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Previously we found that Parkinson’s disease (PD) patients are impaired in
procedural-based category learning when category membership is defined by a nonlinear
relationship between stimulus dimensions, but these same patients are normal when the
rule is defined by a linear relationship (Maddox and Filoteo, 2001; Filoteo et al., 2005a,b).
We suggested that PD patients’ impairment was due to a deficit in recruiting “striatal
units” to represent complex nonlinear rules. In the present study, we further examined the
nature of PD patients’ procedural-based deficit in two experiments designed to examine
the impact of (1) the number of categories, and (2) category discontinuity on learning.
Results indicated that PD patients were impaired only under discontinuous category
conditions but were normal when the number of categories was increased from two to
four. The lack of impairment in the four-category condition suggests normal integrity of
striatal medium spiny cells involved in procedural-based category learning. In contrast, and
consistent with our previous observation of a nonlinear deficit, the finding that PD patients
were impaired in the discontinuous condition suggests that these patients are impaired
when they have to associate perceptually distinct exemplars with the same category.
Theoretically, this deficit might be related to dysfunctional communication among medium
spiny neurons within the striatum, particularly given that these are cholinergic neurons and
a cholinergic deficiency could underlie some of PD patients’ cognitive impairment.
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INTRODUCTION
It is now widely accepted that there are multiple category learn-
ing systems (Ashby et al., 1998, 2010; Smith et al., 1998, 2012;
Ashby and Maddox, 2005, 2011) and that different neural systems
play different roles in these systems (Knowlton et al., 1994, 1996;
Poldrack et al., 1999; Ashby and Ell, 2001; Filoteo et al., 2001a,b,
2005a,b; Patalano et al., 2001; Keri, 2003; Reber et al., 2003;
Shohamy et al., 2004a,b; Maddox et al., 2005a,b; Cincotta and
Seger, 2007; Nomura et al., 2007; Price et al., 2009; Waldschmidt
and Ashby, 2011). One of the more interesting, and potentially
important lines of research in this area is the study of how
some categories can be acquired without conscious awareness.
This phenomenon, often referred to as procedural-based category
learning, occurs when participants learn complex categorization
rules, and despite highly accurate learning, they are unable to
describe explicitly why any given exemplar belongs to a specific
category.

The behavioral mechanisms of procedural-based category
learning have received much attention in several recent stud-
ies with normal individuals (Gluck et al., 2002; Maddox and
Ashby, 2004; Ashby and Maddox, 2005, 2011; Ashby and O’Brien,
2005). These studies have demonstrated that this form of category

learning has distinct operating characteristics that differentiate it
from other types of category learning processes, such as explicit
category learning (Ashby et al., 2002, 2003a,b; Maddox et al.,
2003, 2004a,b; Maddox and Ing, 2005; Worthy et al., 2013). For
example, the perceptual similarity among exemplars has to occur
along a continuum within each category for normal procedural-
based learning to occur, whereas this is not the case for explicit
category learning (Maddox et al., 2005a,b, 2007). Similarly, the
number of categories to be learned does not differentially impact
long-run accuracy in procedural-based category learning, but
increasing the number of categories impedes the learning of
explicit category rules (Maddox et al., 2004a,b).

Much has also been learned about the underlying neurobi-
ology of implicit or procedural-based category learning by the
functional imaging of normal individuals or by studying patients
with neurological disorders. For example, fMRI studies with
normal participants have identified the striatum as an impor-
tant brain region for procedural-based category learning (Filoteo
et al., 2006; Cincotta and Seger, 2007; Nomura et al., 2007;
Waldschmidt and Ashby, 2011) and other studies have implicated
midbrain dopamine regions in some implicit category learning
tasks (Aron et al., 2004). Past work with patients with striatal
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dysfunction has also implicated this brain region in implicit forms
of category learning. Knowlton et al. (1996), for example, demon-
strated that patients with Parkinson’s disease (PD) are impaired
in learning probabilistically determined categories, a finding that
has received considerable support in the literature (Shohamy
et al., 2004a,b). Importantly, other patient studies have indicated
that brain structure associated with explicit memory (hippocam-
pus and diencephalon) do not contribute to the same extent to
implicit forms of category learning (Knowlton et al., 1994) or the
long-term retention of procedural-based categories (Filoteo et al.,
2001b).

In our work we have conducted a series of studies designed
to further understand the nature of procedural-based category
learning deficits in patients with PD, and by extension, the role
of the striatum in this process (Maddox and Filoteo, 2001; Ashby
et al., 2003b; Filoteo et al., 2005a). We have primarily used the
perceptual categorization task (Ashby and Gott, 1988) in which
participants view simple two-dimensional stimuli often consist-
ing of a single line that varies in length and orientation (or a
Gabor patch that varies in spatial frequency and orientation; see
Figure 1) and are asked to categorize stimuli into one of two
categories (Category A or B), and then immediately following a
response, feedback is given. The rule that dictates category mem-
bership depends on the nature of the relationship between the two
stimulus dimensions. Figures 2A,B provide examples in which
the optimal rule is linear or nonlinear, respectively. This figure
provides scatter plots of Category A and B stimuli where the x-axis
represents the length of the line (in arbitrary units) and the y-
axis represents the orientation of the line (in arbitrary units).
Closed squares represent stimuli from Category A and open cir-
cles represent stimuli from Category B. Each individual stimulus
has the length value on the x-axis and the orientation value on
the y-axis. The linear rule depicted in Figure 2A is represented
as a linear function and provides an optimal separation of the
Category A and B stimuli, whereas the nonlinear rule in Figure 2B
is represented as a quadratic function that provides an optimal
separation of the Category A and B stimuli. A participant who

FIGURE 1 | Example of a Gabor stimulus used in Experiments 1 and 2.

would adopt the linear rule in Figure 2A or the nonlinear rule
in Figure 2B would maximize long-run accuracy. Note that both
rules are procedural-based category learning rules because it is
very difficult to verbalize either the linear or nonlinear relation-
ship between the two stimulus dimensions when they are not in
the same perceptual units (e.g., length and orientation).

