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Cognitive enhancement is perhaps one of the most intriguing and controversial
topics in neuroscience today. Currently, the main classes of drugs used as potential
cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine),
but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are
also frequently used. Pharmacologically, substances that enhance the components
of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or
norepinephrine—stand to improve brain function in healthy individuals beyond their
baseline functioning. In particular, non-medical use of prescription stimulants such as
MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent
rise among teens and young adults in schools and college campuses. However, this
enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate
function via the use of psychostimulants may impair behavioral flexibility, leading to
the development and/or potentiation of addictive behaviors. Furthermore, dopamine and
norepinephrine do not display linear effects; instead, their modulation of cognitive and
neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing
themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states,
thus vitiating the very behaviors they are striving to improve. Finally, recent studies have
begun to highlight potential damaging effects of stimulant exposure in healthy juveniles.
This review explains how the main classes of cognitive enhancing drugs affect the learning
and memory circuits, and highlights the potential risks and concerns in healthy individuals,
particularly juveniles and adolescents. We emphasize the performance enhancement at
the potential cost of brain plasticity that is associated with the neural ramifications of
nootropic drugs in the healthy developing brain.
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INTRODUCTION
Cognitive enhancement, and the ethical considerations that go
along with it, is one of the hottest current topics in the neuro-
science community. Humans have sought substances to improve
our cognitive function for centuries, from ancient civilizations
using hallucinogens in an attempt to raise their consciousness
to commune with their gods, to the rise of coffee, to the more
recent development of drugs such as stimulants and glutamate
activators. Some might argue, therefore, that seeking to improve
ourselves is a human trait, and therefore cognitive enhancement is
nothing more than our application of new scientific approaches to
meet our age-old desire for self-improvement and development.
However, others argue that artificially enhancing one’s cogni-
tive abilities is unfair and gives an unbeatable advantage to the
richer populations who will have more ready access to the drugs
(Butcher, 2003; Cakic, 2009). The issue of cognitive enhancement
has even been likened to the steroid debate in sports (Cakic, 2009).

There are many comprehensive reviews and articles published on
the ethical concerns of cognitive enhancement; however, literature
on the safety of consuming these drugs in youth is starkly lack-
ing despite the significant increase in teen misuse and abuse of
stimulants reported in a recent national study (Goldberg, 2013).
Therefore, for the purpose of this review, we will concentrate on
examining potential neurobiological ramifications of the popular
cognitive enhancers, and highlight recent data on these drugs’
actions in developing brains. It is likely that a large proportion
of the population is exposed to cognitive enhancing drugs and
pressure to take them may be especially high among college and
high school students; these individuals are facing more stringent
college and graduate school acceptance criteria, limited job pools
and an ever-increasing pressure to perform better and better if
they hope to succeed (Goodman, 2010; Franke et al., 2011; Lynch
et al., 2011). However, individuals in this population may be the
ones most likely at risk for potential neurological consequences,
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FIGURE 1 | (A) Chemical structure of methylphenidate (Ritalin©).
(B) Chemical structure of modafinil (Provigil©). The drug bears a striking
resemblance to methylphenidate and other stimulants.

due to their still-developing brains. We express regret that we
are not able to cite many other good articles due to the topic
specificity and sparsity of existing research; however, interesting
information on cognitive enhancers that was outside the scope of
this review can be found in these additional references (Dresler
et al., 2013; Pang and Hannan, 2013; Ragan et al., 2013; Madan,
2014).

METHYLPHENIDATE AND THE DEVELOPING BRAIN
One of the most popular drugs under consideration for cog-
nitive enhancement was originally developed to treat attention
deficit-hyperactivity disorder (ADHD). Methylphenidate (Rital-
in©; MPH; Figure 1A) is currently the most commonly prescribed
medications for the treatment of ADHD (Challman and Lipsky,
2000; Spiller et al., 2013). MPH is a psychostimulant, related to
amphetamine and cocaine and exerts its effects by blocking the
transporters that reuptake dopamine and norepinephrine into the
presynaptic neuron following their release; thus, it increases the
levels or prolongs the availability of these neurotransmitters in the
synapses to exert effects on postsynaptic neurons (Kuczenski and
Segal, 2005).

