probably more biologically based and stable across a per-
son’s life span. Harm avoidance (HA) and novelty seeking (NS)
are temperament dimensions defined by the Temperament and
Character Inventory (TCI), reflecting a heritable bias for respond-
ing intensely to aversive stimuli or for excitement in response
to novel stimuli, respectively, (Cloninger, 1987; Cloninger et al.,
1993). It is particularly interesting that extreme expression on
these temperaments is associated with vulnerability to psychi-
atric disorders (Richter and Brandstrom, 2009). Increased levels

of HA are thought to play a role as a risk factor for development
of depression (Joffe et al., 1993; Richter et al., 2000; Farmer et al.,
2003; Abrams et al., 2004; Smith et al., 2005; Celikel et al., 2009;
Quilty et al., 2010) and anxiety disorders (Jylha and Isometsa,
2006; Mertol and Alkin, 2012). In contrast, a high level of NS
is associated with increased risk of exhibiting substance abuse
(Cloninger et al., 1988; Gerra et al., 2003) and pathological
gambling disorder (Won Kim and Grant, 2001). Therefore, it
is important to characterize the biological bases of these tem-
perament traits widely, not only in terms of psychology but of
psychiatry.

Neurally, HA and NS are known to be associated with rest-
ing state activities in various brain regions including prefrontal
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cortex (PFC). Positron-emission tomography (PET) reports have
described that medial PFC (MPFC) glucose metabolism during
resting state is negatively correlated with the HA score (Youn
et al., 2002; Hakamata et al., 2006, 2009). Studies measuring cere-
bral blood flow (Sugiura et al., 2000; O’gorman et al., 2006) also
tend to show negative correlation between HA score and activi-
ties within frontal regions including MPFC. Functional magnetic
resonance imaging (fMRI) studies have demonstrated that func-
tional connectivity between MPFC and amygdala is negatively
correlated with the HA score (Li et al., 2012). In contrast, only
a few studies have currently addressed the neural characteris-
tics of NS trait from the perspective of resting-state activity. A
single photon emission computed tomography (SPECT) study
demonstrated that the resting state cerebral blood flow in ante-
rior cingulate and insula are positively correlated with the NS
score (Sugiura et al., 2000). Youn and colleagues reported that
the NS score is positively associated with the glucose metabolic
rate in the right PFC including MPFC (Youn et al., 2002). Taken
together, resting state brain activity within MPFC is apparently
an important neural basis underlying the temperament traits: HA
and NS.

In recent years, interest in the brain’s synchronous slow oscilla-
tions during a resting state has increased immensely, particularly
in the field of psychiatry. Slow oscillations have been observed
using measurements of different types, fMRI (Biswal et al., 1995;
Fransson, 2006; Chepenik et al., 2010) and electroencephalogra-
phy (Horovitz et al., 2008; Helps et al., 2010; Broyd et al., 2011;
EEG). Although the mechanisms underlying the slow oscillations
are not fully understood, slow oscillations of the fMRI blood oxy-
genation level-dependent (BOLD) signal are known to correlate
with local field potentials (LFPs) in a broad frequency range (1–
100 Hz) (He et al., 2008; Scholvinck et al., 2010; Pan et al., 2011,
2013; Wang et al., 2012b). Moreover, slow oscillations reportedly
modulate higher-frequency activity (Canolty and Knight, 2010;
Wang et al., 2012b; Valencia et al., 2013). It is particularly interest-
ing that the slow oscillations have been used to identify the neural
characteristics of psychiatric disorders such as major depression
disorder (Wang et al., 2012a; Fan et al., 2013; Liu et al., 2013), anx-
iety disorders (Yin et al., 2011; Hou et al., 2012; Bing et al., 2013),
and substance abuse (Jiang et al., 2011). Considering that HA and
NS are reported as risk factors for these disorders, it would be
interesting to address the question of whether these temperament
traits correlate to the slow oscillation activities at rest. However,
this question remains to be answered.