The results of our first study using this paradigm (Maddox and
Filoteo, 2001) found that PD patients were impaired in learning
a categorization rule that was based on a nonlinear relation-
ship between lines that varied in length and orientation, whereas
they were normal in learning a linear rule. Similarly, in our next
study (Ashby et al., 2003a,b) we used a somewhat different task
but again found that PD patients were normal in learning lin-
ear procedural-based rules. Finally, in a third study (Filoteo et al.,
2005a,b) we again examined linear and nonlinear category learn-
ing and found that the patients were impaired in the nonlinear
condition but not in the linear condition. Importantly, task dif-
ficulty could not explain these findings since the more difficult
task (based on the accuracy of the control participants) was the
linear task, on which PD patients were normal. This series of
studies suggest that PD patients are impaired in procedural-based
category learning, but only when the rule that dictates category
membership is nonlinear.

A surface-level explanation of our findings is that PD results in
deficits in learning nonlinear procedural based rules, but it does
not impact linear rule learning. Unfortunately this explanation

FIGURE 2 | Scatter-plots depicted examples of (A) a linear rule, and (B)

a nonlinear rule. Note that the scales are in arbitrary units.
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does not provide any insight into the possible mechanisms that
might be driving these findings. To help interpret our past results
we use the neurobiological and theoretical framework provided
by the Striatal Pattern Classifier (SPC) model introduced by
Ashby and colleagues (Ashby and Waldron, 1999). This model
has been found to provide a good accounting of normal partic-
ipants’ response patterns in previous procedural-based category
learning studies (e.g., Ashby and Waldron, 1999; Waldron and
Ashby, 2001; Maddox et al., 2007; for applications to stimulus
identification see Ashby et al., 2001; Maddox, 2001, 2002). The
assumptions of this model are based on the neurobiology pro-
posed to underlie the procedural-based category learning system
in COVIS (Ashby et al., 2001). The SPC model, which is outlined
in detail in Ashby and Waldron (1999), incorporates the knowl-
edge of the many-to-one mapping of visual cortical cells onto cells
in the striatum (Wilson, 1995). The model proposes hypothetical
“striatal units” that are thought to represent the medium spiny
cells in the striatum and provide a low-resolution map of the
perceptual space. During procedural-based category learning the
model assumes that these striatal units become associated with
a category label and learn to associate a response with groups of
cells in visual regions of cortex. It is important to be clear that
the SPC is a computational model that is inspired by what is
known about the neurobiology of the striatum. Because of this
fact, the “striatal units” are hypothetical and could be interpreted
within the language of some other computational model (e.g., as
“prototypes” in a multiple prototype model).

One important finding from the application of the SPC to data
obtained from normal individuals (Ashby and Waldron, 1999)
is that a greater number of striatal units are typically needed to
represent a nonlinear rule as compared to a linear rule. The SPC
is a minimum distance classifier. This is depicted in Figure 3A
in which a linear rule is approximated by one striatal unit rep-
resenting Category A (closed square) and another striatal unit
representing Category B (open circle). In this case a minimum
distance “bound” is learned. Note in Figure 3A that only a sin-
gle unit per category is needed to approximate a linear rule. In
contrast, Figure 3B provides a graphic representation of how stri-
atal units might approximate a nonlinear rule. As can be seen
in the first panel of Figure 3B, a single unit per category does
not provide a good approximation of the optimal nonlinear rule.
However, in Figure 3C the addition of a second striatal unit allows
for a better approximation of the nonlinear rule via the piece-wise
combination of two linear bounds so that two minimum distance
bounds are learned. Thus, the SPC model argues that additional
striatal units are needed to represent nonlinear rules.

This observation raised the interesting possibility that dys-
function in PD within these model-based “striatal units” might
also reflect the pathological manifestations of PD within actual
medium spiny neurons that compose the majority of cells within
the striatum. These cells are the primary input nuclei in the
striatum from the cortex and are part of the direct and indirect
pathways within the basal ganglia. Medium spiny neurons are
thought to be impacted in PD through the dysfunction of their
dendritic spines due to deafferentation effects following the loss of
dopamine cells within the pars compacta of the substantia nigra
(Deutch et al., 2007), although this change might only be reflected

FIGURE 3 | Graphical example of the SPC modeling approach when (A)

one unit per category is applied to a linear condition, (B) one unit per

category is applied to a nonlinear condition, and (C) two units for one

category and one unit for the other category is applied to a nonlinear

condition. Solid line and curves represent the “optimal” rule, whereas the
dashed line and curves represent the partition between categories provided
by the units. Note with the use of additional units for the nonlinear condition
(panel C), the optimal quadratic bound (represented as the solid curve) is
approximated by piecewise linear bounds. In all cases, black squares
represent Category A units and open circles represent Category B units.

functionally in the later stages of the disease (Zaja-Milatovic et al.,
2005). Given the involvement of the medium spiny neurons in
PD, one manner in which this disease could impact the pro-
posed units is that the actual number of functional medium spiny
neurons has diminished in these patients, and because of this,
nonlinear categories that require a greater number of units can no
longer be adequately represented. Thus, procedural-based learn-
ing conditions in which a greater number of units are required
would always place PD patients at a disadvantage. We refer to this
as the “number of units” hypothesis.