However, a large proportion of literature on the safety and effi-
cacy of MPH comes from studies performed on normal, healthy
adult animals, as there is currently no sufficiently reliable animal
model for ADHD. Several decades ago, studies began emerging
that suggested that reduced hyperactivity and impulsivity in
stimulant-treated ADHD patients were not “paradoxical” effects,
but in fact also occurred in healthy individuals given the same
doses (Rapoport et al., 1978, 1980). More recent MPH studies
in both humans and rats have found that low doses of MPH
that correspond to those given to ADHD patients in the clinic
appear to enhance prefrontal-dependent functions and cognition
in much the same way in healthy humans and rats as they do in
ADHD patients and disease model rat strains (Mehta et al., 2001;
Askenasy et al., 2007; Dow-Edwards et al., 2008; Agay et al., 2010;
Linssen et al., 2012). These facts led to not only the acceptance of
MPH study in normal subjects, but also the consideration of the
medication as a cognitive enhancer.

The vast majority of studies on the cognitive enhancing
effects of MPH and its effects on the normal brain have been
performed in adult animals or humans. Higher doses (doses
greater than those given to treat ADHD; 5–10 mg/kg intraperi-
toneal in rats) increase locomotor activity and impair attention
and performance on prefrontal cortex-dependent cognitive tasks;
however, lower doses (doses equivalent to the range given to

FIGURE 2 | Relationship of dopamine/norepinephrine to prefrontal
function. At lower than optimal levels, the PFC is underactive, and the
individual suffers from symptoms of ADHD (impulsivity, poor judgment,
inattentiveness, motor hyperactivity). As levels rise, the function improves,
until cognition and executive function reaches peak performance at optimal
levels of dopamine/norepinephrine. As levels of the neurotransmitters
continue to rise past the optimal point, cognition again becomes impaired,
with the individual showing distractability, impulsivity, stereotypical
behaviors and cognitive inflexibility.

ADHD patients; 0.5–2 mg/kg intraperitoneal in rats) improve
cognitive performance and reduce locomotor activity in healthy
individuals (Mehta et al., 2001). Likewise, lower doses of MPH
(0.25–1 mg/kg, intraperitoneal, i.p.) in normal adult rats resulted
in increased performance on attention tasks along with no effect
on locomotor activity, while higher doses impaired performance
and caused hyperactivity; doses beyond 10 mg/kg resulted in
“stereotypes” (repetitive, fine motor movements similar to the tics
seen in disorders like Tourette’s syndrome) (Mehta et al., 2001).
The low doses of MPH result in slight increases in dopamine
and norepinephrine selectively in the prefrontal cortex, while not
affecting other brain regions (Berridge et al., 2006). This allows
for improvements in executive control and working memory
(WM) without inducing locomotor activity or stereotypes.

However, the dangers of cognitive enhancement with stim-
ulants like MPH lie in their potential effects on the regula-
tion of dopamine and norepinephrine (Figure 2). At optimal
doses, dopamine binds to higher-affinity D1-like receptors, and
norepinephrine binds to α2 receptors, leading to an increase
in prefrontal cortical signal-to-noise ratio and enhancing the
flow of information and strengthening neuronal communica-
tion (Arnsten and Li, 2005). When the levels of dopamine and
norepinephrine rise beyond the optimal levels, they begin to
activate dopamine D2-class receptors and noradrenergic α1 and
β receptors, which leads to weakening of the signal-to-noise ratio
via activation of neurons that may not be involved in the current
task (Arnsten and Li, 2005; Arnsten, 2009b). This nonspecific
activation impairs attentional selectivity and results in a man-
ifestation of locomotor hyperactivity, distractability and poor
impulse control.

Levels of dopamine and norepinephrine in a normal, healthy
brain are not universal and they may vary slightly over time within
the same individual based on season, time of day, or activity
(Otter and Nurmand, 1980; Petrović et al., 1980). Currently, there
is no reliable method for determining optimal levels of these
neurotransmitters in living human brains; thus, predicting how
a certain dose of MPH will affect a particular person is largely an
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educated approximation. It is also possible that, although many
studies found no overt cognitive differences between the effects
of low-dose MPH on normal individuals and ADHD patients,
molecular or cellular differences may exist that await detection by
the development of more advanced technology. Thus, one must
examine the research on MPH as a cognitive enhancer and studies
using normal individuals with caution.

MPH is currently most often abused and sold on the black
market among adolescents, particularly in high schools and on
college campuses (Goodman, 2010; Franke et al., 2011). Students
look for the medication when they have exams, or need to
stay awake for long hours, in order to boost their energy and
memory. This rather commonplace usage among adolescents is
particularly frightening in light of the developmental timeline
of the prefrontal cortex. This brain region, the center of control
of judgment, behavioral inhibition and emotion, WM, logical
thinking and decision making, does not finish developing until
young adulthood; in humans this falls around the end of the
second decade or the beginning of the third decade of life (Casey
et al., 2008). During adolescent development, the levels of nore-
pinephrine and dopamine surge and wane to allow for maturation
of the executive control and reward pathways (Kanitz et al., 2011).
Introducing a substance that alters dopamine and norepinephrine
levels, such as MPH, might disrupt the maturation of the pre-
frontal cortex and have lasting behavioral consequences.