This preliminary study was undertaken to characterize the
neural bases of temperament dimensions (i.e., HA and NS) by
particularly addressing resting state low-frequency fluctuations
using near-infrared spectroscopy (NIRS). This non-invasive tech-
nique uses near-infrared light to evaluate spatiotemporal char-
acteristics of brain functions near the brain surface. As with
fMRI and EEG, NIRS enables the detection of spontaneous slow
oscillations in oxygenated hemoglobin (oxy-Hb) (Obrig et al.,
2000). Based on earlier studies described above, we specifically
focused on the examination of MPFC resting state activity. It
is noteworthy that MPFC is characterized by large amplitudes
of spontaneous slow oscillations during a resting state (Raichle
et al., 2001; Fransson, 2005; Zou et al., 2008). TCI (Cloninger

et al., 1993) was used to assess HA and NS temperament traits.
We examined whether HA or NS is related with the power of
resting-state slow oscillations in the MPFC.

METHOD
PARTICIPANTS
Twenty two healthy volunteer participants (12 males; age range =
21–27 years, mean age = 22.7 years) were recruited from
Hiroshima University. All participants were right-handed, with
normal or corrected-to-normal vision. All were free of neurolog-
ical and psychiatric disorders. To control possible confounding
factors of brain activity (Duncan and Northoff, 2012), partici-
pants who were habitual drinkers or taking medication were not
recruited. Participants were not permitted to smoke tobacco from
3 h before the experiment started. Written informed consent was
obtained from each participant before the investigation, in line
with a protocol approved by the Research Ethics Committee of
Hiroshima University. Each participant was paid a small fee for
participating.

SELF-REPORT MEASURES
Temperament traits including HA and NS were quantified using
the TCI (Cloninger et al., 1993). The TCI is a 240-item ques-
tionnaire that assumes a human personality consisting of four
temperament and three character dimensions. The temperament
dimensions include HA, NS, reward dependence, and persistence.
The character dimensions include self-directedness, cooperative-
ness, and self-transcendence. In this study, the measures of HA
and NS were particularly addressed.

RESTING STATES
After NIRS probe placement, participants were seated on a com-
fortable chair facing a computer screen in a dark shielded room.
During recording, a chin rest was used to help participants main-
tain the head position. Participants performed counterbalanced
resting eyes-closed (EC) and eyes-open (EO) baseline periods of
5 min each. Each participant was instructed to relax and allow the
mind to disengage during these periods. During the EO resting
state, participants were asked to gaze with fixation at a cross pre-
sented at the center of the computer screen, but were allowed
to blink normally. Because the EC and EO resting states were
thought to reflect baseline brain activity of different types (Marx
et al., 2004; Barry et al., 2009; Yan et al., 2009), we included rest-
ing states of these two types in the present study. After each type
of resting state measurement, participants were asked to fill out
a questionnaire that included the question: “Did you fall asleep
during the resting state scan?” No participant reported that they
had fallen asleep during resting state recordings.

NIRS DATA ACQUISITIONS
Relative changes in the concentration of oxy-Hb and deoxy-
Hb were measured using a multichannel NIRS imaging system
(FOIRE-3000; Shimadzu Corp., Kyoto, Japan) with three wave-
lengths (780, 805, and 830 nm) of infrared light based on Matcher
et al. (1995). The data sampling time was 115 ms. The source–
detector probes were placed in fronto-temporal regions. The
probe set was mounted on a cap for fixation (Figure 1B). The
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FIGURE 1 | (A) Approximate location of the NIRS channel positions in MNI space. The channel number shown in yellow denotes channels of interest for this
study, where (B) shows the NIRS probe position.