An alternative, but somewhat related possibility, is that the
number of functional medium spiny neurons is normal in PD
(at least early in the disease), but somehow these neurons are
unable to communicate in a manner that would enable learn-
ing to occur when a greater number of striatal units is needed
to represent the categories, such as under nonlinear conditions.
That is, the number of functional medium spiny neurons is suffi-
cient to support nonlinear category learning, but impairment in
the ability of these neurons to communicate results in impaired
learning. We refer to this as the “communication among units”
hypothesis. This hypothesis was initially based on the observa-
tion from our previous studies that the learning of nonlinear
rules requires that certain stimuli that are less perceptually sim-
ilar have to be grouped into the same category, whereas certain
stimuli that are more perceptually similar have to be grouped
into different categories. Such communication among medium
spiny neurons would be needed for the striatum to output a
consistent message regarding that category to which a partic-
ular stimulus belongs. That is, unless there were some sort of
co-activation among medium spiny neurons that processed the
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percept of a stimuli belonging to the same category, the output of
these neurons would theoretically send a unique message to other
structures eventually responsible for generating a response (e.g.,
the globus pallidus), and these structures would have to somehow
resolve the fact that different medium spiny cells are signaling that
their representation belongs to the same category. Note that this
would only be the case when multiple units are required to rep-
resent a category, because theoretically, no such resolution would
be required when only single medium spiny neurons (or medium
spiny neurons within close proximity of one another) are needed
to learn, such as under linear conditions.

An important question that needs to be addressed, however,
is what could allow the medium spiny neurons to communi-
cate. One possibility is that cholinergic interneurons that connect
medium spiny neurons within the striatum enable such commu-
nication, and under conditions in which it would be theoretically
beneficial for such cells to communicate (i.e., nonlinear condi-
tions), striatal interneurons are involved in the learning process.
These neurons often referred to as tonically active neurons (or
TANs, for their tonic firing rate at rest) comprise only a small
percentage of neurons in the striatum but recently have been
implicated in processes important to procedural-based category
learning (Ashby et al., 2007; Ashby and Crossley, 2011; Crossley
et al., 2013). Specifically, most studies suggest that these interneu-
rons modulate the input of cortical cells onto striatal medium
spiny neurons by decreasing (or pausing) their activity when a
rewarding stimulus is processed within the striatum, which allows
for increased reinforcement learning (Apicella, 2002; Joshua et al.,
2008; Aosaki et al., 2010). However, another method by which
these interneurons result in learning could be by controlling the
number of potential responses that are selected by the striatum
(Stocco, 2012) and would be more consistent with a broader view
of these interneurons in various aspects of learning (e.g., Apicella,
2007). This proposed process could provide an appropriate mech-
anism by which the striatum is able to link perceptually distinct
stimuli to the same category response. This process is also con-
sistent with other models of basal ganglia function that suggest
a role of the striatum in response selection (Mink, 1996; Stocco,
2012), with reinforcement learning being one aspect of selecting
a response (Bar-Gad et al., 2003; Redgrave et al., 2011) or link-
ing networks within the striatum that are important for learning
(Graybiel et al., 1994). Although the exact effects of interneu-
rons on medium spiny cell function is not completely known and
likely very complex (see Oldenburg and Ding, 2011), these cells
do appear to play an important role in normal striatal function-
ing. Importantly, animal models of PD suggest that the reduction
of dopaminergic projections to the striatum result in abnormal
interneuron activity (Raz et al., 2001; Pisani et al., 2003; Bonsi
et al., 2011).

The purpose of the current study is to examine both the
“number of units” hypothesis and the “communication among
units” hypothesis described above. Experiment 1 examined the
ability of PD patients and normal controls (NC) to learn a
procedural-based task in which there were either four categories
(Four-Category condition) or two categories (Two-Category con-
dition). Figure 4 displays the stimulus distributions for the Four-
and Two-Category conditions. If PD results in a deficit in the

FIGURE 4 | Stimulus distributions for (A) the Four-Category and (B)

Two-Category conditions in Experiment 1. The solid line(s) represent the
optimal rule(s).

number of hypothetical striatal units, then they should demon-
strate greater impairment in the Four-Category condition as com-
pared to the Two-Category condition. In contrast, Experiment
2 examined the “communication among units” hypothesis by
determining the ability of PD patients and NC participants to
learn categories that have either a discontinuous distribution of
stimuli (Discontinuous condition) or a continuous distribution
of stimuli (Continuous condition). Figure 6 displays the stimulus
distributions for the Discontinuous and Continuous conditions.
A finding that PD patients are impaired in the Discontinuous con-
dition relative to the Continuous condition would provide theo-
retical support for the “communication among units” hypothesis
of procedural-based category learning deficits in PD.

GENERAL METHODS
PARTICIPANTS
A total of 41 individuals participated in at least one of the two
experiments: 20 PD patients and 21 NC participants. For the
PD patients, 11 participated in at least one condition in both
experiments and 9 participated in at least one condition in only
one experiment. For the NC participants, 8 participated in at
least one condition in both experiments and 12 participated in
at least one condition in only one experiment. Participants were
randomized to each experiment and in the case of those who
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participated in more than one experiment or in both condi-
tions within an experiment, the order of administration of the
experiments was randomized 1. Participants were tested a min-
imum of 2 months apart between experiments or conditions.
The specific numbers of individuals who participated in the
two experiments are as follows. Experiment 1: Four-Category
Condition, 12 PD patients (8 males and 4 females) and 12 NC
participants (4 males and 8 females). Two-Category Condition,
11 PD patients (5 males and 6 females) and 11 NC participants
(4 males and 7 females). Eight PD patients 8 NC participants
were tested in both the Four-Category and Two-Category condi-
tions. Experiment 2: Discontinuous Condition, 10 PD patients (6
males and 4 females) and 10 NC participants (4 males 6 females);
Continuous Condition, 11 PD patients (8 males and 3 females)
and 11 NC participants (5 males 6 females). Five PD patients
and 7 NC participants were tested in both the Discontinuous and
Continuous conditions.

