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Normalization has been proposed as a canonical computation operating across different
brain regions, sensory modalities, and species. It provides a good phenomenological
description of non-linear response properties in primary visual cortex (V1), including the
contrast response function and surround suppression. Despite its widespread application
throughout the visual system, the underlying neural mechanisms remain largely unknown.
We recently observed that corticocortical feedback contributes to surround suppression
in V1, raising the possibility that feedback acts through normalization. To test this idea,
we characterized area summation and contrast response properties in V1 with and
without feedback from V2 and V3 in alert macaques and applied a standard normalization
model to the data. Area summation properties were well explained by a form of divisive
normalization, which computes the ratio between a neuron’s driving input and the spatially
integrated activity of a “normalization pool.” Feedback inactivation reduced surround
suppression by shrinking the spatial extent of the normalization pool. This effect was
independent of the gain modulation thought to mediate the influence of contrast on
area summation, which remained intact during feedback inactivation. Contrast sensitivity
within the receptive field center was also unaffected by feedback inactivation, providing
further evidence that feedback participates in normalization independent of the circuit
mechanisms involved in modulating contrast gain and saturation. These results suggest
that corticocortical feedback contributes to surround suppression by increasing the
visuotopic extent of normalization and, via this mechanism, feedback can play a critical
role in contextual information processing.
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INTRODUCTION
Normalization has been advanced as a canonical computation in
which a neuron’s driving input is divided by the summed activity
of a pool of neurons. This computational framework has been
successfully applied throughout the visual system, across sensory
modalities and in several different species (Carandini and Heeger,
2012). Response normalization has several attractive properties,
particularly in sensory processing where it allows neurons with
limited dynamic range to shift their response functions according
to local statistics and reduces redundancy in neural population
codes thus making them more efficient (Carandini et al., 1997).

Normalization has also been successful in explaining area sum-
mation properties in V1 (Cavanaugh et al., 2002), which are
thought to contribute to a large spectrum of contextual effects
in visual perception (Albright and Stoner, 2002). V1 neurons
sum responses within the central region of their receptive field
but display response suppression as stimuli invade the receptive
field surround (Sceniak et al., 1999). Normalization can account
for these non-linear responses, including the observation that
reducing stimulus contrast increases the size of the summation
field (Levitt and Lund, 1997). These effects of contrast on area

summation properties are best captured by a model in which
input drive and the normalization pool are stable in spatial extent
but their relative gains depend on contrast (Cavanaugh et al.,
2002).

Despite advancing our understanding of the phenomenologi-
cal computations that subserve area summation, the actual neural
mechanisms underlying normalization remain poorly under-
stood. Circuits implementing normalization-like operations in
V1 could be based on feed-forward signals combined with
local non-linearities (Kayser et al., 2001), horizontal connections
(Reynaud et al., 2012), or feedback signals from higher visual
areas (Angelucci and Bressloff, 2006). While there is evidence that
horizontal signals and, in particular, certain subtypes of interneu-
rons are important in area summation properties (Adesnik et al.,
2012), the extent to which feedback signals play a role is unclear.
We recently showed that feedback from V2 and V3 contributes
to surround suppression in V1 (Nassi et al., 2013): inactivation
of feedback led to increased response magnitudes for large stim-
uli engaging the receptive field surround. The effect of feedback
inactivation on surround modulation suggests that feedback may
participate in normalization computations.
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This study begins with the premise that area summation arises
at least in part due to a divisive normalization mechanism and
does not attempt to rule out alternative models. We sought to
characterize how well a normalization model could account for
feedback’s influence on surround suppression and how differ-
ent components of the normalization operation were affected by
feedback and contrast. To do so, we applied a standard normal-
ization framework to area summation data (reported by Nassi
et al., 2013) and to new contrast response data obtained in V1
of the alert macaque with feedback from V2 and V3 intact or
inactivated by cooling. We found that the observed decrease
in surround suppression strength during feedback inactivation
was best captured by a reduction in the spatial extent of a
divisive normalization pool. On the other hand, the contrast
sensitivity of area summation in the same neurons was better
accounted for by changes in gain. We confirmed this paramet-
ric dissociation by showing empirically that (1) the summation
field expansion caused by contrast reduction and (2) the con-
trast response function within the summation field both remain
intact without V2/V3 feedback. These results support the idea
that corticocortical feedback contributes to surround suppres-
sion by increasing the spatial extent of normalization independent
of bottom-up drive and, thus, identify feedback as a key circuit
element of a canonical computation operating throughout the
brain.

