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The ability to learn contingencies between actions and outcomes in a dynamic
environment is critical for flexible, adaptive behavior. Goal-directed actions adapt to
changes in action-outcome contingencies as well as to changes in the reward-value of
the outcome. When networks involved in reward processing and contingency learning
are maladaptive, this fundamental ability can be lost, with detrimental consequences for
decision-making. Impaired decision-making is a core feature in a number of psychiatric
disorders, ranging from depression to schizophrenia. The argument can be developed,
therefore, that seemingly disparate symptoms across psychiatric disorders can be
explained by dysfunction within common decision-making circuitry. From this perspective,
gaining a better understanding of the neural processes involved in goal-directed action,
will allow a comparison of deficits observed across traditional diagnostic boundaries
within a unified theoretical framework. This review describes the key processes and
neural circuits involved in goal-directed decision-making using evidence from animal
studies and human neuroimaging. Select studies are discussed to outline what we
currently know about causal judgments regarding actions and their consequences,
action-related reward evaluation, and, most importantly, how these processes are
integrated in goal-directed learning and performance. Finally, we look at how adaptive
decision-making is impaired across a range of psychiatric disorders and how deepening
our understanding of this circuitry may offer insights into phenotypes and more targeted
interventions.
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GOAL-DIRECTED ACTION AND ITS RELEVANCE TO
PSYCHIATRY
Flexible behavior is fundamental for adapting to a changing
environment. In this context, learning the consequences of an
action and the value of those consequences are critical precursors
for choosing the best course of action. Impairment in either
process, or a failure to integrate them with action selection, leads
to aberrant decision-making, with detrimental consequences
for achieving goals and real-world functioning. Dysfunctional
decision-making is common across a range of psychiatric dis-
orders, and indeed, it has been argued that many psychiatric
symptoms are associated with dysfunction in either learning or
reward circuitry (cf. Nestler and Carlezon, 2006; Martin-Soelch
et al., 2007). Determining how the brain supports each step in
achieving flexible, goal-directed behavior is, therefore, not only
a major goal of decision neuroscience, but may also provide
valuable insight into the neurobiology and attendant functional
disabilities associated with psychiatric illness.

Decades of research in associative learning have provided key
insights into the behavioral and biological processes that mediate
goal-directed action. One advantage of this approach has been
the development of testable structural and functional hypotheses,
and the invention of critical behavioral paradigms specifically

to assess predictions from these hypotheses. We argue that this
approach provides a unique opportunity to systemically explore
the decision-making deficits commonly observed in clinical pop-
ulations, and allows for the classification of a variety of decision-
making impairments within a common framework. In this review,
we first describe the psychological determinants of goal-directed
behavior, and the evidence for how these processes map onto
specific neural circuits. We will then use this framework to assess
how these processes may be affected in common symptoms
within three clinical disorders: schizophrenia, attention-deficit
hyperactivity disorder (ADHD), and depression. Behavioral and
neurobiological heterogeneities exist within traditional disorder
classifications, as well as commonalities across diagnostic bound-
aries. We argue that knowledge of specific decision-making pro-
cesses and their neural bases may provide a unifying framework,
using which we can classify deficits across psychiatric disorders to
produce a functionally–and biologically -driven understanding of
psychopathology.

WHAT IS GOAL-DIRECTED ACTION?
Formally, goal-directed action reflects the integration of two
sources of information: (1) knowledge of the causal consequences
or outcome of an action; and (2) the value of the outcome
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(Dickinson and Balleine, 1994; Balleine and Dickinson, 1998).
The integration of both of these features, causal knowledge and
reward value, is essential in producing goal-directed actions.
Impairments in such actions can arise through a deficiency in
either process, or through an inability to integrate them appro-
priately to guide decision-making. We will first discuss each of
these features in turn and the key neural substrates that current
research suggests are involved in these processes. We will then
turn to potential deficits in these processes using examples of
specific psychopathology, and in particular, how they are related
to symptoms common to depression, schizophrenia and ADHD.

CAUSAL LEARNING AND ACTION-OUTCOME ENCODING
Knowledge regarding the causal consequences of specific actions
emerges from the experienced contingency. Such contingen-
cies can be positive, promoting performance of an action, or
inhibitory; i.e., in some situations actions may prevent a desired
outcome and, in these situation, actions should be withheld
(Dickinson, 1994). Considerable research using tasks such as the
Iowa Gambling Task (IGT; Bechara et al., 1994) and the Wisconsin
Card Sorting Task (WCST; Grant and Berg, 1948) suggests that
humans and rats are exquisitely sensitive to feedback contingent
on their actions, and can flexibly update their choices based on
that feedback. However, because specific choice problems are
signaled using unique discriminative or localized cues in these
tasks, choice performance could reflect knowledge of the action-
outcome contingency or associations between the action or the
outcome with these task-related cues. This is a non-trivial distinc-
tion; as we shall review below, research has shown that different
psychological processes and neural circuits exert control when
actions are guided by environmental stimuli or by the action-
outcome contingency (see Balleine and Ostlund, 2007; Balleine
and O’Doherty, 2010 for reviews).

Experimentally, we are able to determine the degree to which
choice is guided by the action-outcome contingency using contin-
gency degradation tests. In such tests a specific action-outcome
contingency is degraded by introducing an outcome in the
absence of its associated action, thereby reducing the causal rela-
tionship between them. This treatment decreases the performance
of the degraded action in goal-directed agents (Hammond, 1980;
Balleine and Dickinson, 1998). For example, Balleine and Dickin-
son trained rats to perform two actions, lever pressing and chain
pulling, with one action earning sucrose and the other, food pel-
lets. They subsequently delivered one of the two outcomes non-
contingently, such that the probability of receiving that outcome
was the same whether the rat performed its associated action or
not. This produced a selective decrease in the performance of the
degraded action. Similarly, it has been demonstrated in healthy
humans that the degree of contingency degradation is negatively
correlated with the rate of performance and with judgments
regarding how causal an action is with respect to its outcome
(Shanks and Dickinson, 1991; Liljeholm et al., 2011).

A SPECIFIC CORTICOSTRIATAL CIRCUIT MEDIATES THE CAUSAL
EFFECTS OF ACTIONS
Systematic use of contingency degradation tasks in rodent
studies has identified specific regions of prefrontal cortex and

dorsomedial striatum necessary for encoding the action-outcome
contingency (Corbit and Balleine, 2003; Yin et al., 2005; Lex
and Hauber, 2010). In humans, there is evidence that homol-
ogous regions to those in rodents, i.e., the medial prefrontal
cortex (mPFC) and anterior caudate, play a similar role in con-
tingency sensitivity (cf. Balleine and O’Doherty, 2010). Tanaka
et al. (2008) and Liljeholm et al. (2011) manipulated experienced
action-outcome contingencies, and observed positive modulation
of blood oxygenation level dependent (BOLD) activity in the
human mPFC, and anterior caudate nucleus (aCN). Furthermore,
mPFC activity reflected the local experienced correlation between
responding and reward delivery, consistent with a role in the
online computation of contingency (Tanaka et al., 2008). Acti-
vation of the aCN can also occur even fictively, in cases where a
contingency between action and outcome is perceived where one
does not actually exist (Tricomi et al., 2004), whereas subjective
causality judgments have been shown to correlate with activity in
the mPFC, along with the dorsolateral prefrontal cortex (dlPFC),
a region implicated in top-down cognitive control (Tanaka et al.,
2008). As shown in the green in Figure 1A, these data suggest
that signals produced in the mPFC may be relayed to the aCN,
where changes in contingency can be assimilated with evaluative
information from other cortical regions.

