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The mammalian claustrum is involved in processing sensory information from the
environment. The claustrum is reciprocally connected to the visual cortex and these
projections, at least in carnivores, display a clear retinotopic distribution. The visual cortex
of dolphins occupies a position strikingly different from that of land mammals. Whether
the reshaping of the functional areas of the cortex of cetaceans involves also modifications
of the claustral projections remains hitherto unanswered. The present topographic and
immunohistochemical study is based on the brains of eight bottlenose dolphins and a wide
array of antisera against: calcium-binding proteins (CBPs) parvalbumin (PV), calretinin (CR),
and calbindin (CB); somatostatin (SOM); neuropeptide Y (NPY); and the potential claustral
marker Gng2. Our observations confirmed the general topography of the mammalian
claustrum also in the bottlenose dolphin, although (a) the reduction of the piriform lobe
modifies the ventral relationships of the claustrum with the cortex, and (b) the rotation
of the telencephalon along the transverse axis, accompanied by the reduction of the
antero-posterior length of the brain, apparently moves the claustrum more rostrally. We
observed a strong presence of CR-immunoreactive (-ir) neurons and fibers, a diffuse
but weak expression of CB-ir elements and virtually no PV immunostaining. This latter
finding agrees with studies that report that PV-ir elements are rare in the visual cortex
of the same species. NPY- and somatostatin-containing neurons were evident, while the
potential claustral markers Gng2 was not identified in the sections, but no explanation for
its absence is currently available. Although no data are available on the projections to and
from the claustrum in cetaceans, our results suggest that its neurochemical organization
is compatible with the presence of noteworthy cortical inputs and outputs and a persistent
role in the general processing of the relative information.
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INTRODUCTION
Dolphins (Delphinidae) are carnivore marine mammals belong-
ing to the Infraorder Odontoceti (toothed whales). Together with
the Infraorder Mysticeti (baleen whales) toothed whales belong
to the taxon Cetacea which is today grouped together with Artio-
dactyla (even-toed hooved mammals) into the single order Cetar-
tiodactyla (Geisler and Uhen, 2005; Thewissen et al., 2007). This
relationship may explain some of their anatomical conformities
and common evolutionary adaptations with domestic animals
like the cow and the pig (for general reference see Slijper, 1979).
However the brain of dolphins possesses some strikingly unique
features, including compression of the longitudinal axis and
expansion of the temporal width, pronounced rotation along the
transverse (inter-insular) axis, essential absence of the olfactory
lobe and nerves, intense folding of the cerebral cortex accompa-
nied by reduced thickness, and general uniformity of columnar

organization in the different topographical areas. On the other
hand, the virtual absence of a typical layer IV in cetaceans (for a
comprehensive review see Manger, 2006) is common also to other
Cetartiodactyla and Ungulates in general (Hof et al., 1999, 2000).
Physiological studies on brain functions and internal connections
are obviously restricted by ethical reasons and by the conse-
quent limited number of published studies. However, a review
of the available information suggests that functional localizations
differ from terrestrial mammals (Oelschläger and Oelschläger,
2009). The visual cortex is not located in the occipital pole, but
shifted dorsally and placed longitudinally, separated from the
inter-hemispheric scissure by the peculiar paralimbic lobe, and
accompanied laterally by the elongated acoustic cortex (Lende
and Akdikmen, 1968; Kesarev and Malofeeva, 1969; for review
see Morgane et al., 1986). Motor and somatosensory cortices
are pushed rostrally almost entirely on the frontal aspect of the
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brain, in relation also to the particularly advanced position of
the cruciate sulcus (Lende and Akdikmen, 1968; Kesarev and
Malofeeva, 1969).