Indeed, research has recently begun to shift toward under-
standing MPH’s actions in a juvenile brain. These pioneering
studies have yielded striking results, indicating that early life
treatment with MPH may alter circadian rhythms, induce anxiety
that persists into adulthood, and even impair object-recognition
memory (Lee et al., 2009; Algahim et al., 2010). However, many
of the studies have not been particularly stringent in their dosing
regimens, and the reader must examine the amount of drug used
in each study very carefully. In adult rats, a therapeutic, clinically-
relevant dose of MPH is one that produces blood plasma levels of
8–40 ng/dL; this appears to be in the range of 0.25–1 mg/kg given
in an intraperitoneal injection (i.p.) (Berridge et al., 2006). We
have recently completed several studies examining the effects of a
low therapeutic dose (1 mg/kg, i.p.) on juvenile rats. We reported
that a single dose of MPH resulted in significant depression of
neuronal excitability and synaptic transmission in the prefrontal
cortex; treatment with a chronic regimen of 3 weeks resulted
in even further depression (Urban et al., 2012). In adult rats,
however, the same low dosage increased neuronal activity (Urban
et al., 2012). These results suggest that there is an age-dependent
difference in MPH’s actions, and that in healthy juveniles and
adolescents, the doses previously thought to be therapeutic and
cognitively enhancing may in fact be inducing excessive levels
of dopamine and norepinephrine and in fact impairing certain
aspects of cognition. Further supporting this theory, we discov-
ered that the depression of neuronal activity was due, at least in
part, to activation of a channel known as the hyperpolarization-
activated non-specific cation channel (HCN; Urban et al., 2012).
The HCN channel allows for flow of positively-charged ions,
particularly potassium, out of the neuron, lowering its voltage
potential and making it harder for the neuron to fire action
potentials. The HCN channel is also known to be activated by a

hyperdopaminergic state; thus, its role in juvenile treatment with
MPH suggests that the dosage is inducing excessive dopamine,
and possibly norepinephrine as well (Arnsten, 2009a).

One important unique property of the prefrontal cortex is
its high level of plasticity, allowing for executive functions like
WM and active decision-making; this plasticity may be a product
of the slow maturation of this region (Jernigan et al., 1991;
Kuboshima-Amemori and Sawaguchi, 2007; Spencer-Smith and
Anderson, 2009; Newman and McGaughy, 2011; Teffer and
Semendeferi, 2012; Selemon, 2013). Plasticity is controlled by
levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors and n-methyl-d-aspartate (NMDA) receptors.
NMDA receptors contain two NR1 subunits with a combination
of either NR2A or NR2B; NR2B conveys slower kinetics to the
channel, allowing it to remain partially open during multiple
stimulations (Cull-Candy et al., 2001). This property results in
summation of responses and the continuation of the neural
activity briefly after input has stopped, which is thought to be
the neuronal correlate of WM (Wang et al., 2008, 2013). In most
cortical brain regions, the ratio of NR2B/NR2A is high at birth,
and declines over development; however, in prefrontal cortex
it remains high (Wang et al., 2008). This allows for retention
of plasticity throughout life, allowing the prefrontal cortex to
continually adapt to incoming information and adjust behavioral
output. We recently discovered that low dose (1 mg/kg, i.p.)
treatment of juvenile rats with MPH induced a selective decrease
in the levels of NR2B without affecting NR2A subunits (Urban
et al., 2013). This finding supports our theory that the juvenile
brain may be hypersensitive to dopamine levels; excessive levels of
dopamine induce internalization of NR2B receptors via activation
of glycogen synthase kinase (GSK)-3β, which causes phosphory-
lation of β-catenin, disrupting the β-catenin-NR2B interaction
that stabilizes the NR2B subunit (Li et al., 2009). With β-catenin
unbound, the NR2B subunits become targeted for internalization.