The patients were recruited from Movement Disorder Clinics
at UCSD and were diagnosed by a board-certified neurologist
with subspecialty training in movement disorders. The diagno-
sis was based on UK Brain Bank Criteria (Hughes et al., 1992).
PD patients were not included in the study if they scored above a
cut-off of 11 on the Geriatric Depression Scale or if they scored
below 130 on the Mattis Dementia Rating Scale (MDRS; Mattis,
1988). For Experiment 1, 14 patients were taking daily L-dopa
medication, 8 were taking a dopamine receptor agonist, 5 were
taking an MAO inhibitor, 5 were taking a COMT inhibitor as
part of their L-dopa preparation, 5 were taking amantadine, and
1 was taking an anticholinergic. For Experiment 2, 14 patients
were taking daily L-dopa medication, 8 were taking a dopamine
receptor agonist, 3 were taking an MAO inhibitor, 6 were taking
a COMT inhibitor as part of their L-dopa preparation, 5 were
taking amantadine, and 1 was taking an anticholinergic.

Tables 1, 3 show the mean age, years of education, scores on
the MDRS for the PD patients and NC participants who par-
ticipated in Experiments 1 and 2, respectively, and the mean
Hoehn and Yahr Rating Scale (HYRS; Hoehn and Yahr, 1967)
score and the length of illness (LOI; years) for the PD patients.
In both experiments, the PD and NC groups did not differ in
age, education, scores on the MDRS, or gender distribution (all
p′s > 0.05).

STIMULI AND STIMULUS GENERATION
In both experiments, the stimuli consisted of a single Gabor
patch (see Figure 1) that varied in orientation and spatial fre-
quency. The stimuli were computer generated and displayed on
a 21′ monitor with 1360 × 1024 resolution. Each Gabor patch
was generated using MATLAB routines from Brainard’s (1997)
Psychophysics Toolbox, and each stimulus was 7 cm in diame-
ter, which subtended a visual angle of about 8.8◦ from a viewing
distance of 45 cm.

Both experiments used the randomization technique of Ashby
and Gott (1988). For each experiment, an equal number of
Category A and Category B stimuli were generated by sampling

1Additional analyses were conducted to determine if the order of administra-
tion of either the experiments or conditions could account for the pattern of
results reported below and it was determined that this was not the case.

randomly from two bivariate normal distributions. Each random
sample (xf, xo) was converted to a stimulus by deriving the fre-
quency, f = 0.0025 + (xf/5000) cycles per pixel, and orientation,
o = 0.36xo degrees. The scaling factors were chosen in an attempt
to equate the salience of frequency and orientation based on our
past experience with these stimuli. Each category distribution is
specified by a mean and a variance on each dimension, and by a
covariance between dimensions. For both category structures it
was always the case that the covariance matrix for Category A was
identical to the covariance matrix for Category B. The categories
differed only in the location of their means.

The exact parameter values for the two experiments are listed
in Tables 2, 4, and the category structures are displayed in
Figures 4, 6. Figure 4A displays the category structures for the
Four-Category condition in Experiment 1. Each filled square
denotes the spatial frequency and spatial orientation of a Gabor
pattern from Category A, each open circle denotes the spatial fre-
quency and spatial orientation of a Gabor pattern from Category
B, each closed diamond denotes the spatial frequency and spatial
orientation of a Gabor pattern from Category C, and each closed
triangle denotes the spatial frequency and spatial orientation of

Table 1 | Demographic characteristics and Mattis Dementia Rating

Scale Scores of the PD patients and NC participants in the

Four-Category and Two-Category Conditions of Experiment 1.

FOUR-CATEGORY CONDITION

Age Education MDRS HYRS LOI

M SD M SD M SD M SD M SD

PD 67.1 7.6 16.5 1.9 139.7 3.1 2.0 0.5 7.3 4.6

NC 66.2 8.8 17.5 1.0 141.0 2.1 – – – –

TWO-CATEGORY CONDITION

Age Education DRS HY LOI

M SD M SD M SD M SD M SD

PD 64.2 7.9 16.3 2.0 140.5 2.5 2.1 0.5 6.3 3.6

NC 66.1 7.4 17.0 1.9 141.0 2.3 – – – –

HY, Hoehn and Yahr Rating Scale score; LOI, Length of Illness.

Table 2 | Category distribution parameter values for Experiment 1.

FOUR-CATEGORY CONDITION

Category Msf Mo SDsf SDo covsf,o

A 0.038 54.0 0.006 10.6 0

B 0.055 84.0 0.006 10.6 0

C 0.055 24.0 0.006 10.6 0

D 0.072 54.0 0.006 10.6 0

TWO-CATEGORY CONDITION

Category Mst Mo SDst SDo covst,o

A1 0.041 54.0 0.006 10.6 0

A2 0.055 79.5 0.006 10.6 0

B2 0.055 28.6 0.006 10.6 0

B2 0.069 54.0 0.006 10.6 0
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Table 3 | Demographic characteristics and Mattis Dementia Rating

Scale Scores of the PD patients and NC participants in the

Discontinuous and Continuous Conditions in Experiment 2.

