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Three features often mentioned as charac-
teristic of the claustrum are its widespread
connections with cortical areas, the reci-
procity of these connections in general,
and the origin of cortico-claustral connec-
tions from a distinctive subtype of layer 6
pyramidal cells (Sherk, 1986; Katz, 1987;
Tanne-Gariepy et al., 2002; Crick and
Koch, 2005; Smythies et al., 2012). Another
feature, often overlooked, is that a pro-
portion of claustral-cortical neurons use
synaptic zinc and that zinc+ terminations
are moderately dense in the claustrum.
This article will summarize data about zinc
and the claustrum and present the case
that cortico-claustral neurons might also
be zinc-positive (Zn+). I conclude with
comments on the likely implications for
claustral identity and function.

ZINC-CONTAINING NEURONS
There are several excellent reviews on the
importance of synaptic zinc in the cen-
tral nervous system (Frederickson et al.,
2000, 2005; Nakashima and Dyck, 2009;
Sensi et al., 2009). In brief, Zn+ neurons
are predominantly in the cerebral cortex
and amygdala. Zn+ neurons (i.e., those
in which zinc is highly concentrated in
the synaptic vesicles) are a subset of gluta-
matergic neurons, exclusive of corticotha-
lamic. The projections between thalamus
and cortex are zinc-negative (Zn−). Zinc
is considered an activity- and calcium-
dependent neuromodulator of excitation
and as being important in synaptic plastic-
ity. It interacts with a wide range of zinc-
sensitive postsynaptic membrane targets
(see Table 1 in Frederickson et al., 2005
and Figure 2 in Sensi et al., 2009). In gen-
eral, Zn+ neurons have been preferentially

associated with limbic projections; and the
hippocampal mossy fibers are well-known
to have a high concentration of synaptic
zinc.

The brainwide distribution of Zn+
neurons is demonstrated by intraperi-
toneal injection of sodium selenite, which
produces a zinc–selenium precipitate that
is retrogradely transported from axon ter-
minals to cell bodies of origin (e.g., Brown
and Dyck, 2004). Focal intra-cerebral
injections of sodium selenite are used to
retrogradely label target-specific projec-
tion neurons. Terminations are visualized
by modifications of the classic Timm stain.

CLAUSTRAL-CORTICAL PROJECTIONS
Zinc–selenium histochemistry reveals a
subset of Zn+ neurons in the mouse claus-
trum (Brown and Dyck, 2004); and focal
injections of sodium selenite in different
cortical areas in rodent directly demon-
strate a subset of Zn+ cortically project-
ing neurons in the claustrum. These are
reported as sparse or moderate for pro-
jections, respectively, to visual and barrel
cortex, but more abundant for those to
frontal and orbital cortical areas (Garrett
et al., 1992; Casanovas-Aquilar et al., 1998;
Brown and Dyck, 2005). Experiments
using standard retrograde tracers report a
small proportion of double labeled neu-
rons projecting to two different cortical
areas (in rat: Li et al., 1986; in cat: Clasca
et al., 1992). Whether these are Zn+ or not
is unknown.

The claustrum also sends projections to
the amygydala (for monkey: Stefannacci
and Amaral, 2000), to parts of the subic-
ular complex (Witter et al., 1988; Zhang
et al., 2013), and to nucleus reuniens

(for rat: McKenna and Vertes, 2004).
There are no data as to the propor-
tion of claustral-amygdala or claustral-
hippocampal neurons that might be Zn+;
and claustral-thalamic projections can be
assumed as Zn−.

Claustral-cortical projections labeled
with standard anterograde tracers termi-
nate in layers 1–4 and 6 (Clasca et al., 1992;
da Costa et al., 2010). This partially coin-
cides with the pattern of Zn+ termina-
tions, which are elevated in layers 1b, 2, 3,
and 5/6, depending on the cortical area. As
layer 4 is relatively Zn−, claustral-cortical
terminations in this layer can be inferred
to originate from a separate subset of Zn−
neurons in the claustrum. The proportion
of Zn+ terminations may be taken to vary
depending on the species and projection
system. For claustral-cortical projections,
an initial guess might be 25–50% as being
Zn+, largely based on the density of Zn+
neurons retrogradely labeled in the claus-
trum following focal injections of sodium
selenite in cortical areas in rodents.

By comparison, cortical feedback pro-
jections from monkey temporal cortex
have been shown to consist of a mix of
Zn+ and Zn− components by cortical
injections of sodium selenite. In confirma-
tion, injections of the anterograde tracer
BDA in area TE were coupled with a
terminal intravenous injection of sodium
sulfide to precipitate Zn+ terminations.
Subsequent ultrastructural inspection of
BDA-labeled terminations in areas tar-
geted by TE neurons (V1, V4, TEO, and
the depth of the superior temporal sulcus)
revealed about one-third of the synapses
as Zn+, except for a higher proportion
in V1 (four of five identified synapses;
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Ichinohe et al., 2010). As a second com-
parison, projections from the basolateral
amygdala to medial prefrontal cortex were
all found to be Zn+ in the monkey
(Miyashita et al., 2007), although only
35% of the amygdalo-cortical termina-
tions were Zn+ in rats (Cunningham et al.,
2007).