What do our findings mean for the healthy adolescent taking
MPH? The prefrontal cortex’s uniquely high levels of NR2B
subunits throughout life impart the ability of the neurons to sum-
mate responses to incoming stimuli, resulting in the short-term
potentiation of neural activity necessary for WM; thus, decreasing
the levels of NR2B in prefrontal cortex leads to a reduction in
the summation, which should impair WM (Wang et al., 2008,
2013; Urban et al., 2013). However, long-term potentiation (LTP)
was found to be enhanced following juvenile treatment with
MPH (Urban et al., 2013). The exact roles of NR2A versus NR2B
receptor subunits in LTP regulation in the prefrontal cortex are
not well understood, but it is currently believed that the direction
of plasticity in prefrontal cortex (potentiation or depression) is
dependent on the ratio of NR2A/NR2B, rather than exact levels
of each subunit (Massey et al., 2004; Xu et al., 2009; Foster et al.,
2010). Thus, reducing NR2B levels without altering NR2A levels,
as was seen following juvenile MPH treatment, was enough to
alter the direction of PFC long-term plasticity (Urban et al.,
2013). The behavioral ramifications of altering LTP and long-
term depression (LTD) in the prefrontal cortex are unclear, as
it is not known exactly what LTP is representing in this region.
However, it has been hypothesized that, if short-term potentiation
is a cellular constituent of WM, then LTP might be a marker of
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sustained attention and long-term memory consolidation. Thus,
perhaps treatment of the healthy juvenile brain with these low
doses of MPH results in impaired WM and behavioral flexibility,
but enhanced sustained attention and long-term memory? If this
is the case, it could indicate that MPH-treated children who do
not in fact have ADHD would appear successfully treated in
a classroom setting—these children would be paying attention
to the teacher, less hyperactive and learning might improve.
However, stringent testing of their behavioral flexibility and WM
might reveal subtle deficits that may affect their lives. For example,
behavioral flexibility is needed for driving an automobile—the
driver must be able to quickly shift attention from the road, to
road signs, other approaching vehicles, back to the road and so
on. Rigid attention and lack of flexibility could potentially result
in inattentive or distracted driving. Behavioral flexibility is also
a critical component of interpersonal skills; one must be able to
adapt to different individuals and, in a work setting, shift plans
and roles within the group in order to achieve the goal. Again,
behavioral and cognitive inflexibility could impair the individual’s
function at their job and lead to reduced pay, unemployment
or disciplinary action. Finally, behavioral flexibility is a critical
component of resisting and recovering from drug abuse. Kalivas
and Volkow identified alterations in glutamatergic signaling that
result in an inability to alter one’s behavior in cocaine addicts
(Kalivas and Volkow, 2005, 2011; Kalivas et al., 2005). MPH
has been shown to reduce the likelihood of later drug abuse
in individuals diagnosed with ADHD, but, as the drug appears
to affect glutamatergic signaling, it could potentially result in
similar behavioral rigidity and lead to an increased likelihood
for obsessive-compulsive or addictive behaviors (Newman and
McGaughy, 2011).

MODAFINIL—POTENTIAL FOR STIMULANT-LIKE EFFECTS?
MPH’s effects on brain development are surely interesting and
potentially frightening; however, it is not the only cognitive
enhancing medication that alters dopamine and glutamate trans-
mission. Another cognitive enhancer that has begun to receive
attention in the scientific community is modafinil (Provigil©),
which bears a striking structural resemblance to methylphenidate
(MPH) and other stimulants (Figure 1B). Originally developed in
France in the 1970s, modafinil elevates hypothalamic histamine
levels, but also appears to have a striking affinity for cell surface
dopamine transporters (Engber et al., 1998; Ishizuka et al., 2008;
Zolkowska et al., 2009). Its exact mechanism of action remains
under debate, although arguments have been made both for its
performing more as a wakefulness-promoting reagent via the
hypocretin/orexin system of the hypothalamus, and as a classi-
cal psychostimulant via its blockade of the dopamine reuptake
inhibitor (Ishizuka et al., 2003; Zolkowska et al., 2009). How-
ever, modafinil still promotes wakefulness in orexin knockout
mice, so it appears that the orexin system is not required for
therapeutic benefits (Willie et al., 2005). Whatever the mecha-
nism, or mechanisms, of action may turn out to be, modafinil
is currently a heavily studied drug with multiple uses. It is
currently approved by the US Food and Drug Administration
(FDA) for the treatment of narcolepsy, shift-work disorder and
obstructive sleep apnea (Erman and Rosenberg, 2007; Cephalon,

2013). It has been shown to reduce jet lag and improve mood
among shift workers, who often struggle with depression and
chronic fatigue, forgetfulness and general cognitive impairments
brought on by their work hours not allowing for a steady
sleep-wake cycle (O’Connor, 2004; Hart et al., 2006). Modafinil
has also been studied as an alternative to amphetamines for
military usage—the military provides stimulants to soldiers in
sleep-deprivation or high stress situations that require extreme
alertness for long stretches of time. It is currently approved
for Air Force missions in the US, and is also used in the
UK and India (Taylor and Keys, 2003; Wheeler, 2006; Sharma,
2011).