lower frontal probes were positioned along the Fp1–Fp2 line
according to the international 10–20 system used for electroen-
cephalography. The distance between pairs of source–detector
probes was set at 3 cm. Each measuring area between the pairs
of source–detector probes was defined as a channel. It is inferred
that the machine, with source–detector spacing of 3 cm, measures
points at 2–3 cm depth from the scalp [i.e., measurements are
taken from the surface of the cerebral cortex; Hock et al. (1997);
Toronov et al. (2001); Okada and Delpy (2003a,b)]. Because the
exact optical path length is unknown, the unit used to mea-
sure these values is the molar concentration multiplied by length
(mM•cm). The 43 measuring points were labeled as ch1–ch43
(see Figure 1A). Of 43 channels, 15 channels in MPFC regions
(ch3, ch4, ch5, ch9, ch10, ch17, ch18, ch19, ch25, ch26, ch32,
ch33, ch34, ch40, ch41) were used in correlation analyses (see
below) for reasons described in the Introduction. Because of a
technical problem, data of three channels (ch25, ch28, and ch41)
from eight participants failed to record a signal. Unless otherwise
indicated, 22 participants’ data were used. Three-dimensional
locations of the NIRS probe were measured using a Fastrak
System (TX-2; Polhemus, USA). Using the MATLAB toolbox
NFRI functions (http://www.jichi.ac.jp/brainlab/tools.html), sta-
tistical results for each channel were shown for the surface of a
standardized brain (Singh et al., 2005).

NIRS ANALYSIS
The NIRS data analysis was conducted using software (MATLAB
8.0; The MathWorks Inc., Natick, MA, USA). Resting state oxy-
Hb data were filtered using a low-pass filter of 0.4 Hz. The linear
trend caused by drift was removed (Tachtsidis et al., 2004). A Fast
Fourier Transform (FFT) was performed on oxy-Hb data EC and
EO resting state data. The Welch technique with a Hanning win-
dow of 1024 sample points (117.76 s sliding window) and an over-
lap of 512 points was used. Power spectral density (mM•cm2/Hz)
was calculated for each channel over the range of 0.02–0.15 Hz.
The Welch technique (Welch, 1967) involves sectioning the time-
series data into many sub-sections and converting them to a
modified estimate of the spectral density before averaging the
signals of the sections. Subsequently, the band-limited power in
the following two frequency bands was calculated based on pre-
vious studies (Obrig et al., 2000; Tachtsidis et al., 2004; Näsi
et al., 2011; Pierro et al., 2012): very low-frequency oscilla-
tions (VLFO; 0.02–0.04 Hz) and low-frequency oscillations (LFO;

0.04–0.15 Hz). The VLFO and LFO are lower frequency ranges
known to be differentiated from other oscillatory phenomena
such as eye blinking, heart beat, and respiratory cycles (Obrig
et al., 2000; Aminoff, 2012; Pierro et al., 2012; Sassaroli et al.,
2012; Li et al., 2012).

CORRELATION ANALYSIS
To investigate the relations between the temperament traits and
resting state activity derived from 15 channels covering MPFC,
we performed separate correlation analyses for each combina-
tion among temperament traits (HA, NS), different frequency
band (VLFO, LFO), and resting states of two types (EC, EO).
Before calculating Pearson correlation coefficients, outliers of
each datum were excluded from the correlation analysis using an
upper limit of the mean ± 3 SD of the participants’ data. For cases
in which there were outliers for Pearson’s correlation analysis, we
also calculated Spearman’s rank correlation coefficient, which is
insensitive to outliers, using all participants’ data. In both cor-
relation analyses, Benjamini and Hochberg (BH) false discovery
rate (FDR) (Benjamini and Hochberg, 1995) was applied to avoid
an increase in false positives for the 15 channels. A bootstrap
procedure (Efron and Tibshirani, 1986) with n = 1000 resamples
was used to establish 95% confidence intervals (CI) around the r
value.

RESULTS
SELF-REPORT DATA
The mean scores of HA and NS were, respectively, 51.41 (SD =
7.48, range = 35–65) and 48.73 (SD = 7.03, range = 36–63). No
significant correlation was found between the HA and NS score
(r = −0.37, p = 0.09, CI = –0.78–0.13).