DISCONTINUOUS CONDITION

Age Education MDRS HYRS LOI

M SD M SD M SD M SD M SD

PD 65.4 6.9 16.0 1.8 138.5 3.3 2.0 0.2 6.8 2.9

NC 66.5 7.8 16.9 1.4 140.0 2.3 – – – –

CONTINUOUS CONDITION

Age Education MDRS HY LOI

M SD M SD M SD M SD M SD

PD 64.8 9.6 16.1 2.3 139.9 2.1 2.1 0.7 6.0 4.7

NC 66.6 7.2 16.3 2.5 141.0 2.5 – – – –

HY, Hoehn and Yahr Rating Scale score; LOI, Length of Illness.

Table 4 | Category distribution parameter values for Experiment 2.

DISCONTINUOUS CONDITION

Category Msf Mo SDsf SDo covsf,o

A1 0.051 31.7 0.002 3.6 0

A2 0.064 54.7 0.002 3.6 0

B1 0.058 20.2 0.002 3.6 0

B2 0.070 42.8 0.002 3.6 0

CONTINUOUS CONDITION

Category Mst Mo SDst SDo covst,o

A1 0.051 31.7 0.002 3.6 0

A2 0.055 39.2 0.002 3.6 0

B1 0.058 20.2 0.002 3.6 0

B2 0.062 27.7 0.002 3.6 0

a Gabor pattern from Category D. Figure 4B displays the cate-
gory structures for the Two-Category condition in Experiment
1, and Figures 6A,B display the Discontinuous and Continuous
conditions in Experiment 2, respectively. For these figures, each
filled square denotes the spatial frequency and spatial orienta-
tion of a Gabor pattern from Category A, while each unfilled
circle denotes the spatial frequency and spatial orientation of a
Gabor pattern from Category B. The solid line(s) in Figures 4, 6
denotes the location of the optimal decision bound(s). The use
of the optimal bound in each of the four experiments maximizes
long-run accuracy. Optimal accuracy in each condition was 95%
given the categories overlapped to some extent, and thus were
probabilistic.

EXPERIMENTAL PROCEDURE
For the Four-Category and Two-Category conditions in
Experiment 1, 600 trials were presented in 6 blocks of 100 trials.
For the Discontinuous and Continuous conditions in Experiment
1, 400 trials were presented and were broken down into 5 blocks
of 80 trials. At the start of each condition, the participants were
told that they were involved in a study that examined their
ability to categorize simple stimuli, that a series of stimuli would

be presented, and that they would be asked to categorize each
as a member of Category A B, C, or D for the Four-Category
condition of Experiment 1, or Category A or B in the Two-
Category condition of Experiment 1, and both conditions in
Experiment 2. They were also told that at the beginning of the
experiment they may feel as though they were guessing, but as
the experiment progressed, their accuracy would likely increase.
Participants indicated their categorization responses by pressing
designated keys on the computer keyboard. For each trial in both
experiments, the stimulus was presented until the participant’s
categorization response was made and feedback was presented
immediately after the response for 1 s that consisted of either the
word “wrong” if their response was incorrect or “correct” if their
response was correct. Once feedback was given, the next trial was
initiated 1 s later.

EXPERIMENT 1: FOUR-CATEGORY vs. TWO-CATEGORY
CONDITIONS
Experiment 1 was designed to examine the “number of units”
hypothesis. In the Four-Category condition, the participant
must learn to assign each stimulus to one of four categories.
Theoretically, each category is represented by a single striatal unit
that is linked to the corresponding response (A, B, C, or D). As can
be seen in Figure 4A, these categories are derived from four clus-
ters of stimuli with different means and standard deviations (see
Table 2). In the Two-Category condition, these same four clusters
of stimuli are again used, but now there are only two categories
given that Category A and B stimuli from the Four-Category con-
dition are collapsed into Category A for the Two-Category condi-
tion, and Category C and D from the Four-Category condition are
collapsed into Category B for the Two-Category condition. Thus,
the exact stimuli are held constant across the two conditions, as
is the nature of the stimuli, the timing of the task trials, and the
nature of feedback. The only thing that varied is the number of
categories.

As noted above, it was anticipated that if PD patients’ deficits
in learning nonlinear rules was due to such rules requiring a
greater number of units to represent nonlinearity (see Figure 3)
and there was a deficiency in the number of units in PD patients,
the “number of units” hypothesis would predict that PD patients
would be differentially impaired in the Four-Category condition
as compared to the Two-Category condition.

RESULTS
Accuracy rates for the Four-Category condition of Experiment 1
are displayed in Figure 5A and were analyzed using a 2 (group:
PD vs. NC) × 6 (blocks 1–6) mixed-design ANOVA. Results
revealed a main effect of block, F(5, 110) = 37.02, p < 0.001, η2

p =
0.63, with both PD and NC participants’ performance improv-
ing across the trials. However, there was no main effect of group,
F(1, 22) = 0.08, p = 0.78, η2

p = 0.00, and no group by block inter-

action, F(5, 110) = 0.35, p = 0.88, η2
p = 0.02. Accuracy rates for

the Two-Category condition are displayed in Figure 5B and were
analyzed using the same ANOVA design. Results indicated a main
effect of block, F(5, 110) = 11.88, p < 0.001, η2