Further evidence for the importance of the caudate in con-
tingency sensitivity and in guiding action selection comes from
studies in non-human primates. Samejima et al. (2005) recorded
from striatal neurons during a choice task in which monkeys
made left or right actions to obtain reward. Importantly, on
some trials, action-outcome contingencies were similar whereas
on others they differed so that activity related to the action
value (in this instance, the strength of the action-outcome con-
tingency) could be dissociated from the motor choice. They
found that a large number of striatal neurons encoded action
values, which subsequently influenced the probability of select-
ing a particular action. Lau and Glimcher (2007) also found
populations of neurons in the caudate that encoded actions
and outcome post-choice. The temporal correlation of neu-
ronal firing rates with behavior suggested that the caudate
not only represents the contingency of potential options, but
might also update this information once the outcome has been
received.

THE ROLE OF VALUE IN GOAL-DIRECTED DECISION-MAKING
In addition to causal knowledge, determining the current value
of available outcomes in the context of current internal states
or contexts is also critical for adaptive decision-making. For
example, a state of hunger increases the desirability or incen-
tive value of food relative to a satiated state, and increases its
motivational impact. Outcome revaluation procedures exploit
these variations in value. A common means of changing the
value of a specific food is using sensory-specific satiety (Rolls
et al., 1981). For example, in studies in which rats were trained
to perform two actions for distinct outcomes, giving them an
extended opportunity to eat one or other outcome altered the
desirability of that outcome without affecting the value of the
other uneaten outcome (Balleine and Dickinson, 1998). When
given the opportunity to choose between the two actions in the
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FIGURE 1 | Cortico-striatal circuits involved in instrumental conditioning.
(A) Evaluative learning processes, shown in red, are mediated by bilateral
connections between the medial orbitofrontal cortex (mOFC) and basolateral
amygdala (BLA), which are relayed to the anterior caudate nucleus (aCN).
Contingency learning processes, shown in green, are thought to occur in the
medial prefrontal cortex (mPFC) and are relayed to the aCN to mediate
control of action selection. Reward information is also relayed to the nucleus
accumbens (NAc) to provide motivational drive for the performance of
instrumental behaviors. The dlPFC and dorsal anterior cingulate cortex (dACC)
play a role in comparing action values and can exert a modulatory influence

over circuits involving prefrontal and aCN activity. Together, the contingency
and evaluative circuits allow for the acquisition of goal-directed behaviors. (B)
Stimulus-response associations, or habits, are mediated by projections from
premotor (PM) and sensorimotor cortices (SM) to the posterior putamen (Pu).
(C) The lateral orbitofrontal cortex (lOFC) and the BLA encode the value
assigned to reward predictive stimuli, which the NAc uses to mediate
instrumental performance. Mid-brain dopamine modulates plasticity in the
dorsal striatum, and is associated with motivational processes in the ventral
striatum. The balance between striatal output to the direct (D1) and indirect
(D2) pathways serves to promote or inhibit behavior, respectively.

absence of any reward delivery (to prevent learning about the
association between the action and the new outcome value during
the test) the rats clearly preferred the action that had previously
earned the outcome they had not eaten. Selective decreases in
the performance of actions associated with a devalued outcome
provide clear evidence that, in conjunction with knowledge of the
action-outcome contingency, action selection is governed by the
current value of the outcome.

An alternate means of revaluing the outcome used in animal
research is conditioned taste aversion whereby an outcome is
paired with a mild toxin such as lithium chloride that induces
gastric malaise. In humans disgust can also be a useful tool for
devaluing outcomes. For instance, food desirability ratings can
be decreased considerably when an otherwise preferred outcome
has been paired with an aversive taste (e.g., Baeyens et al.,
1990).

THE OFC AND vmPFC PLAY A ROLE IN ENCODING VALUE RELATIVE TO
THE CURRENT MOTIVATIONAL STATE
The OFC and, more broadly, the vmPFC, illustrated in red in
Figure 1A, have long been argued to be critical for signaling

the current value of an outcome. Single unit recording studies
in hungry non-human primates found unit responses in the
caudolateral OFC during presentation of a pleasant odor or taste,
which decreased to baseline when the monkey were satiated
(Rolls et al., 1989). Similarly, when humans were presented with
food outcomes, the degree of hunger and pleasantness caused
graded OFC/vmPFC BOLD activity (Morris and Dolan, 2001;
Kringelbach et al., 2003) that was reduced after satiation with
the presented food (O’doherty et al., 2000; Small et al., 2001;
Valentin et al., 2007). Interestingly, this reduction in activity was
evident even when using instructed devaluation, where partic-
ipants were simply told via a red X over a predictive stimulus
that the outcome was no longer valuable (de Wit et al., 2009)
suggesting that revaluation, whether through visceral or cognitive
treatments, affects value via a common neural pathway. These
data advance the idea that the OFC undertakes simple economic
valuation and emphasize its role in determining outcome value
in the context of the current motivational state. Jones et al.
(2012) have further developed this idea, arguing that the OFC
is required when value is inferred from associative structures
(i.e., value is computed based on the current state), but not
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when relying on pre-computed values stored from previous
experience.

It is important to note that BOLD activation during eval-
uation has been reported within both the lateral and medial
portions of the OFC. There is, however, evidence for cytoarchitec-
tural and functional heterogeneity within the OFC (Carmichael
and Price, 1995; Elliott et al., 2000; Kahnt et al., 2012), sug-
gesting that studies using reward-predictive cues are utiliz-
ing alternate or additional learning processes. Though there is
still considerable debate on this topic, a converging view is
that the mOFC is involved in updating the expected values
of different experienced outcomes, whereas the lateral OFC is
responsible for the formation and updating of values derived
from Pavlovian stimulus-outcome associations (Walton et al.,
2010; cf Balleine et al., 2011; Fellows, 2011; Noonan et al.,
2011, 2012; Rudebeck and Murray, 2011; Klein-Flügge et al.,
2013). Both the predicted value of an outcome based on the
presence of a Pavlovian cue, and the experienced value of
an instrumental outcome, are incentive processes that play an
important role in motivating behavior. Due to the differing
circuitry and learning processes (instrumental vs. Pavlovian)
however, paradigms that disentangle these processes provide
clearer information.