The claustrum is considered to be reciprocally connected to
several cortical areas, and to possess direct involvement in the
processing of sensorimotor information (Crick and Koch, 2005),
with a special relationship to the visual cortex in the cat (Olson
and Graybiel, 1980; Minciacchi et al., 1995) and monkey (Reme-
dios et al., 2010). The topographic shift of the dolphin visual
cortex to a location parallel to the inter-hemispheric cleft, and the
profound modifications of several modalities of somatosensory
inputs (i.e., related to the virtual absence of taste buds in the
tongue, reduction of the hand, and disappearance of the hind
limb) suggest possible functional adaptative modifications of the
claustrum. The claustrum of dolphins (and cetaceans in general)
has never been specifically described, although references to its
position and relationship with the complex insular cortex and
pocket (Jacobs et al., 1984) indicate a predominance of the
infrainsular part, corresponding to the central core of the insular
cortex in parasagittal section. In fact the same authors report
that in the posterior and dorsal insular regions of the bottlenose
dolphin (Tursiops truncatus), the claustrum is “either absent or
present as a discontinuous cell band beneath the insular cortex”,
and in their study the diagrams show a close proximity, if not
contiguity, of the ventral claustrum with the sylvian cleft in the
more caudal extension (Jacobs et al., 1984). The contiguity of the
cetacean claustrum with the cerebral cortex was noted by other
authors in the harbor porpoise (Jelgersma, 1934) and reported in
a comprehensive review (Jansen and Jansen, 1969).

In the present study we intend to investigate the topography
and selected neurochemical characteristics of the claustrum in the
bottlenose dolphin, the most widely studied member of the Fam-
ily Delphinidae. The neurochemical organization of the claus-
trum, as defined by the expression of calcium-binding proteins
(CBPs), selected modulators (neuropeptide Y, NPY; somatostatin,
SOM), and the recognized claustral marker Gng2 (Mathur et al.,
2009) may help understand whether this structure maintains in
dolphins the organization now considered typical of terrestrial
mammals, and whether its neurochemical characteristics are sim-
ilar to those of other mammalian models.

MATERIALS AND METHODS
TISSUE SAMPLES
In this study we used samples of the claustrum obtained from
the brains of eight bottlenose dolphins (see Table 1) stored in

Table 1 | Details of the sampled bottlenose dolphins.

Specimen Sex Origin Age (years)/length/weight Formalin Frozen

ID # 95 F wild 11 (pregnant adult)/285 cm x
ID # 107 M captive 9 /250 cm x x
ID # 110 M wild >2/190 cm /74 kg x
ID # 114 M captive newborn/115 cm x
ID # 133 F captive adult (age uncertain) /248 cm x
ID # 139 M captive 12 /268 cm/198 kg x x
ID # 146 M captive 3.5/226 cm x
ID # 159 M captive >40 /328 cm x

the Mediterranean marine mammal tissue bank (MMMTB) of the
University of Padova at Legnaro, Italy. The MMMTB is a CITES
recognized (IT020) research center and tissue bank (Ballarin et al.,
2005), sponsored by the Italian Ministry of the Environment and
the University of Padova, with the aim of harvesting tissues from
wild and captive cetaceans and distributing them to qualified
research centers worldwide.

Tissue samples consisted of blocks approximately 1 cm thick,
including the claustrum, surrounded by portions of the adjoin-
ing structures (extreme and external capsules, insular cortex,
putamen), carefully dissected (Figure 1) during post-mortem
procedures performed in the necropsy room of the Department
of Comparative Biomedicine and Food Science of the University
of Padova at Legnaro. Post-mortem delay before actual sampling
varied between 18 and 40 h. The samples were fixed by immersion
in 4% buffered formalin, washed in phosphate saline buffer (PBS)
0.1 M, pH 7.4 and subsequently either processed for paraffin
embedding or frozen by immersion in liquid nitrogen-chilled
isopentane at −30◦C. Sections were cut either with a microtome
(6 µm) or a cryostat (20 µm) and subsequently processed for
immunohistochemistry (see below). For each tissue block, one
section out of ten was treated for Nissl stain for general outline,
reference and topography.

IMMUNOHISTOCHEMISTRY
A rabbit polyclonal anti-calretinin (CR) antibody (sc-50453;
Santa Cruz Biotech., Inc., Santa Cruz, CA; dilution 1:200), a
mouse monoclonal anti-parvalbumin (PV) antibody (Clone PA-
235, Cat. # P-3171; Sigma-Aldrich, St. Louis, MO, USA; dilution