p = 0.37, but no

main effect of group, F(1, 22) = 0.21, p = 0.65, η2
p = 0.00, and no

group by block interaction, F(5, 110) = 1.23, p = 0.30, η2
p = 0.06.
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DISCUSSION
The results of Experiment 1 suggest that PD patients are not
impaired when learning either four or two categories. As can
be seen in Figures 4A,B, participants initially demonstrate a
disadvantage in learning four categories as compared to two cat-
egories, but this is due to the fact that participants are initially
guessing early in learning and chance responding in the four
category condition is 25%, whereas in the two category con-
dition it is 50%. However, as learning progresses, performance
improves in both the Four- and Two-Category conditions and
asymptotes at approximately 80% during the last block of trials.
These findings are consistent with our previous work with healthy
younger adults that showed little impact of category number on
procedural-based category learning (Maddox et al., 2004a,b). The
most important finding, however, is that there was no differ-
ence between PD patients and NC participants in the pattern and
extent of learning in either the Four- or Two-Category conditions.
If we can assume that normal learning in the Four-Category con-
dition required a greater number of functional striatal units, then
these findings do not support the “number of units” hypothesis.

EXPERIMENT 2: DISCONTINUOUS CATEGORY vs.
CONTINUOUS CATEGORY CONDITIONS
The purpose of Experiment 2 was to examine the impact
of within-category discontinuity on procedural-based category

FIGURE 5 | Accuracy rates for PD patients and NC participants (A) Four

Category and (B) Two Category conditions in Experiment 1. (Error bars
are in standard error of the mean).

learning in PD and NC participants. As noted above, we have
found in three past studies that PD patients are not impaired
in learning procedural-based category rules when the rule that
dictates category membership is linear (Ashby et al., 2003a,b;
Filoteo et al., 2005a,b) and our findings from Experiment 1 in
this study provide further support for this observation. As we have
argued above, one aspect of learning nonlinear rules is that partic-
ipants must learn to categorize perceptual dissimilar stimuli into
the same category so that they can activate the same response,
and conversely, participants must learn not to categorize percep-
tually similar stimuli into the same category so that such stimuli
can elicit a different response. This process is thought to occur
through a response selection mechanism that is modulated by
cholinergic interneurons within the striatum by inhibiting com-
peting responses (e.g., Stocco, 2012). If there were a deficiency
in communication among the medium spiny neurons within the
striatum because of poor communication through the interneu-
rons, then learning would be impaired. Again, we refer to this
hypothesis as the “communication among units” hypothesis.

To test this hypothesis, we created a two-category condition in
which a greater number of units would be needed to represent
the stimuli within a single category but the rule was neverthe-
less linear. To do so, we created discontinuous categories by using
two non-overlapping clusters within each category. As can be
seen in Figure 6A, Category A stimuli (A1 and A2 clusters under

FIGURE 6 | Stimulus distributions for the (A) Discontinuous and (B)

Continuous conditions in Experiment 2. The solid line represents the
optimal rule.
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Discontinuous condition in Table 4) compose two clusters as
do Category B stimuli (B1 and B2 clusters under Discontinuous
condition in Table 4). Importantly, stimuli from A1 and B1 are
perceptually more similar than are A1 and A2 stimuli or B1 and
B2. Thus, two important features of nonlinear rules are replicated:
(1) perceptually dissimilar stimuli must be categorized together,
and (2) more striatal units are needed to represent the categories;
however, the rule is now linear. In contrast, in the Continuous
condition, which served as the control condition, the categories
were again composed of two clusters, but the clusters overlapped,
which resulted in participants having to learn to categorize per-
ceptually similar stimuli into the same category and a greater
likelihood that only a single unit would be needed to repre-
sent the categories. If PD patients were differentially impaired
in the Discontinuous relative to the Continuous condition, it
would provide support for the “communication among units”
hypothesis.

RESULTS
Accuracy rates for Experiment 2 are depicted in Figure 7A and
were analyzed using a 2 (group: PD vs. NC) × 5 (blocks 1–
5) mixed-design ANOVA. Results of this analysis identified a
main effect of group, F(1, 18) = 6.68, p < 0.05, η2

p = 0.27, with
PD patients performing worse than NC participants overall,
and a main effect of block, F(4, 72) = 11.06, p < 0.001, η2

p =

FIGURE 7 | Accuracy (percent correct) for PD patients and NC

participants for the (A) Discontinuous and (B) Continuous conditions

in Experiment 2. (Error bars are in standard error of the mean).

0.38, with both PD and NC participants’ performances improv-
ing across the blocks. There was no group by block inter-
action, F(4, 72) = 1.37, p = 0.25, η2

p = 0.07. Performances in
the Continuous Condition are shown in Figure 7B and were
examined using the same mixed-design ANOVA as for the
Discontinuous Condition. Results of this analysis indicated that
there was there was a main effect of block, F(4, 80) = 4.37, p <

0.01, η2
p = 0.18, but no effect of group, F(1, 20) = 0.21, η2

p =
0.01, and no group × block interaction, F(4, 80) = 0.85, p = 0.50,
η2

p = 0.04.

MODEL BASED ANALYSES
To further examine the results obtained in Experiment 2, we
applied models to the final block of data separately from each
participant (e.g., Estes, 1956; Maddox and Ashby, 1998; Smith
and Minda, 1998; Maddox, 1999). The main class of model on
which we focussed assumed that participants used an implicit
procedural-based learning strategy—instantiated by applying the
Ashby and Waldron’s (1999) Striatal Pattern Classifier (SPC;
see below for details). The model parameters were estimated
using maximum likelihood (Ashby, 1992; Wickens, 1993) and the
goodness-of-fit statistic was

AIC = 2r − 2lnL,

where r is the number of free parameters and L is the likelihood of
the model given the data (Akaike, 1974; Takane and Shibayama,
1992). The AIC statistic penalizes a model for extra free parame-
ters in such a way that the smaller the AIC, the closer a model is
to the “true model,” regardless of the number of free parameters.
Thus, to find the best model among a given set of competitors,
one simply computes an AIC value for each model, and chooses
the model associated with the smallest AIC value (for a discussion
of the complexities of model comparisons see (Myung, 2000; Pitt
et al., 2002).