Although modafinil is considered a first-line therapy for
excessive daytime sleepiness (EDS) associated with narcolepsy
in adults; it is also widely used in the treatment of EDS in
children (Ivanenko et al., 2003; Sullivan, 2012). Caution is again
the rule, especially at younger ages, due to reports of serious
adverse events (such as tachycardia, insomnia, agitation, dizzi-
ness and anxiety) in elevated modafinil doses (Spiller et al.,
2009), and in fact, the manufacturer recommends against use of
modafinil in younger children. Despite these reports, modafinil
is FDA-approved for use in children over age 16 years (Sullivan,
2012).

The usefulness of modafinil in improving alertness and wake-
fulness in non-sleep-deprived, healthy individuals, and its mil-
itary involvement, has led to the consideration of the drug
as a cognitive enhancer (Turner et al., 2003; Baranski et al.,
2004; Randall et al., 2005b). Most studies agree that modafinil
induces improvements in pattern recognition memory, digit
span recall and mental digit manipulation (performing addi-
tion/subtraction/multiplication in one’s mind), but the effects on
spatial memory, attention and other aspects of executive function
are more ambiguous, and appear to depend on the baseline
performance of the individual in question (Turner et al., 2003;
Baranski et al., 2004; Müller et al., 2004; Randall et al., 2005b). In
a study of healthy student volunteers, modafinil improved target
sensitivity in a rapid visual information processing (RVIP) task,
and speed of color naming and drawing, but only in individuals
with a “low” (mean 106 + 6) IQ; it had no significant effect on
individuals with “higher” (mean 115 + 5) IQs (Randall et al.,
2005a). In rats, these results are replicated, with low responding
rats showing improvement on stop-signal reaction time tests
after modafinil; higher performing rats showed no improvement
(Eagle et al., 2007). Interestingly, MPH also shows sensitivity to
baseline performance; many studies have indicated that MPH
induces greater improvement in low-performing individuals than
in higher performing individuals, and in some cases may actually
cause deficits in higher performers (Eagle et al., 2007; Finke et al.,
2010).

A recent study conducted in healthy human subjects reported
that modafinil differs from other arousal-enhancing agents in
chemical structure, neurochemical profile, and behavioral effects
(Rasetti et al., 2010). Unlike most functional neuroimaging
studies that focused on the effect of modafinil only on infor-
mation processing underlying executive cognition, this study
examined the effect of modafinil on neural circuits underlying
affective processing and cognitive functions. They underwent
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blood-oxygen-level dependent (BOLD) functional magnetic
resonance imaging (MRI, or functional MRI, fMRI) while per-
forming an emotion information-processing task that activates
the amygdala and two prefrontally dependent cognitive tasks—
a WM task and a variable attentional control (VAC) task. BOLD
fMRI revealed significantly decreased amygdala reactivity to fear-
ful stimuli on modafinil compared with the placebo condition.
During executive cognition tasks, a WM task and a VAC task,
modafinil reduced BOLD signal in the prefrontal cortex and
anterior cingulate. This study suggested that modafinil in low
doses has a unique physiological profile compared with stimulant
drugs: it enhances the efficiency of prefrontal cortical cognitive
information processing, while dampening reactivity to threaten-
ing stimuli in the amygdala, a brain region implicated in anxiety
(Rasetti et al., 2010).