MATERIALS AND METHODS
All experiments were in accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals and were
approved by the Harvard Medical Area Standing Committee on
Animals.

EXPERIMENTAL PREPARATION AND PROTOCOL
The experimental preparation and associated protocols have been
described previously in Nassi et al. (2013). The details relevant to
the current study are described here. Two male macaque mon-
keys (Macaca mulatta; M and R) were implanted with a head post
and a scleral search coil for monitoring eye position. They were
trained to fixate within a 1–1.5◦ window for 2–3 s for juice reward
while seated in custom chairs (Crist Instrument). In each animal,
three cryoloops were implanted in the lunate sulcus of the right
hemisphere (Lomber et al., 1999) for reversible inactivation of
V2 and V3 by cortical cooling, and a recording chamber (Crist
Instrument) was implanted for electrophysiological access to V1
using tungsten microelectrodes (FHC). The extracellular record-
ings were acquired using a Cambridge Electronic Design 1401
system, and single- vs. multi-unit activity was determined using
action potential waveform analysis software (Spike2).

Once a single-unit or multiunit cluster was isolated, we
mapped the approximate borders of the receptive field [mini-
mum response field (RF)], determined the optimal spatial and
temporal frequencies, and preferred orientation/direction using a
small grating. RFs were located at eccentricities between 2 and 6◦,
which were targeted so as to match the approximate retinotopy of
regions in the lunate sulcus (V2/V3) in close proximity to the cry-
oloops. All subsequent tuning data were obtained using drifting
sinusoidal gratings of mean luminance matching the surround

(42 cd/m2) at the optimal direction and spatiotemporal frequen-
cies, centered in the RF, with a 0.04◦ graded-contrast perimeter
to reduce edge effects. Each stimulus presentation had a motion-
onset delay of 250 ms (monkey M) or 300 ms (monkey R) after
appearance and then moved for either 750 ms (monkey M) or
500 ms (monkey R). Tuning curves for the electrophysiology data
were calculated from spike counts collected in the first 500 ms
after motion onset. Between successive stimuli, we interposed
500 ms blanks at the mean luminance. Each stimulus condition
was presented at least five times. The values of the parame-
ter being varied in each experiment were always presented in
block-wise random order.

Contrast response function data were obtained with sinusoidal
gratings ranging in contrast from 0 to 99% in logarithmic steps.
Area summation data were then obtained with sinusoidal grat-
ings ranging in diameter from 0.125 to 8◦ (monkey M) or from
0.16 to 6.3◦ (monkey R) of visual angle in logarithmic steps. The
full range of diameters was each presented at two different con-
trast levels, either in “block” design (monkey M) or randomly
interleaved (monkey R). Differences in pre-stimulus firing rate
(300–50 ms before stimulus onset) between contrast levels were
not detected in either animal (Mann-Whitney U-test, each ani-
mal p > 0.1). The two contrast levels were chosen to span the
linear portion of the contrast response profile (i.e., just above
the spontaneous firing rate and just below 90% of the maximum
firing rate).

This protocol was repeated while chilled methanol was
pumped through the cryoloops, effectively ceasing all visually
evoked activity in the visual field representation of V2 and V3 that
corresponded to the V1 recording site. Pre-cooling (Control) and
cooling (Feedback inactive) recording sessions ran for 40–60 min
in total. Post-cooling area summation measurements were pos-
sible in 19 units, which confirmed the reversibility of reported
effects. A series of control studies were performed in our previ-
ous study to rule out the possibility of direct cooling effects in V1
(Nassi et al., 2013). Critically, we observed no effect of cooling in
the upper bank of the calcarine sulcus in V1, where neurons have
receptive fields outside of the feedback “scotoma.” Furthermore,
we could find no relationship between the magnitude of cool-
ing effects and the proximity of recorded neurons to the V1/V2
border (details on experimental protocol and measurements of
cortical temperature are found in Nassi et al., 2013).