The SPC model has been found to provide a good computa-
tional model of participants’ responding in previous information-
integration category learning studies (e.g., Ashby and Waldron,
1999; Waldron and Ashby, 2001; for applications to stimulus
identification see Ashby et al., 2001; Maddox, 2001, 2002). In
addition, the assumptions of this model are based on the neurobi-
ology proposed to underlie the procedural-based system (Ashby
et al., 2001). The SPC-1 assumes that there is one striatal unit
for each category, and the SPC-2 assumes that there are two
striatal units for each category. Both models assume a single
noise parameter that estimates the variability associated with the
participant’s responding, with large variability estimates being
associated with less deterministic responding and small variability
estimates being associated with more deterministic responding.
These models were developed to examine the possibility that par-
ticipants in the discontinuous condition might learn to associate
the separate, and distinct, sub-clusters of perceptually similar
stimuli with the appropriate category. We hypothesized that if
there was a deficit in communication and recruitment among
the medium spiny neurons via dysfunction of the interneu-
rons, then the SPC-1 model should be more likely to account
for the pattern of PD patients’ responding in the discontinu-
ous condition, whereas an SPC-2 model would be more likely to
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account for the NC participants’ responding. In contrast, there
should be no difference between the groups in the continuous
condition.

The results of the model applications supported our prediction
in that only 1 out of 10 of the PD patients’ data sets in the discon-
tinuous condition were better fit by the SPC-2 model, whereas
4 out of 10 of the NC participants’ data sets were best fit by the
SPC-2 model. Furthermore, for both groups, those participants
whose data were best fit by the SPC-2 model demonstrated better
accuracy than those whose data were best fit by the SPC-1 model
(69.8 vs. 58.8% for the PD group; 87.2 vs. 70.0% for the NC par-
ticipants). In contrast, in the continuous condition, 0 out of 11
PD patients’ data sets were better fit by the SPC-2 model, and
only 1 of the 11 data sets from the NC participants was best fit by
the SPC-2 model. Thus, in the discontinuous condition, the SPC
model with a greater number of units was more likely to account
for NC data sets, and this model was also associated with greater
accuracy rates2.

DISCUSSION
The results from Experiment 2 indicated that, compared to NC
participants, PD patients are impaired in procedural-based cat-
egory learning when the categories are composed of discontinu-
ous categories but are not impaired with continuous categories.
Figure 7 also demonstrates the slight advantage NC participants
have when learning continuous vs. discontinuous categories, a
finding that we observed in our previous studies with healthy
younger participants (Maddox et al., 2007). Of note, if the cat-
egory clusters from the discontinuous condition (see Figure 6A)
were from four different continuous categories, as opposed to
two discontinuous categories, we would predict that PD patients
would be normal.

Note this is the first study in which we found PD patients
to be impaired in learning a linear procedural-based rule, argu-
ing against the surface-level explanation that PD patients’ deficits
in category learning are simply due to the linearity of the
rule. Rather, the present results support the hypothesis that PD
patients are impaired in procedural-based category learning when
there is a need for communication among striatal units, thereby
supporting the “communication among units” hypothesis. We
now turn to a discussion of the theoretical implications of our
findings.

THEORETICAL DISCUSSION
The main finding from the present set of experiments was that
PD patients are impaired in learning discontinuous categories but
are normal in learning continuous categories. In addition, these
patients are not impaired when having to learn four categories.
These findings provide initial support for our “communication
among units” hypothesis. In contrast, the two groups did not

2It should also be noted that we applied a number of hypothesis-testing mod-
els that assumed the individual used an explicit approach to learning the
categories. Although a few data sets were best fit by this class of models, the
actual fits were close to those of the SPC models. Given specific questions
we posed with the modeling and the small sample size we felt it was more
important to focus on contrasting the SPC-1 and SPC-2 models.

differ in learning a procedural-based task with four categories,
which does not support our “number of units” hypotheses.

The finding that PD patients are not impaired in learning
either four- or two-category tasks suggests that the theoreti-
cal striatal units are functionally intact. This is consistent with
the hypothesis that the medium spiny neurons were able to
adequately represent multiple categories in our sample of PD
patients. While it is known from PD animal models that the func-
tional integrity of the medium spiny neurons can diminish in
the absence of dopamine (Arbuthnott et al., 2000), post-mortem
studies with actual PD patients suggest that structural changes to
these neurons occurs only in later stages of the disease and may
be the cause of motor complications secondary to dopaminer-
gic treatment (i.e., dyskinesia). Specifically, Zaja-Milatovic et al.
(2005) examined 9 PD patients post-mortem who had the dis-
ease a mean of 13 years and found that dendritic length of the
medium spiny neurons was reduced in all striatal regions exam-
ined in PD patients relative to control post-mortem samples. The
patients in our study tended to have the disease a mean of 6–7
years and were not displaying any complications of dopaminergic
treatment (e.g., dyskinesia), so it is possible that the disease had
not progressed in our patients to a point where the functioning
of the medium spiny neurons had been impacted. This possibility
raises the interesting question of whether PD patients with motor
complications such as dyskinesia would be more likely to display
deficits in the four-category condition given the possibility that
their medium spiny neurons are less functional.