FIGURE 1 | Position of the claustrum in Tursiops truncatus. Center,
lateral photograph of the adult brain; the orange bars (A–D) approximate the
levels of subsequent sections. The drawings (A–D) are based on composite
renderings of coronal sections of the dolphin brain, sided by Nissl
preparations obtained approximately at the corresponding levels. In the
drawings the claustrum is represented by a thin red line. Note the reduction
of the endopiriform cortex ventral to the basal ganglia; P, putamen; T,
thalamus; ip, insular pocket. Black scale bar (lateral photograph of the
dolphin brain) = 5 cm; orange scale bar (drawings) = 2 cm.
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1:3000), a mouse monoclonal anti-calbindin-D-28K (CB) anti-
body (Clone CB-955, Cat. # C9848, Sigma-Aldrich, St. Louis,
MO, USA; dilution 1:3000), a rabbit polyclonal anti-CB-D-28K
antibody (Cat. # CB38A, Swant, Bellinzona, Switzerland; diluition
1:10000), a rabbit polyclonal anti-NPY antibody (ab30914;
abcam; dilution 1:3000), a rabbit polyclonal anti-Gng2 anti-
body (HPA003534; Sigma-Aldrich, dilution 1:100), and a rab-
bit polyclonal anti-SOM antibody (ab103790; abcam; dilution
1:700) were used in this study. Epitope retrieval was carried out
at 120◦C in a pressure cooker for 5 min using a Tris/EDTA
buffer pH 9.0. Sections were rinsed in PBS and incubated in
1% H2O2-PBS for 10 min, then pre-incubated in PBS with
0.3% Triton X-100 (TX) (Sigma-Aldrich, St. Louis, MO, USA)
and 5% normal goat serum (Vector Labs, Burlingame, CA) to
reduce non-specific staining. Sections were subsequently incu-
bated overnight in a humid chamber at 4◦C with the primary
antibody diluted in PBS with 0.3% TX and 1% normal goat
serum. After several washings in PBS, sections were incubated
for 1 h at room temperature with biotinylated goat anti-rabbit
(for CR, NPY and SOM) or biotinylated goat anti-mouse sec-
ondary antibodies (for PV and CB) (Vector Labs, Burlingame,
CA), diluted 1:300 in PBS. Sections were then washed for 3 ×
10 min in PBS, and incubated for 1 h at room temperature in
avidinbiotin-horseradish peroxidase complex (PK-6100; Vector
Labs, Burlingame, CA). After washing for 3× 10 min in Tris/HCl
(pH 7.6), peroxidase activity was detected by incubation in a
solution of 0.125 mg/ml diaminobenzidine (Sigma-Aldrich, St.
Louis, MO, USA) and 0.1% H2O2 in the same buffer for 10 min or
by a VIP substrate Kit for peroxidase (Cat. # SK-4600, Vector Labs,
Burlingame, CA).

The amino acid sequence of the proteins investigated in this
article in the claustrum of Tursiops truncatus were compared with
those of other mammals (and especially the rat). For this aim
we used the Ensembl genomic database.1 The sequence of NPY,
SOM, CB and CR is shared for over 93%, whereas correspondence
for Gng2 and PV is over 70%. The specificity of the immuno-
histochemical staining was tested in repeated trials as follows:
substitution of either the primary antibody, the anti-rabbit or
anti-mouse IgG, or the ABC complex by PBS or non-immune
serum. Under these conditions the staining was abolished.

RESULTS
GENERAL TOPOGRAPHY AND SHAPE
Based on the examinations of macroscopic slices of the brain,
followed by analysis of Nissl-stained sections, the claustrum was
detected in all the examined specimens, including newborns. The
topography of the claustrum observed in our experimental series
reflects the general orientation of the dolphin brain, in which
the lateral (temporal) lobes grow considerably, and the lower
(partially olfactory) divisions of the telencephalon are reduced.
The position of the claustrum was clearly identified lateral to the
conspicuous putamen and medial to the insular formation and
relative insular pocket (Figure 1).

In Nissl-stained sections the claustrum appeared thin (not
thicker than 1–2 mm) and dorso-ventrally elongated (up to

1www.ensembl.org

3.5 cm), without an evident endopiriform root as commonly
found in terrestrial mammals. The ventralmost limits of the
claustrum apparently touch the insular cortex with virtual disap-
pearance of the capsula extrema.