The baseline performance sensitivity, and dopamine reuptake
transporter affinity, indicates that modafinil could induce similar
effects on the brain as psychostimulants like MPH. If this is the
case, cause for concern arises when modafinil is considered as a
cognitive enhancer in adolescents and young adults. To enlist in
the Air Force, where modafinil is currently in use for pilots, one
must be between 17–27 years of age (U. S. Air Force, 2013). The
prefrontal cortex, under tight regulation by levels of dopamine
and norepinephrine, and the brain’s main center of attention and
executive processing, does not finish development until the late
20’s to early 30’s for humans; thus, young pilots may be at risk
for modafinil inducing excessive levels of dopamine in this brain
region (Casey et al., 2008). One can expect that the potential ram-
ifications of modafinil use in healthy young adults and teenagers
would be similar to those seen in juvenile/adolescent use of MPH
(Urban et al., 2012, 2013). Thus, modafinil could induce changes
in plasticity or behavioral rigidity, and potentially damage WM,
logical thinking and decision making. It has been reported that
prolonged wakefulness induces experience-dependent synaptic
plasticity in mouse hypocretin/orexin neurons (Rao et al., 2007).
Specifically, acute and chronic prolonged wakefulness in mice
induced by modafinil treatment produced LTP of glutamatergic
synapses on hypocretin/orexin neurons in the lateral hypothala-
mus, a well-established arousal/wake-promoting center. A similar
potentiation of synaptic strength at glutamatergic synapses on
hypocretin/orexin neurons was also seen when mice were sleep
deprived for 4 h. These results indicate that synaptic plasticity
due to prolonged wakefulness occurs in circuits responsible for
arousal and may contribute to changes in the brain of animals
experiencing sleep loss. It is therefore likely that misuse and abuse
of modafinil in the teens will eventually result in brain plasticity,
especially brain regions related to sleep and motivation such as
hypothalamus and dopamine-rich prefrontal cortex, hippocam-
pus and nucleus accumbens. Future studies will need to address
these shortcomings in order to determine the safety and efficacy of
modafinil as a true cognitive enhancer. Recent reviews proposed
some interesting mechanisms that may explain the likelihood of
cognitive enhancement (Lynch et al., 2011; Roesler and Schröder,
2011; Lynch and Gall, 2013) but experiments are warranted for
further exploration. The current research is contradictory in
that some studies have noted clear improvements in sustained
attention in humans, while others have failed to find any effect of

the drug (Turner et al., 2003; Randall et al., 2005b ). Similar dis-
crepancies can be found in rodent studies; however, more recent
studies are pointing to the possibility that modafinil selectively
enhances WM without affecting consolidation of memories into
long-term storage (Béracochéa et al., 2002; Turner et al., 2003;
Müller et al., 2004; Randall et al., 2005b; Minzenberg and Carter,
2008). These studies are interesting, and suggest striking utility
of modafinil as a cognitive enhancer; however, they have been
performed on adult humans and rodents. MPH has also been
shown in studies of healthy adults and children with ADHD to
apparently enhance WM (Mehta et al., 2004; Pietrzak et al., 2006;
Kobel et al., 2009; Marquand et al., 2011), yet recent juvenile rat
studies suggest that in a healthy, developing brain, the drug might
actually impair WM at low doses thought to be clinically relevant,
i.e., doses that produce blood plasma levels of 8–40 ng/dL (Urban
et al., 2013). Modafinil’s profile by showing improvements in WM
in healthy adults and sleep-deprived individuals (the population
the drug was originally developed for) is analogous to MPH
promoting improvements for healthy adults and children with
ADHD; since both drugs appear to affect dopamine levels through
blockade of the reuptake transporters, and alter glutamate signal-
ing, it stands to reason that they could result in similar effects on
WM in healthy, juvenile brains. Thus, modafinil at certain doses
might cause a reduction in NMDA receptor levels, impairments in
short-term plasticity and alterations in long-term plasticity much
as MPH does (Urban et al., 2013). Future studies of modafinil as a
cognitive enhancer should examine this possibility, and establish
whether the drug shows an age- and dose-dependent profile of
effects like the classic psychostimulants.