CORTICO-CLAUSTRAL NEURONS
Layer 6 contains a mixed population of
pyramidal neurons, of which the four
major groups are intrinsically projecting,
and extrinsically projecting to the thala-
mus, to other cortical areas, and to the
claustrum (Briggs, 2010; Thomson, 2010).
Corticothalamic neurons are Zn−; and
feedback cortically projecting neurons in
layer 6 are intermixed Zn+ and Zn−
(for monkey: Ichinohe et al., 2010). There
have been no appropriate injections in the
claustrum to determine directly whether
any cortico-claustral projecting neurons
are Zn+, but this possibility is supported
by indirect evidence, as discussed next.

First, as noted above, Zn+ terminations
are moderately dense in the claustrum
(rat: Perez-Clausell, 1996; Valente et al.,
2002; monkey: Figure 1 in Ichinohe and
Rockland, 2005a; Figure 10 in Miyashita
et al., 2007). Zn+ cortico-claustral neu-
rons are one of three possible sources
of the Zn+ terminations in the claus-
trum. Another is the claustrum itself, since
it has both Zn+ neurons (Brown and
Dyck, 2004) and widespread intrinsic con-
nections (Smith and Alloway, 2010). The
amygdala is a third possible source. Several
claustral projecting subnuclei in the amyg-
dala contain Zn+ neurons, demonstrated
by intraperitoneal (Brown and Dyck,
2004) or focal injections of sodium selen-
ite in cortical areas (for the rat: Majak
et al., 2002; for monkey: Ichinohe and
Rockland, 2005b). There are projections
from midline thalamus to the claustrum
(Vertes et al., 2006), but like almost all tha-
lamic projections (except those from ante-
rior dorsal thalamus to the subiculum),
these can be considered as zinc-negative.

A second, indirect line of evidence is the
dendritic morphology of pyramidal neu-
rons in layer 6 (Katz, 1987; Ojima et al.,
1992; Olsen et al., 2012; and reviewed in
Briggs, 2010; Thomson, 2010). Cortico-
thalamic neurons have short, thin apical
dendrites typically not extending much

above layer 4. At least a subset of cortical
feedback projecting neurons also have
short, non-tufted apical dendrites (for
monkey: Lund et al., 1981; Figure 9 in
Rockland, 1994; Berezovskii et al., 2012).
Cortico-claustral neurons have nontufted
apical dendrites ascending to layer 1 (Katz,
1987). Of these three groups, cortico-
thalamic neurons can be assumed to be
Zn−. Cortico-cortical neurons, in mon-
key, are a mix of Zn+ and Zn−, as
noted above. An interesting possibility is
that some cortico-claustral neurons, which
have a nontufted apical dendrite (even
though this appears to ascend more super-
ficially than cortical neurons), are Zn+.
The proportion of layer 6 neurons with
long apical dendrites (i.e., putative cortico-
claustral) is likely to be area and species
specific. From intracellular fills, these are
reported as unusually abundant—almost
40% of the filled neurons—in layer 6
of rat medial prefrontal cortex, although
the projectional identity is unknown (Van
Aerde and Feldmeyer, 2013).

If cortico-claustral neurons, or a subset
of these, are Zn+, we can further spec-
ulate whether individual neurons might
send collaterals to cortical areas and the
claustrum. There are so far no relevant
data for cortico-claustal neurons, either
from double retrograde tracers or intercel-
lular labeling; and this possibility waits for
future investigations.

What can we conclude about the
claustrum as part of a Zn+ associa-
tional system? One clear point is that
claustral-cortical neurons are a mixed
population, of Zn+ and Zn− neurons,
and are presumably functionally mixed
as well. Less clear is the specific role
or roles of zinc in the claustrum. In
general, synaptic Zn is associated with
activity-dependent plasticity (reviewed in
Frederickson et al., 2005; Nakashima and
Dyck, 2009). Consistent with plasticity
effects, a sizeable proportion of claustral-
cortical synapses are perforated (∼33%
in cat visual cortex; da Costa et al.,
2010). By comparison, 27% of amygdalo-
cortical terminations (putatively Zn+ but
neurochemically uncharacterized) were
identified as perforated in temporal cor-
tex, 39% in visual cortex (for mon-
key: Freese and Amaral, 2006), and
∼25% of those in orbitofrontal (identi-
fied as Zn+ for monkey: Miyashita et al.,

2007). Perforated synapses are specifically
implicated in memory-related plasticity
(Calverley and Jones, 1990; Hara et al.,
2012).