IMMUNOHISTOCHEMICAL DATA
Calretinin
In our experimental series, we observed a strong presence of
CR-immunoreactive (-ir) neurons and fibers, both in paraffin-
embedded (Figures 2A–E) and frozen sections (Figures 2F, G).
Positive cells appeared as mono- and bi-polar small (approx.
10 µm) neurons, with a round or fusiform soma. The morphol-
ogy of CR-ir neurons in the claustrum was very different from
that of the typical CR-ir neurons in the cortical columns of the
adjacent insula (Figure 2E).

The distribution of CR-ir elements (Figures 2H–J) did not
show any specific segregation and the neurons were diffuse in all
the parts of the claustrum, although immunostained cells were
scarcer at its dorsal and ventral extremities.

Calbindin
The examined sections showed a diffuse but weak expression of
CB-ir elements (Figures 3A–C). The few positive elements dis-
played a small (approx. 10 µm) mono- or bipolar soma. Positive
fibers were evident throughout the claustrum.

Parvalbumin
The immunostaining for PV revealed no positive cell or fiber in
the claustrum of all the animals examined.

Neuropeptide Y
The whole length of the claustrum is crossed by a mesh of NPY-ir
beaded nerve fibers (Figures 4A, B), with some unipolar, pseudo-
unipolar, and multipolar small-medium (15–20 µm) neurons
(Figures 4C, D). In cryostat cut sections some of these neurons
displayed a well-ramified dendrite arborization (Figures 4E, F).
Also the distribution of NPY-ir elements (Figures 4G–I) did not
show any specific segregation, although immunostained cells were
scarcer at the dorsal and ventral extremities of the claustrum.

Somatostatin
In our experimental series, we identified a few SOM-ir neurons
in the claustrum (Figure 5). Immunostained elements appeared
either as slender bipolar neurons or spherical, with medium
dimensions (approx. 20–25 µm). Fibers were rare.

Gng2
In our experimental series the claustral marker Gng2 was not
identified in any cell or fiber of the claustrum or adjacent brains
structures.

DISCUSSION
The position and relationships of the claustrum in the bottlenose
dolphin described here is based on the analysis of macroscopic
brain slices and Nissl stained sections. The location of the claus-
trum (Figure 6) reflects the changes in the general outline of the
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FIGURE 2 | CR-ir neurons and fibers in the claustrum. (A–D) Images derive
from paraffin-embedded sections. (A, B) Small unipolar neurons surrounded
by beaded fibers; (C, D) several CR-ir beaded fibers cross the whole length of
the claustrum. (E) CR-ir neurons in the insular cortex. (F, G) Immunostained

neurons in frozen sections; (H–J) localization of CR-ir neurons in whole
sections ((H) Nissl stain, (I–J) immunocytochemistry); J represent an
enlargement of the black rectangle in I Scale bars: A, B = 50 µm; C, D, E, J =
100 µm; F, G = 20 µm; H, I = 2 mm.

FIGURE 3 | CB-ir neurons in the claustrum. (A–C) Immunoreactive
neurons in paraffin-embedded sections. Scale bars etc.

brain and consequently the modifications of its internal organi-
zation and topography. The absence of a complete endopiriform
cortex as such (due to the lack of olfactory bulbs and related
structures) limits the development of the so-called “endopiri-
form” part of the claustrum, and modifies its ventral outline.

The rostro-ventral part of the dolphin claustrum surrounds the
ventral borders of the insular pocket, but shows no medial pro-
jections towards the midsagittal plane as in terrestrial mammals
including man. The extreme reduction of the Ammon’s horn and
the hippocampal formation in general (Morgane et al., 1982),
sensibly changes the disposition of ventro-lateral structures in
the temporal lobe, and their reciprocal relationships. In man and
other primates the caudalmost part of the claustrum terminates
dorsal to the tail of the caudate nucleus and the hippocampus.
This latter disposition is absent in the dolphin, in which the
pronounced rotation of cerebral components along the transverse
(inter-insular) axis (Figure 1; for detailed description and an
interpretation see Morgane et al., 1980), and the reduction of
olfaction-related limbic structures places the caudal extremity of
the claustrum more anteriorly (see Figure 6). In a dated but well
known review on the cetacean nervous system (Jansen and Jansen,
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FIGURE 4 | NPY-ir fibers (A, B) and neurons (C, D) in paraffin-embedded
sections of the claustrum; (E, F) NPY positive neurons in frozen sections;
(G–I) localization of NPY-ir neurons in whole sections ((G) Nissl stain,

(H–I) immunocytochemistry); I represent an enlargement of the black
rectangle in H. Scale bars = A, C, D = 50 µm; B, I = 100 µm; E, F = 20 µm;.
G, H = 2 mm.