AMPAKINES—DRUGS FOR TREATMENT OF ALZHEIMER’S
DISEASE—TURNED COGNITIVE ENHANCERS
The final classes of medications we will discuss in this review
are the ampakines, which also have potential for significant
effects on the developing glutamatergic system. Ampakines are
a class of drugs that bind to the glutamatergic AMPA receptor,
enhancing its activity by slowing deactivation and attenuating
desensitization of AMPA receptor currents, increasing synaptic
responses and enhancing LTP (Arai and Kessler, 2007). AMPA
receptors are critically involved in regulating cortical plastic-
ity; trafficking of AMPA receptors to the synapse is crucial for
maintenance of excitability that leads to LTP (Malinow and
Malenka, 2002; Huganir and Nicoll, 2013). However, there is
more to the story of how AMPA regulates excitability; it does
not function alone in the process. A second class of ionotropic
glutamate receptors, NMDA receptors, actually trigger the induc-
tion of LTP; however, these receptors are normally blocked by
magnesium at resting membrane potentials (Dingledine et al.,
1999; Cull-Candy et al., 2001; Paoletti et al., 2013). Activation
of AMPA receptors induces EPSCs, which depolarize the neuron
and remove the magnesium block of NMDA, allowing for the
induction of LTP. Then, NMDA receptors increase trafficking of
more AMPA receptors to the synapse, maintaining the LTP (Lu
et al., 2001; Paoletti et al., 2013). No ampakines are currently
FDA approved, but they are being investigated as treatments for
Alzheimer’s senility, Parkinson’s disease, ADHD, Rhett syndrome,
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schizophrenia, depression, autism, and Angelman syndrome (AS;
Goff et al., 2001; Arai and Kessler, 2007; Ogier et al., 2007;
Wezenberg et al., 2007; Simmons et al., 2009; Baudry et al., 2012;
Silverman et al., 2013). However, they’ve also shown effectiveness
at improving memory and cognition in healthy adult volunteers
and rats (Ingvar et al., 1997; Hampson et al., 1998; Lynch and Gall,
2006; Wezenberg et al., 2007). Ampakines are also being studied
by the US military for use as cognitive enhancers and alertness
promoters for soldiers in high-stress extended combat situations;
the lack of central nervous stimulation (such as would occur
with modafinil, amphetamines or MPH make the ampakines very
attractive (Saletan, 2008). Although ampakines have few adverse
effects at therapeutically relevant concentrations and protect neu-
rons against neurotoxic insults in adults (Arai and Kessler, 2007),
the ampakine faramptor can cause headache, somnolence and
nausea (Wezenberg et al., 2007).

While the ampakines represent perhaps the most promising
group of pharmaceuticals for low-risk cognitive enhancement, as
well as a potential relief for sufferers of psychiatric illnesses, they
are likely not without danger to teens, adolescents, and young
adults. First, very little is known about these drugs; the only
example to reach human clinical trials is Cortex Pharmaceuti-
cals’ CX-717, which was evaluated in Phase I for the treatment
of Alzheimer’s disease; histological damage was seen in animal
studies but Cortex claimed this was an artifact of tissue fixation
(Stoll and Griesel, 2007). The FDA denied the application, and
CX-717 approval halted. None of the other ampakines is known
to currently be in human trials, so little can be proven about
their efficacy or safety in healthy individuals. However, we can
speculate based on knowledge of plasticity and the glutamate
system.

The first concern when stimulating glutamate transmission in
the brain is the potential for excitotoxicity. Glutamate toxicity
generally occurs when excess glutamate storms the AMPA and
NMDA receptors, causing a mass influx of calcium. This excess
calcium in the cells activates a number of enzymes like proteases
and phospholipases, which induce damage to organelles, the cell
membrane, and DNA (Manev et al., 1989; Ankarcrona et al.,
1995). However, activating AMPA receptors directly would cause
a similar mass influx of cations and could also induce excito-
toxicity. A recent study reported that ampakines promote spine
actin polymerization, LTP, and learning in a mouse model of
AS (Baudry et al., 2012). AS is a neurodevelopmental disorder
largely due to abnormal maternal expression of the UBE3A gene
leading to the deletion of E6-associated protein. AS subjects have
severe cognitive impairments for which there are no therapeutic
interventions. Mouse models (knockouts of the maternal UBE3A
gene: “AS mice”) of the disorder have substantial deficits in
LTP and learning. Baudry et al reported that ampakine CX929
significantly enhanced LTP and notably, reduced dendritic spine
abnormality and learning impairments (Baudry et al., 2012). This
minimally invasive drug treatment is certainly promising for AS,
and probably other neurodevelopmental disorders such as fragile
X syndrome and autism (Rueda et al., 2009; Silverman et al., 2013)
as well. However, such a magnitude of effects on synaptic plas-
ticity and dendritic spine integrity also raises serious concern for
immature brains of young children using ampakines as cognitive

enhancers. It is not difficult to imagine that ampakines would
have similar effects on the synaptic transmission and neuronal
communication in the normal brain, eventually eliciting brain
plasticity in the regions that are associated with emotional and
affective functions. This could potentially lead to poor emo-
tional regulation and impaired behavioral inhibition if plastic-
ity is excessive and unregulated. Indeed, one of the important
mechanisms by which the brain connections are maintained and
tuned is through synaptic pruning, whereby highly active synapses
are strengthened and less active synapses are removed through
axon retraction (Luo and O’Leary, 2005; Gazzaniga and Mangum,
2009; Kolb et al., 2012). At first thought, heightened plasticity
might seem to be a benefit—translating to faster learning and
improved cognitive function; however, the excessive plasticity
could also lead to high activity in all synapses and therefore reduce
synaptic pruning. Impairments in synaptic pruning have in fact
been associated with autistic spectrum disorders (Belmonte et al.,
2004). The excessive connectivity leads to a heightened overall
brain activation but the reduction in selectivity of activation is
such that the signal-to-noise ratio is greatly lowered (Belmonte,
2000; Belmonte and Yurgelun-Todd, 2003). Thus, one can clearly
see the potential dangers associated with unregulated plasticity,
and how ampakines (which strengthen synapses and heighten
plasticity by promoting dendritic spine growth) might lead to
autism-like syndromes.