Alterations in the regulation of zinc
release, either as protective or harm-
ful, have been associated with epilepsy,
among other neuropathological disor-
ders (reviewed in Paoletti et al., 2009).
The well-established susceptibility of the
claustrum to kindling and its implica-
tion with generalized seizures may thus be
related to the presence of zinc in intrin-
sic claustro-claustral connections and/or
in the connections between the claus-
trum and amygdala or the claustrum
and cortex. A recent study, concerned
with the role of zinc homeostasis in
epileptogenicity, found that epilepsy-
resistant rat strains had significantly
lower levels of synaptic zinc as compared
to epilepsy-prone strains (Flynn et al.,
2007).

CLAUSTRUM AS CORTICAL?
The identification of the claustrum, as
cortical or striatal, has generated con-
siderable discussion. On developmental
grounds, the claustrum has been consid-
ered (1) as a derivative of the insula, with
a pallial origin; (2) as derived from the
ganglionic eminence along with the basal
ganglia; or (3) as having both a pallial
and subpallial derivation (reviewed in Inda
et al., 2009; Pirone et al., 2012). Gene
expression studies show the claustrum as
having pallial markers, like the amygdala
but unlike striatal structures (Miyashita
et al., 2005; Pirone et al., 2012); and
the claustrum is consistently reported as
expressing genes in common with corti-
cal areas (Miyashita et al., 2005; Mathur
et al., 2009; Watakabe et al., under review).
From a somewhat different perspective,
chandelier cells, a specific type of corti-
cal interneuron, are found in both the
claustrum and amygdala, but not striatum
(Inda et al., 2009). From the perspective of
zinc, both the claustrum and basal ganglia
have moderate levels of Zn+ terminations,
at least in part of a cortical origin; but
Zn+ neurons do not occur in the stria-
tum (Frederickson et al., 2000). The exis-
tence of Zn+ neurons in the claustrum
is consistent with a cortical association,
but is a feature shared as well with the
amygdala.
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CLAUSTRAL FUNCTION?
One of the ideas consistently put forth for
claustral function is that it is concerned
with multisensory integration (Sherk,
1986; Edelstein and Denaro, 2004; Crick
and Koch, 2005). This is consistent with
its pattern of widespread connectivity,
although physiological recording in alert
monkeys have identified distinct claus-
tral zones comprised of unimodal, not
multimodal, neurons associated with the
auditory and visual modalities (Remedios
et al., 2010).

Reciprocal and widespread connectiv-
ity architecture, often seen as indicat-
ing an integrative role (Tanne-Gariepy
et al., 2002; Crick and Koch, 2005), is
not anatomically unique to the claustrum,
but applies to other structures as well; for
example, the amygdala and midline tha-
lamus. Thus, it is not yet clear that this
connectivity architecture in itself is strong
support for a distinctively integrative role.
Continuing work in rat, in fact, has con-
cluded that while the efferent connectivity
of the claustrum might well subserve inter-
hemispheric coordination of motor and
somatosensory whisker representations, its
role as an integrator of somesthetic and
motor information is less likely, since there
are no projections from the somatosensory
whisker representation to the claustrum
(Smith et al., 2012).

Worth noting is that claustral-cortical
projections terminate in both layers 1
and 4, presumably from separate sub-
populations, given that Zn+ terminations
are dense in layer 1 and very sparse in
layer 4. Layer 1 and layer 4 termina-
tions are also spatially dissociable to
some extent in that those in layer 1 are
typically widely divergent, in contrast
with the more topographically orga-
nized termination systems in layer 4.
Amygdalo-cortical projections to layer
1 are widely divergent (Freese and Amaral,
2006), as are thalamo-cortical (Rubio-
Garrido et al., 2009), and cortical feedback
(Rockland, 1994). Widespread termi-
nations in layer 1 might contribute to
the generation of synchronized oscil-
lations, another role associated with
the claustrum (Smythies et al., 2012),
although more data are needed specif-
ically concerning neurons postsynaptic
to claustral inputs. In particular, is
there a neuron-to-neuron reciprocity

with claustral projections targeting
cortico-claustral neurons?

The architecture that emerges is not
so much structure-to-structure reci-
procity, as a wider constellation of
closely interconnected networks; namely,
claustral-cortex-amygdala (Zn+ or
mixed), claustral-hippocampus-amygdala
(Zn+ or mixed), claustral-reuniens-cortex
(Zn−), possibly hippocampus-reuniens-
claustrum (Zn−), among others.

SUMMARY
The importance of synaptic zinc for claus-
tral connections has been largely over-
looked, despite abundant evidence of Zn+
inputs and outputs. Synaptic zinc has been
associated with activity-driven plasticity;
and one might propose that the func-
tional role of zinc for the claustrum is
“similar” to that of zinc as used by the
basolateral amygdala and feedback cortical
connections from layer 6. More imme-
diately, a practical consequence is that
the wide range of manipulations target-
ing Zn+ terminations and Zn+ neurons
(reviewed in Nakashima and Dyck, 2009)
offer new tools to probe claustral organi-
zation and function. Potential approaches
might include comparisons across species
and mouse lines, across developmental
stages, or in different environmental or
pathological conditions.
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