In contrast to the findings in Experiment 1, PD patients
demonstrated a deficit in the Discontinuous condition in
Experiment 2 but not in the Continuous condition. We have
hypothesized that this is due to abnormal communication among
the cholinergic interneurons in PD. We further hypothesized that
normal interneuron communication is needed so that different
medium spiny neurons that are processing perceptually dissimilar
stimuli can resolve that they are representing stimuli that belong
to the same category and are linked to the same response. This
would only be required when there is a need for a greater num-
ber of the theoretical striatal units, such as when multiple units
are needed to represent perceptually dissimilar exemplars from
the same category (i.e., with discontinuous and nonlinear cate-
gories). Our assumption that striatal cholinergic interneurons are
dysfunctional in PD is based on animal models that demonstrate
increased activity of such neurons in the presence of reduced
dopamine levels (Raz et al., 2001; Pisani et al., 2003; Bonsi et al.,
2011). If this over activity of striatal interneurons is sufficient,
improper signaling between medium spiny neurons would be
likely to occur and the linking of perceptually dissimilar stimuli to
the same response would be greatly compromised. This theoreti-
cal explanation is supported by other lines of research suggesting
that the role of the basal ganglia, in general, and striatum, in par-
ticular, is to participate in response selection via the disinhibition
of wanted responses and inhibition of unwanted responses (Mink,
1996; Stocco, 2012).

The possibility that cholinergic abnormality in PD under-
lies cognitive deficits in these patients is not new. However, the
role of acetylcholine in PD cognition is not straightforward. On
one hand there are previous studies indicating that medications
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that prevent the breakdown of acetylcholine (i.e., cholinesterase
inhibitors) improve cognition in demented patients with PD
(Emre et al., 2004; Bosboom et al., 2009; Possin et al., 2013). On
the other hand we argue here that increased activity in cholinergic
interneuron leads to a deficit in procedural-based category learn-
ing. Adding to this possible paradox are findings from a previous
study where we demonstrated that impaired learning of a non-
linear procedural-based rule predicted future decline in global
cognitive functioning in a group of nondemented PD patients
(Filoteo et al., 2007). In addition, the fact that anticholinergic
medications are often given to patients early in the course of
the disease to improve motor symptoms by presumably reduc-
ing the over activity of the cholinergic interneurons also adds to
the confusion as to how acetylcholine helps or hurts cognitive and
motor functioning in PD. While we are unlikely to resolve these
issues here, these possibilities raise the intriguing question of
whether the administration of an anticholinergic would paradox-
ically improve nonlinear or discontinuous category learning in
nondemented PD patients, or whether the use of a cholinesterase
inhibitor would have any impact. These questions, and the general
role of acetylcholine in PD cognition, certainly warrant further
study.

It is important to note that the ideas tested in this paper
are based on a hypothetical role of the function of cholinergic
interneurons in the striatum and clearly represent an oversimpli-
fication of both the architecture and function of striatal medium
spiny neurons and interneurons. At present, there is no neu-
robiological evidence to suggest that the specific role of these
interneurons is to provide a conduit for which medium spiny neu-
rons can link perceptually dissimilar stimuli to the same response.
It may also be the case that the findings we report here are not
due to such impairment but rather to some other mechanism,
such as dysfunction in the output stage of response selection
(e.g., Gurney et al., 2001). What is important is that we have
further identified the experimental conditions under which PD
patients demonstrate procedural-based category learning deficits,
and that these data provide additional insights onto the mech-
anistic basis for some of our highly consistent previous results
(Maddox and Filoteo, 2001; Ashby et al., 2003a,b; Filoteo et al.,
2005a,b). In addition, the present work offers a potential com-
putational understanding of the similarities between impaired
nonlinear and discontinuous procedural-based category learning
deficits in PD.

There are obviously several limitations to the present work.
First, in regard to Experiment 1, it is possible that we did not tax
the striatum sufficiently by the use of only four categories. It is
possible that had we increased the number of categories we would
have seen a deficit in the PD patients. As noted above, it is also
possible that if we were to test patients in a more advanced stage of
PD we would be more likely to see an impairment given the possi-
bility that medium spiny neurons are only impacted in later stages
of the disease (Zaja-Milatovic et al., 2005). Second, in regard
to Experiment 2, there are several additional manipulations that
could have been conducted to further examine the impact of
discontinuity in PD patients’ procedural-based category learn-
ing deficit. For example, in the present study we only examined
one within category discontinuous separation and one between

category separation. In other words, the within category cluster
distance is fixed and so is the category (A vs. B) cluster separation.
This issue could be examined parametrically to see what within
and what between separations lead to a deficit. If, for example, we
found that systematically increasing the between category sepa-
ration decreases the magnitude of impairment in PD, this would
further support the notion that perceptual similarity plays a key
role in the observed deficit. Such manipulations are critical to
further advance these theories. Third, in Experiment 2, the con-
ditions did not only differ in terms of category continuity but also
in terms of within-category range (i.e., how much of the stimulus
space was occupied by category exemplars), which also could have
explained the findings. However, in a previous study with healthy
participants (Maddox and Filoteo, 2011) we found that category
discontinuity had a greater impact on learning than did within-
category range, suggesting that the results from the present study
are less likely related to the degree of within-category range.
Nonetheless, it will be important for future studies to directly
examine this issue in PD.

In summary, the present study tested two theories of PD
patients’ deficits in procedural-based category learning. Our
results and conclusions, while highly tentative and theoretical,
suggest that PD patients are primarily impaired when learning
requires perceptually dissimilar stimuli to be grouped in the same
category, which may be due to dysfunctional communication
among striatal units secondary to faulty communication.
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