Although no studies have yet noted this in humans, doses of
ampakines given to humans thus far have been tightly controlled.
If the drug became available as a cognitive enhancer, or reached
the black market, individuals could easily exceed safe doses and
suffer neuronal damage from glutamate toxicity. Furthermore,
the main purported therapeutic action of the ampakines is an
alteration of plasticity; they are known to lower the threshold
for induction of LTP and also increase the magnitude of LTP
achieved (Lynch and Gall, 2006). While this alteration of plasticity
may improve many aspects of learning and cognition, such as
alertness, enhancement of LTP will likely come with a concomi-
tant decrease in the opposite direction of plasticity, i.e., LTD.
LTD is crucial for formation of spatial maps, and might play
a role in cerebellar motor learning as well (although studies of
motor performance after LTD impairment have been somewhat
contradictory) (Aiba et al., 1994; Manahan-Vaughan, 2005; Kemp
and Manahan-Vaughan, 2007). Thus, shifting plasticity in favor
of LTP could lead to impairments in spatial memory and perhaps
motor function. Careful determination of a dose-response curve,
excitotoxic effects and species differences in metabolism/reaction
to ampakines will need to be completed in the future in order to
determine their true utility as cognitive enhancers.

CONCLUSION AND FUTURE PERSPECTIVE
In this review, we have examined three major pharmaceuticals
under consideration as cognitive enhancers—MPH, modafinil
and the ampakines. We have reported striking and deeply con-
cerning effects of clinically relevant doses of MPH on the juvenile
prefrontal cortex function and plasticity, compared them to the
potential ramifications of modafinil treatment, and suggested sev-
eral potential risks of ampakine exposure in healthy individuals.
It is clear from the current lack of research in the field that
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much work needs to be done in order to determine the safety of
cognitive enhancers, particularly among adolescents, the popu-
lation most likely to take advantage of these drugs should they
become available. There is already a high demand on college
campuses and in high schools for MPH; thus, many healthy
adolescents and young adults are already being exposed to unreg-
ulated doses of this substance. Understanding the behavioral and
functional ramifications in cellular and molecular changes in the
yet immature brains is paramount to mitigating risks for potential
brain plasticity and consequent emotional and behavioral changes
(Urban and Gao, 2012, 2013).

It is currently unclear if the dose range of stimulants that
translates to effective ADHD symptom alleviation and cognitive
enhancement in the healthy adult will translate to the same
behavioral effects in juveniles; however, our recent studies suggest
that the juvenile brain is hypersensitive to the effects of MPH
(Urban et al., 2012). Thus, even a low, purportedly clinically
relevant dose is likely to cause excessive levels of dopamine and
norepinephrine, and impair executive functions and WM. This
excessive dopamine/norepinephrine is likely also a potential risk
of juvenile treatment with modafinil. It is far less clear how the
ampakines might affect juvenile brain function, but their effects
on plasticity through the glutamatergic system warrants further
exploration. The desire for development of cognitive enhancing
substances is unlikely to diminish with time; it may represent
the next stage in evolution—man’s desire for self-improvement
driving artificial enhancement of innate abilities. It is therefore
the responsibility of scientists and the medical community to
stringently evaluate and research each new candidate substance,
furthering our understanding of the brain in the process. Perhaps
most importantly, the role of age and developmental stage in
individual responses to cognitive enhancing substances needs to
be thoroughly examined. Juvenile metabolic rates compared to
adult are not clear in humans or rodent models; the dose-response
curve for juveniles compared to adults for MPH, modafinil and
the ampakines, as well as many other psychoactive medications,
has not been examined. Finally, a potential long-term ramifica-
tion of early life exposure of the healthy juvenile brain to these
substances is only a very recent emerging topic of research, and
much care needs to be taken to answer the questions expediently.
Cognitive enhancement is no longer a scientific fiction; we must
consider the unique dynamics of the developing brain and pro-
ceed cautiously until thorough safety and efficacy parameters have
been established.
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