THE INFLUENCE OF A LIMBIC CORTICO-STRIATAL CIRCUIT ON THE
VALUE OF OUTCOMES AND CUES THAT PREDICT OUTCOME DELIVERY
Whereas the mOFC is computing current outcome value, the
basolateral amygdala (BLA) plays a more fundamental role, link-
ing value information with the sensory features of the reward
or reward-related cues (see Figure 1A). A series of studies by
Balleine et al. (2003) found that lesions of the BLA attenuated
the sensitivity of rats to outcome devaluation, both when tested
in extinction and with the outcome present. Furthermore, BLA
lesions have been found to abolish the selective excitatory effects
of reward-related cues whilst sparing the general motivational
effects that such cues exert over responding (Corbit and Balleine,
2005). In humans, Jenison et al. (2011) acquired single neuron
recordings from the BLA whilst subjects made monetary bids
on food items that were presented to them as pictorial stimuli.
Firing rates were linearly related to the monetary value assigned
to food item stimuli, supporting a role for the BLA in assigning
value to stimulus events. The strength of association between
incentive value (either positive or negative) and both the features
of outcomes and predictive cues not only determines their valence
but also the magnitude of evaluative judgments, in keeping with
a range of human imaging studies that have concluded the amyg-
dala provides an overall magnitude signal for value judgments,
or the interaction between intensity and valence (Anderson et al.,
2003; Arana et al., 2003; Small et al., 2003; Winston et al.,
2005).

Extensive anatomical connectivity exists between the OFC and
BLA (see Figure 1A; Stefanacci and Amaral, 2002; Ghashghaei
et al., 2007) allowing them to work closely together in encoding
and retrieving value information (see Holland and Gallagher,
2004, for a review). Indeed, damage to the BLA can produce sim-
ilar deficits to those observed from damage to the OFC (Hatfield
et al., 1996; Baxter et al., 2000). However, no brain region acts in

isolation, something clearly demonstrated when brain structures
are left intact and only their anatomical connections with other
structures are severed. Using OFC-BLA contralateral disconnec-
tion lesions, Zeeb and Winstanley (2013) found that rats were
unable to update their choice preference following reward deval-
uation. This effect occurred both when the reward was delivered
during test and also during extinction when rats needed to rely on
stored representations of the outcome. The rats with disconnected
OFC and BLA, however, did not differ from controls in their press
rates or response latencies, suggesting an impairment specific to
altering the value of a particular reward rather than a general
reduction in motivation. Similar effects have been observed in
humans where structural and functional connectivity between the
OFC and BLA was found to correlate with rate of acquisition on a
reversal learning task (Cohen et al., 2008).

The nucleus accumbens (NAc) also receives excitatory affer-
ents from the OFC and BLA (amongst other regions), and
selectively gates information projecting to basal ganglia output
nuclei (Figure 1A; Alheid and Heimer, 1988; Groenewegen et al.,
1999). It is often described as the limbic-motor interface, medi-
ating the effect of reward value on action selection (Mogenson
and Yim, 1991). Lesions of the NAc core impair the ability of
rats to selectively reduce responding after outcome devaluation,
demonstrating reduced sensitivity of instrumental performance
to changes in outcome value (Corbit et al., 2001; Corbit and
Balleine, 2011; Laurent et al., 2012) Importantly, lesions of the
NAc also cause a reduction in the vigor of performance, indicat-
ing that this region may be involved in how the general moti-
vating properties of reward-related stimuli affect performance
(Balleine and Killcross, 1994; Corbit et al., 2001). Interestingly,
NAc lesions do not impair sensitivity to selective contingency
degradation, revealing that this region does not itself encode
the action-outcome contingency but, rather, brings changes in
reward value to bear on performance (Corbit et al., 2001). These
key evaluative circuits are represented by the red connections in
Figure 1A.

ACTION VALUES: THE INTEGRATION OF CONTINGENCY AND VALUE
The value of an action is a product of its contingency with a
particular outcome and the desirability of that outcome. As a
consequence, interest has grown in the analysis of the neural
circuits involved in computing these action values. Studies using
trial-and-error action-based learning tasks have reported action
value-related signals in the supplementary motor area, where
actions are presumably planned before execution. In contrast,
BOLD activity in the vmPFC was modulated by the expected
reward signal of the chosen action, suggesting that this region
provides the agent with feedback about the consequences of
their actions to guide future choices (Gläscher et al., 2009;
Wunderlich et al., 2009; FitzGerald et al., 2012; Hunt et al.,
2013). Camille et al. (2011) found that humans with dorsal
anterior cingulate cortex (dACC) damage were unable to main-
tain the correct choice between actions after positive feedback,
suggesting that this region is critically involved in updating
action values, perhaps passing feedback from the vmPFC to
the action planning areas in the supplementary motor areas via
the aCN.
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Top-down cognitive control exerted by such structures as
the dlPFC and dACC may also modulate the integration of
value and contingency, and its conversion into performance. Kim
and Shadlen (1999) and Wallis and Miller (2003) found dlPFC
neurons that encoded both reward value and the forthcoming
response, whereas Kim et al. (2008) found neurons that ramped
up or down in their firing rate with increasing or decreasing action
values until a choice was made. In the ACC, neural signals resem-
bling the difference between action values, or a combination of
movement intention and reward expectation, have been reported
(Matsumoto et al., 2007; Seo and Lee, 2007; Wunderlich et al.,
2009). Furthermore, lesions of this area in non-human primates
and humans produces deficits in action-based choice (Kennerley
et al., 2006; Camille et al., 2011). Although there is less agreement
about the distinctions in function of the dlPFC and ACC, it is clear
that disturbances within these regions radically alter goal-directed
choice.

We do know however that the anterior caudate, a part of the
associative striatum, is a critical node in the goal-directed net-
work, receiving evaluative input from the BLA and OFC, as well as
contingency input from the dlPFC and mPFC. This is supported
by data showing that the integration of dopamine and glutamate
neurotransmission within this region enables learning and action
control by shaping synaptic plasticity and cellular excitability
(Shiflett and Balleine, 2011a). In particular, the extracellular
signal-regulated kinase (ERK) is particularly important for goal-
directed action control due to its sensitivity to combined DA and
glutamate receptor activation (Shiflett et al., 2010; Shiflett and
Balleine, 2011b). Thus, perturbation of ERK activation associated
with various forms of psychopathology and/or drug abuse may
produce deficits in goal-directed control. Nevertheless, the role
of this region in mediating information from limbic and cortical
networks has only relatively recently been recognized in other
forms of psychopathology such as that involved in schizophrenia
(Howes et al., 2009; Kegeles et al., 2010; Simpson et al., 2010).