AREA SUMMATION MODEL
We analyzed the area summation data from each unit using a
ratio of Gaussians model (ROG; Cavanaugh et al., 2002) whose
response RROG(x) is dependent on the stimulus diameter x ≥ 0.
This model implements the canonical normalization computa-
tion described by Carandini and Heeger (2012), which can be
written as:

RROG(x) = R0 + D(x)

σ + N(x)
, (1)

where R0 is the spontaneous rate, and σ > 0 is the constant back-
ground normalization pool activity. The model consists of two
area summation components: D(x) ≥ 0 is the total excitatory
drive, and N(x) ≥ 0 is the normalization pool input. Both D and
N respond to a stimulus of diameter x ≥ 0 in proportion to its
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area under a Gaussian sensitivity function defined on the visual
field. This form can be written in terms of the error function as

f (x) = 1√
π

∫ +x/2
−x/2 e−(

y
w )

2

dy

= w · erf(x/2w),
(2)

where the spatial extent for D and N are individually determined
by the parameters wD > 0 and wN > 0, respectively. A stimulus
of size x = w would lead to 52% of the area under this sen-
sitivity function, making numerical estimates of wD and wN a
practical benchmark of the drive and surround effective diame-
ters. The underlying supposition is that summation relies heavily
on the number of inputs from neurons with overlapping receptive
fields: a large-w neuron receives more input than a small-w neu-
ron and, thus, responds more vigorously over a larger visual field.
Cavanaugh et al. (2002) had prescribed based on their data that
both D(x) and N(x) be proportional to the square of the functions
above, so that the model be explicitly written with subscripted
gain parameters k and size parameters w as

RROG(x) = R0 + kD [wD erf(x/2wD)]2

σ + kN [wN erf(x/2wN )]2
(3)

We set the constant σ = 1 and also found that it was necessary
for stabilizing responses to small stimulus diameters (which make
the normalization term in the denominator approach zero). To
avoid local optima in equation (3), we fitted parameters in three
nested stages. First, all parameters were constrained as 0 ≤ k < K
and 0 < w < W , where the upper limits K and W were ini-
tially close to zero and progressively increased until the model fit
mean-square-error (MSE) decreased to within 5% of the asymp-
totic MSE (obtained without upper limits). This favored solutions
with smaller, interpretable, k and w values and avoided situations
where parameters grew only to marginally improve MSE without
any obvious changes in the fitted curve. Second, for each set of
limits K and W, a grid of initial parameter values was used to iden-
tify the region where optimizations converge to the same solu-
tion. Third, we ensured that optimization steps were discretized
according to the model’s sensitivity to parameter changes, so that
optimization steps in any parametric direction had equal effect on
objective function output (the trust-region-reflective algorithm
in Matlab’s lsqcurvefit function can accomplish this by estimat-
ing the objective function’s Jacobian matrix). Optimization was
computationally demanding, so this routine was programmed for
parallel processing on a high performance computer cluster.

AREA SUMMATION CURVE FEATURES
We defined the summation field size as the smallest diameter
of the stimulus eliciting at least 95% of the peak response rate.
Summation asymptote size was defined as the largest stimulus
diameter that elicited a response 5% greater than the rate asymp-
tote (when observable with largest diameters used). The strength
of surround suppression was quantified with an index depen-
dent on the response peak and asymptote spike rates: SSI =
1 − Rasym/Rpeak, defined for units satisfying 0 < Rasym ≤ Rpeak.
In the absence of surround suppression, Rasym = Rpeak and so

SSI = 0. As surround suppression becomes absolute (Rasym → 0;
Rpeak > 0), and so SSI → 1 (see Figure 1B).

CONTRAST RESPONSE MODEL
Contrast sensitivity was quantified using the Naka-Rushton
hyperbolic ratio function (Naka and Rushton, 1966) of the
Michelson contrast 0 ≤ c ≤ 1 given by

R(c) = R0 + Rmax
cn

cn + (c50)
n , (4)

where R0 and Rmax are the measured spontaneous and maxi-
mum response rates, respectively, and n and c50 are the model
parameters quantifying contrast sensitivity and contrast-at-half-
response, respectively. This optimization problem was convex and
was solved by least-squares minimization.