RESTING STATE DATA
Resting state power spectrum density
Table 1 presents the averaged power across all NIRS channels for
each resting-state condition (EC and EO) and for each frequency
band (VLFO and LFO). The mean VLFO power of the EC resting
state was 0.0005 mM•cm2/Hz (SD = 0.0002). That of the EO rest-
ing state was 0.0007 mM•cm2/Hz (SD = 0.0006). The mean LFO
power of the EC resting state was 0.00008 mM•cm2/Hz (SD =
0.00004). That of the EO resting state was 0.0001 mM•cm2/Hz
(SD = 0.00006). In both frequency bands, the EO resting state
showed significantly greater power than the EC resting state
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Table 1 | Summary of averaged power (mM•cm2/Hz) across all NIRS

channels for each resting state condition (EC and EO) and for each

frequency band (VLFO and LFO).

EC EO

VLFO M 0.00050 0.00070

(SD) (0.00020) (0.00060)

LFO M 0.00008 0.00010

(SD) (0.00004) (0.00006)

M, mean; SD, standard deviation; EC, eyes-closed resting state; EO, eyes-

open resting state; VLFO, very low-frequency oscillation; LFO, low-frequency

oscillation.

did [VLFO, t(21) = 2.15, p = 0.04; LFO, t(21) = 2.98, p = 0.007].
These results resemble those reported from earlier studies (Obrig
et al., 2000; Tachtsidis et al., 2004; Yan et al., 2009).

These resting state data reported in this manuscript have been
published previously (Nakao et al., 2013) and were included as
part of a larger data collection. Nakao et al. (2013) reported the
results for relations among the power of resting state slow oscil-
lations, early life stress, and frontal activation during decision
making tasks. The present manuscript describes a specific exam-
ination of the relations between the power of resting state slow
oscillations and temperament traits (HA or NS).

Correlation between resting state and temperament scores
Figure 2A presents some correlation results between the powers
of VLFO during EC resting state and the HA score. The power
of VLFO at right dorsal MPFC (ch9, Brodmann area: BA9) was
negatively correlated with the HA score (Pearson r = −0.61, FDR
adjusted p < 0.05, CI = –0.80 to –0.34, N = 21; Spearman rs = –
0.71, FDR adjusted p < 0.01 CI = –0.88 to –0.41, N = 22). The
power of VLFO or LFO during EC or EO resting state in other
channels showed no significant correlation with the HA score.

Figure 2B presents the correlation results between the powers
of LFO during EO resting state and NS score. The powers of LFO
at bilateral ventral MPFC (ch40, BA10; ch41 BA10) were posi-
tively correlated with the NS score (ch40, Pearson r = 0.64, FDR
adjusted p < 0.05, CI = 0.33–0.85, N = 21; Spearman rs = 0.58,
FDR adjusted p < 0.07 CI = 0.19–0.79, N = 22; ch41, Pearson
r = 0.62, FDR adjusted p < 0.05, CI = 0.21–0.90, N = 14). The
power of VLFO or LFO during EC or EO resting state in other
channels showed no significant correlation with NS score.

DISCUSSION
This study was undertaken to investigate the relations between the
power of slow oscillation during resting state and HA or NS. As
Figure 2 shows, slow oscillations during resting state at the dorsal
MPFC were negatively correlated with the HA score. In contrast,
NS was correlated positively with resting-state slow oscillations
around the ventral MPFC. These results provide new insights
into the neural bases of HA or NS by particularly addressing
low-frequency fluctuations.