SUMMARY OF NEUROBIOLOGY OF GOAL-DIRECTED LEARNING
In summary, the vmPFC is a functionally complex region crit-
ically involved in networks that compute and update outcome
values based on feedback or changes in state. The BLA assists
in this process by associating incentive value with the sensory
information that informs the agent of the reward properties of
outcomes, whilst the NAc brings this evaluative information to
bear on performance. Simultaneously, the associative striatum
and mPFC are also involved in the learning of action-outcome
associations, providing information on how to obtain desired out-
comes. Together, these processes are integrated in the associative
striatum to produce goal-directed behavior. For the purpose of
brevity, we have focused on what we believe are the key neural
regions involved in goal-directed learning. It must be acknowl-
edged, however, that many other regions likely contribute to these
processes in ways that are not yet fully understood.

STIMULUS-DRIVEN EFFECTS ON INSTRUMENTAL BEHAVIOR
Multiple learning systems are involved in the production of
healthy everyday behavior. So far we have focused on behav-
ior guided by goals rather than cues. Goal-directed processes

allow for flexible choices in the face of changing environmen-
tal contexts and conditions. Under stable conditions however,
the consequences of actions need not be continually assessed.
In these instances, habitual actions, established by the forma-
tion of stimulus-response associations, allow reflexive, cue-driven
responses to occur at higher speeds and with lower cognitive
load (see Figure 1B). The associative systems mediating goal-
directed actions and habits are thought to coexist and compete
for behavioral control in adaptive decision-making (Dickinson
and Balleine, 1993). Another major learning process influencing
behavior is the formation of Pavlovian stimulus-outcome associ-
ations and conditioned responding (see Figure 1C). Cues associ-
ated with reward are able to evoke reward anticipation, which may
subsequently guide or bias instrumental choices. Both reward-
predictive cues and the experienced value of an instrumental out-
come are important incentive processes that play an essential role
in motivated behavior. Importantly however, although both may
be able to induce reward approach behavior, Pavlovian cues exert
their effects on actions through stimulus, rather than outcome
value, control.

As depicted in Figure 1, these learning systems are situated in
functionally organized cortico-basal ganglia loops. The cortical
regions of each system send topographically organized inputs
to the striatum—motivational or limbic input to the ventral
striatum, associative input to the aCN and anterior putamen, and
sensorimotor input to the posterior putamen (Nakano, 2000).
From the striatum, GABA-ergic medium spiny neurons (MSNs)
project to the principle striatal output nuclei, the substantia nigra
pars reticulata (SNr) either directly or indirectly via the globus
pallidus pars externa (GPe) and subthalamic nucleus (STN).
Whereas MSNs in the direct pathway predominantly express
dopamine D1 receptors and activate behavioral functions, those
in the indirect pathway express dopamine D2 receptors and tend
to suppress behavior (Albin et al., 1989). The ascending dopamin-
ergic system, projecting to the striatum from the substantia nigra
pars compacta (SNc) and ventral tegmental area (VTA), plays
an important role in modulating activity within these pathways
due to their differential expression of D1 and D2 receptors.
These modulate the activity of the MSNs bidirectionally; whereas
dopamine increases the activity in D1 expressing MSNs, it reduces
the activity of D2 expressing MSNs (Gerfen and Surmeier, 2011).

THE BREAKDOWN OF GOAL-DIRECTED PROCESSES IN
PSYCHIATRIC AND NEURODEVELOPMENTAL DISORDERS
The nature of the interaction and cooperation between goal-
directed and habitual control processes during decision-making
has particular implications should problems arise in the cogni-
tively demanding goal-directed system. Under such conditions,
behavioral control may become dominated by dysregulated habit-
ual control, resulting in the loss of flexibility of thought, and
the increased stereotypy and behavioral disinhibition character-
istic of many psychiatric conditions. Deficits in incentive pro-
cesses may also produce a range of motivational dysfunctions.
Having outlined these processes and their interaction in healthy
decision-makers, together with the key neural systems involved
above, we turn to consider whether deficits in goal-directed
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decision-making in psychiatric disorders map onto a common
framework. Here we review select evidence for patterns of deficits
in outcome sensitivity, action-outcome contingency awareness,
and in the integration of these features with action selection
in three disorders known for their motivational and cognitive
deficits: schizophrenia, ADHD and depression.

SCHIZOPHRENIA
Motivational and associative learning dysfunction have long been
noted in schizophrenia, and have been implicated in positive,
negative and cognitive symptomology (Gold et al., 2008). It is
often noted that individuals with schizophrenia experience dif-
ficulties using emotional states, prior rewards and goals to drive
goal-directed action (Barch and Dowd, 2010); i.e, the relationship
between value representations and action selection appears to be
lost (Heerey and Gold, 2007; Gold et al., 2008; Heerey et al.,
2008). We propose that this is due to what amount to functional
disconnections within the cortico-striatal loops responsible for
integrating evaluative and contingency learning for goal-directed
action selection.

Reduced sensitivity to changes in reward value
Negative symptoms such as anhedonia (an inability to experi-
ence pleasure) and avolition (a reduced motivation to engage in
motivated goal-directed behavior) seem to suggest valuation and
action selection deficits are primary in this disease. Anhedonia
may be produced by a breakdown in the evaluative circuits
responsible for the actual consummatory pleasure experienced
from the reward (i.e., the red circuit in Figure 1A). Recently
however, a number of studies have shown that, on experiencing
or consuming rewards, hedonic ratings are often not significantly
reduced compared to controls (Burbridge and Barch, 2007; Gard
et al., 2007; Heerey and Gold, 2007) and we have found similar
effects in the lab. If evaluative learning is intact, then the critical
deficit may lie in anticipating hedonic consequences (reward
value) or in using experienced reward values to guide action-
selection. Numerous behavioral and neuroimaging studies have
focused on whether patients can anticipate reward values. For
example, patients with severe avolition fail to choose stimuli
associated with monetary reward over a stimulus indicating the
avoidance of monetary loss (i.e., no reward) (Gold et al., 2012).
This deficit in reward anticipation is consistent with neuroimag-
ing evidence that ventral striatal responses to cues predicting
reward are dulled in schizophrenia (Juckel et al., 2006a), including
amongst unmedicated patients (Juckel et al., 2006b). Patients also
have aberrant neural responses to rewards themselves, including
predicted and unpredicted rewards (Waltz et al., 2009; Morris
et al., 2012). However no study to date has tested whether
patients can adjust their actions solely on the basis of experienced
reward values. In a recent study, we tested whether patients with
schizophrenia could use the anticipated or experienced reward
value to select actions. Patients were able to learn action-outcome
associations, and subjectively reported reductions in outcome
value after an outcome devaluation procedure, however they did
not use this updated outcome knowledge to effectively guide
their choices, suggesting that the ability of patients to integrate
the values of rewards with action selection processes is deficient.