1969), it was noted that “the claustrum extends rostrolaterally
beyond the limits of the putamen”, with reference to the harbor
porpoise (Jelgersma, 1934). The disposition of the claustrum that
we describe here in Tursiops truncatus overlaps what reported for
the common dolphin Delphinus delphis, at least based on a series
of transverse sections of the brain (Pilleri et al., 1980).

Our data confirm what was reported in the drawings of the
seminal paper on the bottlenose dolphin insula by Jacobs et al.
(1984), in which the ventral extremity of the claustrum is attached
to the insular cortex and the opercular gyri at the level of the insu-
lar pocket. We also noted contiguity between the insular cortex
and the ventral extremity of the claustrum. We emphasize this
topographical relationship in view of its ontogenetic significance
for the origin of the claustrum. As well known, the claustrum may

derive from (a) the putamen and basal ganglia; (b) the insular
cortex; or possibly (c) a combination of both (Edelstein and
Denaro, 2004). A recent study (Pirone et al., 2012), performed on
post-mortem human brains, identified the presence of a potential
claustral marker, the protein Gng2, formerly developed in rodents
(Mathur et al., 2009), in the insular cortex and claustrum, but
not in the putamen, thus suggesting a possible common origin
of the former two structures. There is presently no information
on how much the structure of Gng2 is conservative among
mammals, and the eventual presence of different isoforms of this
protein in cetaceans may explain the lack of immunoreactivity
in our experimental series. However, contiguity between cortex
and claustrum, as we observed in the bottlenose dolphin, may
reinforce the insular hypothesis.
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FIGURE 5 | SOM-ir fibers and neurons in the claustrum. (A–B) Images
from paraffin-embedded sections. Scale bars etc.

FIGURE 6 | Schematic representation of the claustrum (C, bright green)
of the bottlenose dolphin shown through the dorsal aspect of the
brain. The pale colors on the right side represent functional areas of the
cortex: M (yellow), motor cortex; S (green), somatosensory cortex; V
(gray-green), visual cortex; A1 (pale blue), primary auditory cortex; A2 (pale
pink), secondary auditory cortex; PL (no color), paralimbic lobe.

The presence of CBPs in the claustrum has been described in
several mammalian species (Reynhout and Baizer, 1999; Ángeles
Real et al., 2003; Wojcik et al., 2004; Rahman and Baizer, 2007),
and a recent detailed study reports the distribution of PV in the
human claustrum (Hinova-Palova et al., 2013). Former studies on
the distribution of CBPs in the auditory and visual cortex of the
bottlenose dolphin (Glezer et al., 1995, 1998) identified only very
few PV-ir neurons, contrarily to what observed in the macaque
Macaca fascicularis, in which PV was present or even prevalent in
both systems. Furthermore, PV-ir neurons in the visual cortex of
selected cetacean species were scarce except in layers IIIc/V and
VI (Glezer et al., 1993). On the other hand, the GABA component
seems not different between cetaceans and terrestrial mammals
(Garey et al., 1989). Our data indicate that PV is not expressed
in the claustrum of the bottlenose dolphin, a fact that may be
related to the paucity of PV-ir neurons in the visual cortex of
the same species described in the reports cited above. Considering
that the PV amino acid sequence in dolphins shows a 70% identity
with the corresponding protein of terrestrial mammals, additional

studies are required to further clarify this issue and its important
implications in terms of claustro-visual projections. However
we’d like to emphasize that our experimental procedures were
performed under the same conditions applied in our laboratory
to the primate claustrum in which a clear, well evident presence
of a network of PV-containing elements was observed (data not
shown), even when the brains suffered a post-mortem interval
prior to sampling possibly longer than that of the bottlenose
dolphins described here.