GOODNESS-OF-FIT INDICES
These experiments required that the number of repeated trials
for each data point be minimized (n = 5) in consideration of the
large space of experimental conditions (i.e., grating size × con-
trast per baseline, cooling, and recovery block). Consequently,
non-parametric methods like cross-validation were unattractive,
since subsampled trials became too few to effectively average out
across-trial fluctuations. We therefore opted to compare model
configurations with equal number of parameters based on their
percentage of variance explained. With an unequal number of
parameters, we used a χ2

N statistic comparing model and mea-
sured rates, normalized by the optimization problem’s degrees
of freedom: df = Nstimuli − Nparameters + 1, where 1 is for the
measured spontaneous rate (Hoel et al., 1971). Such paramet-
ric methods continue to be used in similar studies probing the
effects of multiple experimental conditions on area summation
(Carandini et al., 1997; Cavanaugh et al., 2002, 2012; Roberts
et al., 2007; Olsen et al., 2010; Nienborg et al., 2013; Vaiceliunaite
et al., 2013).

STATISTICS
Values-in-text are reported as mean ± SD unless otherwise indi-
cated. Goodness-of-fit comparisons and differential-responses to
stimulus contrast, size, and feedback conditions were evaluated
using ANOVA. Across-condition differences in summation fea-
tures or spatial parameters (w) were evaluated with a two-tailed
t-test. The gain parameters (k) were decidedly non-normal (span-
ning ∼2 orders of magnitude) and, thus, were evaluated with
the Mann-Whitney non-parametric U-test. The significance of
Pearson correlation coefficient estimates r was determined follow-
ing a t statistic conversion with H0: ρ = 0. Effects were considered
significant for p < 0.05, and multiple simple-effect comparisons
were accounted by Tukey’s HSD test.

RESULTS
EFFECTS OF FEEDBACK INACTIVATION ON AREA SUMMATION
We investigated how the area summation properties observed in
V1 depend on corticocortical feedback from V2 and V3. To do so,
we reversibly inactivated parts of V2 and V3 using “cryoloops”
chronically implanted in the right lunate sulcus of two alert,
fixating monkeys as reported in Nassi et al. (2013) (monkeys M
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FIGURE 1 | Cortical feedback influences area summation in V1.

(A) Feedback to V1 was reversibly inactivated by cooling V2 and V3 using
cryoloops (Materials and Methods). (B) Schematic of area summation curve
measured using drifting gratings of various sizes, centered on the receptive
field. The summation field, surround diameter, and their corresponding spike
rates (Rpeak, Rasym) are the main features characterizing the curve’s shape.
(C) Area summation curves from two example units during control (red) and

feedback inactive (blue) conditions. Data are shown as mean ± s.e.m.
(n = 5). The curves represent the fit from the model in Figure 2A. (D) Area
summation curves measured from same units using low contrast gratings.
The typical effect of feedback inactivation was an increase in response
magnitude, particularly for high contrast gratings whose diameter extended
beyond the summation field. The increased rate effect was present, yet
diminished, during low contrast visual stimulation.

and R; Figure 1A). Pumping chilled methanol through these
loops cooled surrounding cortex down to temperatures below
20◦C and allowed us to temporarily eliminate visually evoked
activity across visuotopic regions of V2 and V3 overlapping and
extending beyond the receptive field locations of recorded units
in V1 (see Materials and Methods).

Area summation curves from 64 units (36 single units, 28
multi-units) in V1 were measured before and during inacti-
vation of feedback by presenting drifting sinusoidal gratings
centered within the receptive field and varying in size. The
gratings were set to the preferred direction and spatiotemporal
frequency for each unit. Due to the known effects of contrast
on area summation (Sceniak et al., 1999), we tested effects of
feedback inactivation at two contrast levels (“high” and “low;”
see Materials and Methods). In this section, we analyze feed-
back inactivation effects at both contrast levels independently.
In the subsequent section, we determine whether and how feed-
back inactivation interacts with the effects of contrast on area
summation. All 64 units were sensitive to the size of the stim-
ulus (Two-Way ANOVA, main effect stimulus diameter, each
p < 0.05). In all cases the neural response initially increased as
stimulus size increased from the smallest size tested (illustrated
schematically in Figure 1B), peaked for stimuli of intermediate
size and were almost always reduced for larger sizes. The observed