Importantly, BOLD activity in the caudate nucleus during the test
requiring this integration was also deficient in patients. Moreover,
reduced neural responses in the head of the caudate predicted
more severe negative symptoms. This is consistent with recent
evidence that neuropathology in schizophrenia, including upreg-
ulation of striatal D2 receptor density and occupancy, is most
prevalent in the associative regions of the striatum (Buchsbaum
and Hazlett, 1998; Abi-Dargham et al., 2000; Howes et al., 2009;
Kegeles et al., 2010). On the other hand, patients were able to
select actions on the basis of the anticipated reward value, when
a cue predicting the availability of reward was presented, albeit
not to the same extent as healthy adults (Balleine and Morris,
2013). Thus, the integration of reward values with action selection
appears to be impaired in schizophrenia. This particularly affects
goal-directed actions when cues are not present to indicate the
consequences of action.

The caudate is a critical site for goal-directed actions but it
does not function in isolation. In addition to aberrant regional
activity in schizophrenia, there is also evidence for functional
disconnection of the caudate from its cortical afferents, which
can also be found during the prodromal state (Buchsbaum et al.,
2006; Yan et al., 2012; Fornito et al., 2013; Quan et al., 2013;
Quidé et al., 2013; Wadehra et al., 2013). Thus, the caudate-
cortical disconnection in schizophrenia is a critical target for
understanding the deficit in goal-directed behavior and predicting
functional outcomes associated with the disease.

Changes in contingency awareness
Cognitive deficits are the most pervasive and difficult to treat
aspects of schizophrenia (Green, 1996). In particular, any deficit
in the ability to form and use A-O associations appropriately and
learn about the consequences of our everyday choices is likely
to have a large impact on social and occupational functioning.
Multiple studies have suggested that the initial acquisition of
probabilistic contingencies is relatively unimpaired in schizophre-
nia, with the exception of some reports of slower rates of acqui-
sition (Weickert et al., 2002; Kéri et al., 2005; Waltz and Gold,
2007). When contingencies are reversed many studies have shown
schizophrenic patients do show significant impairments (Waltz
and Gold, 2007; Murray et al., 2008), suggesting patients are
insensitive to changes in action-outcome contingency. However,
distinguishing this impairment in reversal learning from slower
acquisition more generally has not been convincingly demon-
strated. Using cognitive modeling, however, Strauss et al. (2011)
found that patients with schizophrenia have a reduced tendency
to explore alternative actions in an uncertain environment. This
perseverative style of responding during uncertainty is consistent
with greater habitual control of actions. A weakened sensitivity to
the action-reward correlation and the predominant use of an S-R
learning strategy is also consistent with the fact that rapid learning
from trial-by-trial feedback is often impaired but more gradual
learning remains intact (Kéri et al., 2005; Gold et al., 2008).

At a neural level, the associative striatum plays an integral role
in acquiring A-O contingencies, detecting contingency changes
and flexibly using this information during the process of action
selection. As reviewed above, functional deficits in the associative
striatum as well as pathology in cortical afferents appear early
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in the pathogenesis of schizophrenia and may be a risk factor
for the disease. In this case, a deficit in learning action-outcome
contingencies, which critically depends on this circuit, may stand
in as an important marker of brain function. However, at present
the status of contingency learning deficits in schizophrenia is
unclear. Reversal learning tasks such as the IGT or the WCST
are generally controlled by reward-related stimuli rather than
by the relationship between action and outcome, which makes
it difficult to discern whether any deficits are due to altered
Pavlovian or instrumental learning. In addition, in reversal learn-
ing tasks, it is difficult to establish whether changes in outcome
value or in contingency are driving choices. Thus, the use of
contingency degradation tasks within this cohort will be critical
to provide convincing evidence regarding the level of impairment
in contingency awareness and the functional status of the related
circuits.

Schizophrenia summary
In summary, during goal-directed learning, patients with
schizophrenia are only mildly or are unimpaired in their sub-
jective valuation assessments, and in the activation of prefrontal
regions that support them. Dysfunction in the associative stria-
tum and its cortical afferents, however, may interfere with the
ability to modulate action selection using value information.
Evidence also suggests that patients with schizophrenia are able
to encode initial A-O associations, but they may be impaired at
updating associations for flexible use in action selection. Taken
together, these impairments in integrating the key components
of goal-directed behavior suggest that patients with schizophrenia
may over rely on habit learning and habitual strategies, predicting
relatively intact functioning of the circuitry mediating habitual
control but not goal-directed performance.

ADHD
Altered sensitivity to reinforcement is acknowledged as an impor-
tant etiological factor in a number of theoretical frameworks
of ADHD (Barkley, 1997; Sergeant et al., 1999; Castellanos
and Tannock, 2002; Sagvolden et al., 2005; Frank et al., 2007;
Tripp and Wickens, 2008; Sonuga-Barke and Fairchild, 2012).
ADHD is characterized by symptoms of inattention, hyperactiv-
ity and impulsivity, consistent with dysregulation of top-down
control processes modulating goal-directed control. A number of
researchers have argued that ADHD is a motivational problem,
whereby individuals are unable to use intrinsic motivation to
guide choice performance (Douglas, 1989; Sergeant et al., 1999).
This is supported by evidence that children with ADHD perform
well on continuous reinforcement schedules, whereas their per-
formance deteriorates on partial reinforcement schedules where
the consistent extrinsic motivation of reward is not provided
(Parry and Douglas, 1983; Luman et al., 2008).

Dopaminergic dysfunction clearly plays a key role in
ADHD symptomology. The primary treatment for ADHD,
Methylphenidate, preferentially blocks the reuptake of DA in the
striatum (Schiffer et al., 2006), and studies have demonstrated its
effectiveness in normalizing reinforcement sensitivity in ADHD
relative to placebo (Tripp and Alsop, 1999; Frank and Claus,
2006). Furthermore, Volkow et al. (2012) has proposed that

disruption of D2/D3 receptors is associated with the motivation
deficits observed in ADHD, which may in turn contribute to
attention deficits. Attention was found to be negatively corre-
lated with D2/D3 receptor availability in the left NAc and cau-
date (Volkow et al., 2009), regions key to reward valuation and
contingency awareness in goal-directed action. We hypothesize
that motivational problems stem primarily from an inability to
predict the rewarding consequences of cues or actions. As a
consequence actions may be poorly controlled or regulated result-
ing in inappropriate responses to the situation and undesirable
consequences.

The dopamine transfer deficit theory
The Dopamine Transfer Deficit theory of ADHD (Tripp and
Wickens, 2008, 2009) proposes that altered phasic dopamine
responses to reward-predictive cues results in blunted stimulus-
outcome associations, and hence blunted reward anticipation. In
this sense, motivational deficiencies may be derived from a lack
of stimulus-outcome contingency awareness (i.e., an impairment
within the circuitry detailed in Figure 1C). The relatively con-
sistent finding of hypo-activation in the ventral striatum dur-
ing reward anticipation supports this idea (Scheres et al., 2007;
Ströhle et al., 2008; Plichta et al., 2009; Hoogman et al., 2011;
Carmona et al., 2012; Edel et al., 2013; Plichta and Scheres,
2013). Wilbertz et al. (2012) found increased OFC activation
during outcome delivery consistent with increased excitation to
reward; however, as reward-related stimuli were generally less
successful at inducing reward anticipation, it may also reflect
an aberrant prediction error-like response. Overall, rather than
suggesting that reward sensitivity is impaired, the evidence seems
to support the notion that an inability to anticipate reward may
reduce motivation or impair the ability to select the relevant
action.