Previous reports have described that HA is associated with
decreased resting state cerebral blood flow (Sugiura et al., 2000;
O’gorman et al., 2006) within frontal regions including dorsal

MPFC. Although our index of resting state brain activity (i.e.,
the power of NIRS oxy-Hb slow oscillations) differed from those
earlier studies, our results were consistent with those in that
HA was found to be associated with the attenuated resting state
activity in the dorsal regions of MPFC (Figure 2A). In contrast,
our results showed that NS is associated with amplified resting
state activation within ventral regions of the MPFC (Figure 2B).
These results are consistent with those of previous studies which
reported that the NS was associated with increased resting state
glucose metabolism in the prefrontal regions including ventral
MPFC (Youn et al., 2002). Consequently, these exploratory data
provide new evidence that the neural bases of HA or NS can
be assessed by low-frequency fluctuations during a resting state
measured by NIRS, in addition to other indexes such as the glu-
cose metabolism and cerebral blood flow. It would be interesting
to investigate the relations among NIRS low frequency fluctua-
tions and other measurements of brain activity (e.g., the glucose
metabolism and cerebral blood flow) in terms of neural bases of
temperament traits.

Considering our finding about the relation between HA and
the power of resting state slow oscillation, resting state activity
in dorsal MPFC might be related to aversion-related process-
ing. Indeed, dorsal MPFC is known as a part of neural network
activated by aversive stimuli (Hayes and Northoff, 2011, 2012).
The dorsal MPFC is reported to serve an important role in sus-
taining fear response (Vidal-Gonzalez et al., 2006; Laurent and
Westbrook, 2009; Furlong et al., 2010; Robinson et al., 2012).
Laurent and Westbrook (2009) demonstrated that inactivation
of the rat’s paralimbic neurons, which are thought to have sim-
ilar function with human dorsal MPFC in fear conditioning
(Milad et al., 2007, 2009; Robinson et al., 2012), prevents fear
response to conditioned aversive stimulus. In addition, Vidal-
Gonzalez et al. (2006) demonstrated that microstimulation of
that region increased fear response. Robinson et al. (2012) con-
ducted a human fMRI study that showed that the functional
connectivity between dorsal MPFC and amygdala was increased
during the processing of fearful faces under anxious conditions,
and that the amount of coupling was stronger in participants
with higher trait anxiety. Based on this evidence, people with
high HA personality are expected to show sustained fear response
and greater activity in dorsal MPFC under aversive conditions.
It would be interesting to examine whether and how the attenu-
ated resting state activity in dorsal MPFC relates to the enhanced
aversive-stimulus-induced activity in the same region in high HA
people.

Ventral PFC, resting state activity of which correlated posi-
tively with NS, is known as a part of the reward-related net-
work (Liu et al., 2011). The activity of ventral PFC is thought
to represent the expected value of the outcome which guides
reward-based decision making (Hampton and O’Doherty, 2007;
O’doherty, 2007; Nakao et al., 2012). Bermpohl et al. (2008)
revealed that people with high NS showed enhanced ventral
MPFC activity during the expectancy of emotional stimuli. In
the relation with resting state brain activity, Li et al. (2013)
reported that the resting state functional connectivity in the
reward-related network including ventral MPFC was associated
with high impulsivity in decision making (i.e., higher preference
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FIGURE 2 | Schematic figure of correlation results and scatter

plots between the powers of resting state slow oscillations

(mM•cm2/Hz) and (A) HA or (B) NS score. Waveform plots
shown at right are examples of time series data of each
frequency range (VLFO, 0.02–0.04 Hz; LFO, 0.04–0.15 Hz) from

individuals with high or low temperament trait scores. ∗FDR
adjusted P < 0.05; †FDR adjusted P < 0.07; HA, harm avoidance;
NS, novelty seeking; VLFO, very low-frequency oscillation; LFO,
low-frequency oscillation; Ch, channel; r, Pearson’s correlation
coefficient; rs, Spearman’s correlation coefficient.

for an immediate small reward than a larger delayed reward). It is
possible that enhanced activity of ventral MPFC at rest observed
in people with higher NS scores influences the intensity of the
response to rewarding stimuli. Future studies must be undertaken
to elucidate how resting state activity in ventral MPFC influences
reward-based decision making.