CR-ir neurons were described in the visual cortex of Tur-
siops truncatus (Glezer et al., 1992) and CR- and CB-ir neurons
were identified especially in the auditory system of the same
species (Reynhout and Baizer, 1999). In our series mono- or
bi-polar neurons CR-ir were easily identified in the claustrum,
and a few CB-ir neurons were also evident. The dorsal claus-
trum receives important visual projections from the occipital
cortex in the cat (LeVay and Sherk, 1981), while the visual
claustrum is instead ventral in primates (Remedios et al., 2010).
The apparent reduction of the ventral part of the claustrum that
takes place in the bottlenose does not imply curtailed visual
projections, but may simply reflect a different topography of
visual inputs/outputs as reported in other species. We emphasize
here that the dolphin visual cortex shifts dorsally (see Figure 6),
and a re-shaping of the internal organization of the claustrum
may be plausible, with the visual domains potentially moving
dorsally within the nucleus. The visual cortex of the dolphins
shows a specific organization, containing both a heterolaminar
part/component, with an incipient layer IV, and a homolami-
nar one, where layer IV is absent, as elsewhere in the cortex
(Morgane et al., 1988), a feature typical of Cetartiodactyla (Hof
et al., 1999, 2000). The mostly agranular visual cortex of the bot-
tlenose dolphin has been discussed in details (Garey et al., 1985;
Morgane et al., 1990), but its projections remain undetected.
In a retrograde tracer study performed on Phocoena phocoena
(Revishchin and Garey, 1990), the visual cortex was found to
project to the lateral geniculate nucleus and inferior pulvinar,
but no connection was precisely identified outside the thalamus.
We note here that PV-ir elements are particularly abundant in
layer IV of the somatosensory and auditory cortices of several
mammalian orders (Sherwood et al., 2009), but CR and CB
are the predominant CBPs in the Cetartiodactyla cortex (Hof
et al., 1999, 2000), lacking layer IV. Our data indicate that in the
bottlenose dolphin CR is the prevalent CBP in the claustrum,
thus suggesting its potential role for reciprocal claustro-cortical
connections.

The cellular types that we illustrate here correspond to those
described in other species (for review see Edelstein and Denaro,
2004). NPY and SOM are expressed in neurons of the primate
(Smith et al., 1985) and rodent claustrum (Kowiański et al.,
2008). Due to the plausible common origin of claustrum and
insular cortex (Pirone et al., 2012), we can only speculate that
claustral and cortical interneurons may play similar functional
roles. In the neocortex, Martinotti cells, which target the apical
tuft of pyramidal dendrites, express SOM (Markram et al., 2004).
Similarly, NPY expressing neurons are able to modulate Ca2+-
dependent currents in the distal dendrites in pyramidal neurons
(Hamilton et al., 2013). On the contrary, PV interneurons mainly
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target the soma and proximal dendrites of principal neurons
(Markram et al., 2004). Therefore, given the presence of NPY
and SOM interneurons in the dolphin claustrum, along with the
absence of PV, it is possible that the cetacean claustrum might
display a prevalence of interneurons with putative synapses onto
distal dendrites of projecting neurons. The functional significance
of this peculiar feature would deserve further examination.

Our observations confirmed the general outline of the mam-
malian claustrum also in the bottlenose dolphin, even if the
reduction of the piriform lobe modifies the ventral relationships
with the cortex.

Although no data are available on the projections to and
from the claustrum in cetaceans, our results provide evidence
that its neurochemical organization is compatible with the pres-
ence of cortical inputs and outputs and a persistent role in the
general processing of the relative information. PV-containing
interneurons, absent in the claustrum of the bottlenose dol-
phin, are important fast-spiking elements in the cortex (Moore
et al., 2010) and neostriatum (Tepper et al., 2004). Whether
the particular display of CBPs in the dolphin claustrum may
be functionally related to the structural organization of the
cortex (Morgane and Jacobs, 1972; Kern et al., 2011); to the
shift in the functional areas (Oelschläger and Oelschläger, 2009);
to the virtual absence of binocular vision and the fact that
the retina projects almost exclusively to the contralateral hemi-
sphere (Ridgway, 1990; Tarpley et al., 1994); or to the pecu-
liar mono-hemispheric sleep pattern (Mukhametov et al., 1977;
see Lyamin et al., 2008 for a recent review), awaits further
verification.
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