In comparison to schizophrenia, both patient groups have
intact reward sensitivity, however the pathologies can be dis-
sociated by the role of predicted reward-values and experienced
reward-values on action-selection. In ADHD, we expect to see
impairment in selecting actions on the basis of predicted reward
(e.g., a deficit in outcome specific Pavlovian-to-instrumental
transfer); whereas in schizophrenia the deficit is related to using
experienced reward values to guide action selection (e.g., a deficit
in outcome specific devaluation). The amount of overlap between
these two groups should, therefore, be predicted to depend on
the extent to which both share neuropathology in the ventral
striatum, which will disrupt dopamine signaling due to hyper- or
hypodopaminergia, regardless.

Incentive learning deficits, response inhibition and impulsivity
Response inhibition and impulsivity are key deficits exhibited in
ADHD even when executive function demands are low (Wodka
et al., 2007); both children and adult subjects are slower to
inhibit responses during the go/no-go or stop-signal reaction time
(SSRT) tasks, and make more errors than age-matched controls
(Schachar et al., 1995; Purvis and Tannock, 2000; see Solanto,
2002 for a review). Lesions of the BLA and NAc both increase
impulsive choice on a delay-discounting task in rats (Winstanley
et al., 2004), and measures of impulsivity are generally negatively
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correlated with white matter integrity in right OFC fiber tracts
in adults with ADHD. Thus impulsivity may be induced by
dysfunction in key incentive processing regions, or alternatively,
these regions may be underutilized due to an over reliance on
reflexive actions that are not based on the value of consequences.

Changes in contingency awareness
Tripp and Wickens (2008) postulate that stimulus-outcome asso-
ciations are disturbed in ADHD due to a lack of transfer of
dopamine firing from reward receipt to reward-predictive cues.
To date, however, there have not been any comparable stud-
ies assessing whether this is also the case for action-outcome
learning. We predict that due to dopamine dysregulation within
the associative striatum, contingency awareness will be deficient
perhaps for both cue and action–based associations with spe-
cific outcomes. Firstly, reduced salience or attention allocation
due to dysfunction in DA firing may inhibit the formation
of action-outcome associations. Furthermore, when a temporal
delay occurs between an action and its outcome, DA dysfunction
may generate difficulties in “credit assignment”—deciding to
which recent action one should attribute the outcome (Johansen
et al., 2009). This difficulty could contribute to the delay aversion
often documented in ADHD (Sonuga-Barke, 2002), and the easy
distraction by extraneous stimuli. For instance, Carlson et al.
(2000) found that, relative to controls, ADHD children were
more likely to attribute success on an arithmetic task to luck,
which seems to support reduced awareness of action-outcome
causality. The dopamine transfer deficit theory also predicts that
in ADHD, smaller anticipatory dopamine signals relative to the
response to actual reinforcers would result in a greater influ-
ence of the most recent contingency than longer-term reinforce-
ment history (Tripp and Wickens, 2008). This could result in
faster extinction under partial reinforcement, or increases in the
performance of occasionally rewarded, but overall suboptimal,
actions.

Caudate impairments and action selection in ADHD
Meta-analyses have shown that the most consistent gray matter
reductions in ADHD occur in the caudate, a region critical for
goal-directed behavior. This morphological deficit was worse in
samples with lower levels of stimulant medication, suggesting that
dopamine normalization may counteract caudate atrophy (Valera
et al., 2007; Nakao et al., 2011). Impairments in the striatum likely
affect both contingency awareness and their integration with
action selection processes. Reduced structural connectivity may
also hinder this integration; indeed, ADHD patients have been
shown to have anomalous white matter integrity in fronto-striatal
and premotor (PM) regions relative to age matched controls
(Ashtari et al., 2005; Silk et al., 2009; Konrad and Eickhoff, 2010).

ADHD summary
In summary, we hypothesize, with others, that motivational
impairments in ADHD arise due to an inability to accurately
predict the occurrence of rewarding outcomes. This in turn
reduces the salience of reward predictive cues and optimal
actions potentially contributing to attentional deficits. Dopamine
dysfunction within the striatum seems to be a key factor in

this contingency awareness impairment. Furthermore, a greater
reliance on recent rather than longer-term reinforcement history
could explain the rapid extinction of learnt associations, and why
patients with ADHD respond better to continuous reinforcement
schedules.

DEPRESSION
The major diagnostic guidelines state that individuals experienc-
ing depressive episodes often have difficulty making decisions
(DSM IV, APA, 2000; ICD-10, WHO, 1992). Traditionally, it
has been assumed that this was due to primary motivational
impairments, however cognitive deficits associated with the dis-
order are becomingly increasingly well documented (Lee et al.,
2012). We predict that whereas outcome valuation will be strongly
affected in those experiencing anhedonia, contingency sensitivity
impairments may also be detected in a subset of cognitively-
impaired patients. Further, reward learning and cognitive deficits
may persist during periods of euthymia, predisposing individuals
to future depressive episodes.

Deficits in reward sensitivity
Depression is commonly characterized by blunted reward respon-
siveness (Henriques and Davidson, 2000; Pizzagalli et al., 2008;
McFarland and Klein, 2009) and behavioral neglect of positive
stimuli (Clark et al., 2009), which is reflected in the symptoms
of anhedonia, social withdrawal and reduced activity level. As
experienced rewards are no longer pleasurable, it is easy to
envisage how action control could become biased away from
goal-directed actions toward habits, which require only the
preservation of a sufficient reinforcement signal to form stimulus-
response associations.

During both reward and punished responding in depressed
subjects, blunted responses are observed in the medial caudate
and ventromedial OFC (Elliott et al., 1998). This supports behav-
ioral accounts of blunted reward sensitivity. Interestingly, McCabe
et al. (2009) found that, in remitted depressed patients, there were
decreased reward responses in the ventral striatum, caudate and
anterior cingulate, despite subjective ratings being the same as
controls, suggesting that altered reward sensitivity occurs inde-
pendent of mood symptoms, and may actually be a predisposing
factor in the etiology of depressive episodes.

One prominent theory proposes that a defect in the top-
down inhibition of the amygdala by the vmPFC may underlie
depression symptoms (Myers-Schulz and Koenigs, 2011). For
instance, Friedel et al. (2009) reported a negative correlation
between depressive symptom severity and connectivity between
the mOFC and the amygdala. As discussed earlier, the amygdala
and OFC and their connectivity are required for the encoding and
use of value-based information. Therefore impairment in either
region, or reduced connectivity between them, will likely hamper
the updating of value and its integration to mediate goal-directed
choice. Due to reduced OFC-BLA connectivity, we predict that
individuals with severe anhedonia will be unable to alter their
choices appropriately after outcome devaluation.