Although we used TCI, which was developed to assess the
seven dimensions of the psychobiological model of personality,
another line of personality model exists: the five factor model

(FFM; Costa and Maccrae, 1992). Neuroticism and extroversion
are dimensions of the FFM. These are known to correlate, respec-
tively, with HA and NS (Zuckerman and Cloninger, 1996; De
Fruyt et al., 2000; Sher et al., 2000). Like HA, neuroticism is
known to be associated with depression and anxiety disorders
(Boyce et al., 1991; Rosellini and Brown, 2011). Similarly to NS, a
higher extroversion score is associated with alcohol abuse (Flory
et al., 2002; Merenäkk et al., 2003). Kunisato et al. (2011) and
Wei et al. (2012) examined the relation between resting-state slow
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oscillation and neuroticism or extroversion using fMRI. They
reported that extroversion correlated positively with the ampli-
tude of slow oscillation in the prefrontal regions including ventral
MPFC, which are similar to our results for NS. However, they
reported no significant correlation between neuroticism and pre-
frontal regions, which is inconsistent with our results for HA.
De Fruyt et al. (2000) reported that 23–51% of the variance
of the TCI scales is explainable using the FFM, and concluded
that although a substantial overlap exists between the TCI and
the FFM, these two cannot be regarded as an equivalent tool to
assess individual differences of personality. It would be interest-
ing to examine the differences and similarities between the two
personality models in terms of resting state brain activity.

Despite the importance of our data for revealing the neural
bases of temperament traits, these findings leave several ques-
tions unresolved. First, although NIRS is expected to be useful
to assess the bases of HA traits, it was impossible to address the
question of how changes of the frontal power of slow oscillation in
relation with HA traits are associated with the resting-state activ-
ity in the amygdala, where functional connectivity to the MPFC
regions was reported previously to correlate to HA (Li et al.,
2012; Wang et al., 2013). Additional fMRI studies are expected
to be useful to provide further integrative understanding about
the neural basis of temperament traits. Second, our data demon-
strate that the HA correlated strongly with VLFO power during
the EC resting state (Figure 2A), whereas the NS score correlated
strongly with LFO power during the EO resting state (Figure 2B).
However, although several studies addressed the differences in the
frequencies of slow oscillation (Schroeter et al., 2004; Harrison
et al., 2008) and the resting state eye conditions (Yang et al., 2007;
Qin et al., 2013; Tan et al., 2013), the characteristics in brain
function related to these frequencies/conditions remain poorly
understood. Further studies investigating the characteristics of
VLFO and LFO, and those of EC and EO resting states in the
brain function are expected to contribute to the elucidation of
the neural bases of temperament traits. Third, we did not record
physiological data of eye blink, heat rate, or respiratory cycles
because the ranges of slow oscillation can be differentiated from
these artifacts (Obrig et al., 2000; Aminoff, 2012; Li et al., 2012;
Pierro et al., 2012; Sassaroli et al., 2012). However, recording these
artifact data and careful assessment of the pollution on cortical
activity data are preferred for future study.

CONCLUSION
This study was undertaken to investigate the relations between
temperament dimensions (i.e., HA and NS) and the power of
slow oscillation in a resting state. We demonstrated a unique
relation between them in that HA and NS are oppositely asso-
ciated, respectively, with the power of slow oscillations in dif-
ferent subregions in the MPFC. These results suggest that the
degrees of HA and NS might be predicted by the power of low-
frequency fluctuations at rest. Further research on this matter
must be conducted using data of more participants. Considering
that both slow oscillation activity and temperament traits are
involved in the pathophysiology of various psychiatric disor-
ders, the results of this study are expected to be of great
interest in the field not only of personality research but also

that of psychiatric research. It would therefore be interesting
to extend this study to the assessment of patients with such
disorders. Beyond elucidating the neural bases of the tempera-
ment traits, this line of investigation is expected to contribute
to improvement of our understanding of resting-state brain
activity.
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