Significantly reduced ventral striatal activity to positive stimuli
has also been observed in depressed patients (Epstein et al., 2006;
Robinson et al., 2012; Stoy et al., 2012), which may reflect a
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deficit in using value information to guide action selection. These
studies employed predominantly Pavlovian learning processes
and, therefore, the focus was generally on assessing anticipation
of reward rather than how value knowledge was used to guide
instrumental choices. Nevertheless, Stoy et al. (2012) discovered
that treatment with the common antidepressant, escitalopram,
normalized anticipatory reward signals in the ventral striatum,
highlighting how medications affecting reward circuitry could be
effective in improving depressive symptoms. In addition, deep
brain stimulation to the bilateral NAc in refractory depression
has shown promising results for reduction of the symptoms of
anhedonia (Schlaepfer et al., 2008; Malone et al., 2009).

Deficits in contingency awareness
Although it is evident that anhedonia diminishes the impact of
reward processes in goal-directed action, there is significantly
more debate about how causal awareness is affected in depres-
sion. Depressed individuals often experience symptoms of learned
helplessness, which may reflect dysfunction in causal knowledge.
Learned helplessness is essentially an error in attribution of con-
trol (Miller and Seligman, 1975) in the sense that a depressed
person may have aberrant beliefs about the causality of their
actions in achieving a goal, or the lack thereof, and so not initiate
an action. Using Bayesian modeling, Lieder et al. (2013) argued
that generalization of action-outcome contingencies is able to
account for a range of learned helplessness phenomena. By this
account, individuals attribute outcomes to their current situation
or state rather than to the chosen action; they generalize across
available actions, with the belief that the state will determine the
outcome, irrespective of their actions.

Paradoxically however, a large body of research has also sup-
ported the idea that dysphoric or depressive individuals often
have greater causal sensitivity, an effect referred to as depressive
realism (Alloy and Abramson, 1979; Martin et al., 1984; Benassi
and Mahler, 1985; Ackermann and DeRubeis, 1991; Allan et al.,
2007; Msetfi et al., 2012). Indeed, Alloy and Abramson (1979)
found that, during a task incorporating both contingent and non-
contingent outcomes non-depressed people were more likely to
believe that their actions were causal of the outcome whereas
depressed people did not show this illusion of control, and tended
to rate their actions in this task as less causal.

These contradictory findings in depressed people might be
reconciled by considering the role of competition between actions
and cues for causal learning. There are two major predictors of
outcomes in our environment: our own instrumental actions and
situational stimuli such as Pavlovian cues. These two classes of
events will compete as causes for outcomes of interest during
causal learning tasks, like those described above. In such tasks,
when non-contingent outcomes are provided, situational stimuli
can become better predictors of those outcomes than actions. So
the illusion of control could reflect a disposition to assign causal
status to ones own actions over situational stimuli, even when
situational stimuli are better predictors. In contrast, if action-
outcome contingency awareness is impaired, then situational
stimuli should be predicted to outcompete actions for association
with specific outcomes and in their attribution as causes of those
outcomes. This should be anticipated to produce more accurate

causal judgments of actions, consistent with depressive realism.
Furthermore, the deficit in action-outcome contingency aware-
ness will still produce learned helplessness.

An implication of this argument, derived from the distinct
neural regions responsible for action-outcome vs. stimulus-
outcome contingency awareness, is that pathology in depression
should be restricted to those medial prefrontal cortical regions
that are critical for A-O learning. Conversely, the lateral PFC
regions implicated in S-O learning should be relatively intact
on this view. In fact, considerable research has explored the
role of mPFC in behavioral control over the effects of chronic
stress (Amat et al., 2005; Maier and Watkins, 2010). Resistance
to environmental stressors, and as such, resilience against feelings
of helplessness, is thought to rely on inhibitory control exerted
by the vmPFC over limbic structures. Without this inhibition,
it is argued, stressors could cause sensitization of serotonergic
neurons in the dorsal raphe, changing how the organism responds
to subsequent aversive stimuli (Maier and Watkins, 2005).

Serotonin is a neuromodulator thought to play a key role in
the neurochemical basis of depression, with selective serotonin
reuptake inhibitors being a first-line treatment of depression. It
has also been implicated in the modulation of decision processes.
For instance, Doya (2002) proposed that low levels of serotonin
may be associated with excessive discounting of future rewards,
while others have argued that it is more specifically involved with
inhibiting actions and thoughts associated with aversive outcomes
(Daw et al., 2002; Dayan and Huys, 2008; Huys et al., 2012;
Robinson et al., 2012). This view proposes that serotonin reduc-
tions enhance punishment predictions, but do not effect reward
predictions. This raises another interesting line of research–
whether individuals with depression are perhaps better at learning
associations with negative rather than positive consequences (see
Eshel and Roiser, 2010, for a review). Numerous studies have
demonstrated that depressed individuals exhibit hypersensitivity
to negative feedback (Elliott et al., 1997), and hyposensitivity
to positive feedback (Pizzagalli et al., 2008), and highlight how
aberrance in evaluation, and subsequent allocation of attention,
has detrimental effects on contingency learning.

The emerging field of computational psychiatry has pro-
vided a promising new avenue for understanding psychiatric
illnesses, through applying mathematical models to behavioral
and biological problems. Within decision neuroscience, it aims
to provide a systematic explanation of the core processes in
decision-making in a manner consistent with neurobiologically
relevant processes (Dayan and Huys, 2008). A series of stud-
ies have recently used this approach in discerning the specific
decision-making deficits at play in depression. In this approach,
reward sensitivity is related to valuation, while learning rate
represents a dimension of contingency awareness. Chase et al.
(2010) found a reduced learning rate in depression, however
they did note that learning rate was more closely related to
severity of anhedonia than diagnosis per se. A recent meta-
analysis in un-medicated depression reported that reduced reward
sensitivity (reduced prediction errors) had greater affect than
learning rate on overall learning performance, and was cor-
related with anhedonia severity (Huys et al., 2013). This is
supported by reduced striatal activation during reward receipt
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(Pizzagalli et al., 2009; Smoski et al., 2009). Using a medicated
sample, however, we found that learning rate was reduced in
depression, which may indicate that while overall choice behav-
ior remains impaired, antidepressant medication may change
the dynamics of the contributing processes (Griffiths et al.,
unpublished data).

Structural and resting-state abnormalities in goal-directed circuitry
The difficulties depressed individuals have with learning and
performance of goal-directed action correspond with abnormal-
ities in learning and choice related brain regions. Gray matter
volumetric studies and postmortem examinations have show
neuronal size reductions relative to controls in the OFC (Cotter
et al., 2005; Drevets and Price, 2008), left ACC (Drevets et al.,
1997; Coryell et al., 2005), dlPFC (Drevets, 2004), caudate and
NAc (Baumann et al., 1999). Moreover, symptoms of anhedonia,
depression severity and probability of suicide have all been asso-
ciated with reduced caudate volume (Pizzagalli et al., 2008) and
caudate activity (Forbes et al., 2009).

There is a complex relationship between depression sever-
ity and the OFC. Some studies report increased OFC activity
in treatment responsive depressives, whereas more severely ill
patients have relatively normal or decreased OFC metabolism
(Drevets et al., 1997; Mayberg, 1997). Drevets et al. (1997) posit
that increased OFC activity may reflect a cognitive compen-
satory effort to attenuate negative emotion, while reduced OFC
activity may reflect a primary pathology related to monoamine
dysfunction. This is supported by enhanced dextroamphetamine-
induced rewarding effects compared to controls (Tremblay et al.,
2002, 2005). Functional imaging during a range of tasks involving
planning, reward, behavioral choice and feedback have reported
abnormal recruitment of the mOFC (Elliott et al., 1998; Taylor
Tavares et al., 2008), and lesions of the human OFC have been
argued to increase the risk for developing depression (Drevets,
2007), although this is controversial (see e.g., Carson et al., 2000).
Nevertheless, reports that this region plays a key role in valuation
suggest that any compromised function will likely affect goal-
directed action.

In addition to problems with the core circuitry associate with
goal-directed action, imaging studies have shown abnormally low
dlPFC activity during resting state (Galynker et al., 1998), yet
overly activated activation during working memory and cognitive
control tasks (Harvey et al., 2005; Wagner et al., 2006), poten-
tially indicating inefficiency in this cognitive control region. This
may contribute to the increased indecisiveness experienced in
depression.

Depression summary
In summary, depression is characterized by impairments in rein-
forcement learning, and using affective information to guide
behavior. Anhedonia, a common symptom in depression, maps
closely onto deficits within outcome valuation circuitry, and
is the clearest example of how problems with reward value
lead to reductions in goal-directed action. Learned helplessness,
or a lack of resistance to environmental stressors, may also
occur when S-O associations outcompete A-O associations. This
may cause depressed individuals to generalize action-outcome

contingencies across different contexts, and become less adaptive
to new environments.

OTHER DISORDERS
It is clear that an associative learning framework can provide
testable hypotheses and explanations for a range of deficits in
clinical disorders. Though we can only provide a brief discussion
of three such disorders here, the potential exists for many oth-
ers. For instance, Obsessive-Compulsive disorder, where behavior
may exhibit an overreliance on habits due to dysfunctional goal-
directed circuitry (Gillan et al., 2011), and anorexia nervosa,
where there is a tendency to deprive oneself of food, despite, or
likely because of, hyperactivity in evaluative neural circuitry dur-
ing food presentation (Keating et al., 2012), provide interesting
examples.

Importantly, assessment of decision-making deficits need not
be constrained rigidly by diagnostic classifications. Most psychi-
atry research uses these classifications with the assumption that
it will provide a homogenous subset of participants. However
multiple systems may be differentially affected in these patients,
and comorbidities and group averaging may contaminate both
behavioral and neural results. Further, symptom commonalities
also occur across diagnostic boundaries, for instance anhedonia,
which can occur in a range of disorders, such as depression, post-
traumatic stress disorder and schizophrenia. Thus, behavioral
tests that probe specific processes and neural deficits could have
great value in guiding research on biologically-based individual-
ized classification.

It is worth mentioning that the wide-ranging use of medi-
cations and substance use in psychiatric groups makes testing
these populations to clearly delineating the source of their illness
very challenging. Most medications affect multiple, predomi-
nantly monoamine, neurotransmitter systems, and variance in
functional effects occurs over different doses. These neurotrans-
mitter systems are intricately involved in reward and decision
processes, thus it can be difficult to distinguish disorder-related
findings from those induced by medication, and to untangle
the differential effects of medications across tasks. For instance,
using SPECT, Paquet et al. (2004) found a correlation between
procedural learning ability and D2 receptor occupancy. Patients
on second generation antipsychotics (SGA) perform better at
procedural learning tasks compared to those on first generation
antipsychotics (FGA), which is thought to be due to the compar-
atively lower affinity for striatal D2 receptors in SGAs (Stevens
et al., 2002; Scherer et al., 2004). Conversely, Beninger et al.
(2003) found that SGAs adversely affected performance on the
IGT, which they surmise may be due to the high affinity of SGAs
for serotonin receptors in the PFC.

CONCLUSIONS
Though much progress has been made in elucidating the pro-
cesses and neurobiology of decision-making, a great deal remains
to be done. Contradictory findings and interpretations persist,
and with contributions from diverse fields such as economics,
computer science and psychology, a “common language” has
not yet been achieved. Decision-making is an extremely complex
process, and as such, the range of tasks used to assess this skill is
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broad. Great care must be taken when comparing results across
tasks, as task-related variables may modulate the underlying cir-
cuitry involved.

A key strength of associative learning tasks is the strong
theoretical basis, and the broad foundation of animal research
that has helped develop our knowledge of the circuitry under-
lying specific learning processes. By establishing links between
well-defined psychological processes (e.g., goal-directed action),
neural circuits and even intracellular signaling, we can develop
a biologically-based phenotype of psychopathology, grounded in
translatable behavioral tests. Nevertheless, important questions
remain regarding how we conceptualize the interaction between
these learning systems. For instance, a flat architecture assumes
that goal-directed and habitual processes exist in parallel, with
an arbitrator determining which system is utilized for the follow-
ing action. A hierarchical structure, however, proposes a global
goal-directed system that incorporates habitual action sequences
when they can achieve the desired goal. Although beyond the
scope of this review, there are a number of neural and compu-
tational theories that debate how and where action values are
compared and transformed into motor signals, and if in fact,
cognitive action selection and motor planning occur as serial or
simultaneous processes (Cisek and Kalaska, 2010; Hare et al.,
2011; Cisek, 2012; Rushworth et al., 2012; Wunderlich et al.,
2012; Dezfouli and Balleine, 2013). These theories are impor-
tant considerations for determining precisely how fundamental
processes such as outcome valuation and contingency learning
are transformed into the motor choices producing goal-directed
performance.

Decision neuroscience is an exciting field that incorporates
translational research from a range of species and scientific
techniques. Within this field, associative learning accounts have
provided a theoretical basis for the development of a range of bio-
logically relevant behavioral paradigms. This framework endeav-
ors to draws together behavioral and neurological processes,
creating impetus for a wide range of testable hypotheses. Through
systematic application of biologically relevant paradigms, we
could further identify specific problems contributing to maladap-
tive decision-making across psychiatric disorders. This review
has attempted to highlight how a number of deficits across
psychiatric disorders may be explained in terms of fundamental
reward learning and performance impairments, which could shed
some new light on the functional impairment and neurobiological
underpinnings of these illnesses.
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