response profile—characterized by initial summation followed
by surround suppression—is typical for neurons in V1 (Sceniak
et al., 1999). Feedback inactivation altered the overall response
magnitude in 40 of 64 units (main effect feedback, each p < 0.05),
increasing responses on average, and interacted with stimulus
diameter in 29 of 64 units (diameter × feedback interaction, each
p < 0.05). As reported previously, the most common effect of
inactivation was an increase in response magnitude, particularly
for grating diameters that extended beyond the borders of the
receptive field center (Figure 1C) (Nassi et al., 2013).

In order to investigate the underlying mechanisms that give
rise to the observed effects of feedback inactivation, we fit the
area summation data with the “ratio of Gaussians” (ROG) model
(Cavanaugh et al., 2002), a form of divisive normalization that
implements an excitatory drive component D(x) ≥ 0, depen-
dent on the stimulus diameter x, whose output is divided by the
diameter-dependent activity N(x) ≥ 0 and background activity
σ > 0 of the unit’s normalization pool (Figure 2A). Under the
assumptions of this model, it is possible to infer the response
gain and visual field extent of the excitatory drive {kD, wD}
and normalization pool {kN , wN } components accounting for
receptive field center-surround interactions. We fit the model
to the responses of each unit independently by allowing all
parameters to vary for both feedback conditions. This unbiased
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FIGURE 2 | Normalization area summation model (ratio of Gaussians).

(A) Schematic representation of the model. The receptive-field-centered
grating stimulus of diameter x determines the integration bounds of the
excitatory drive (dark shading) and normalization pool (light shading) area
summation components, characterized by spatial parameters wD and wN ,
respectively. Their outputs are squared and amplified by gains kD and kN

before normalization. The constant σ represents baseline normalization
pool activity and is set to unity without loss of generality. R0 is the

measured spontaneous rate, and R(x) is the response spike rate.
(B) Summary of model goodness-of-fit per unit for both control (red) and
feedback inactive (blue) conditions (median variance explained: 90%
control, 93% feedback inactive). (C–F), Illustration of area summation curve
effects due to individual variation of each model parameter.
Population-averaged parameters produce solid black curve, and the effects
of increasing/decreasing one parameter are plotted as green/purple broken
curves.

approach is best when probing for a link between an experi-
mental effect and a parameter, provided that measures are taken
to avoid redundancy/trade-offs between parameters as well as to
counter-balance potential differences in parameter sensitivity (see
Materials and Methods). Potential links between experimental
conditions and parameters were further tested by comparing con-
strained models. Although the number of parameters was large
relative to the data points (8 parameters for 12–18 data points),
each parameter’s influence on the area summation curves was well
constrained—only kN and w−1

D had qualitatively similar influ-
ences, yet even in this case kN primarily affects peak rate and
wD primarily summation field size (Figures 2D,E). This version
of the normalization model was shown to be optimal in account-
ing for similar data in anesthetized macaques (Cavanaugh et al.,
2002). The ROG model accounted well for the area summation
data with and without feedback, explaining 90% of the variance
overall across the population both in the feedback and control
conditions (Figure 2B, see example fits in Figures 1C,D).

From the fitted area summation curves, we measured sev-
eral features (illustrated in Figure 1B): the summation field
diameter (SF), the surround diameter and the respective peak
and asymptotic response rates (Rpeak, Rasym). Each of these
features was compared across the population for control and
feedback-inactivated conditions (Table 1). For high contrast
stimuli (Figures 3A–D), the most prominent effect of feedback
inactivation was an increase in Rasym of 7 spikes/s on average
(67% increase from control; p < 0.001; Figure 3C). This caused

the surround suppression index (SSI) to fall on average by
8% (p < 0.001; Figure 3D). For low contrast stimuli, asymptote
rates increased as well; however, a concomitant increase in peak
response rates resulted in only a 3% reduction in SSI (p = 0.10;
Table 1). We also observed additional effects during high con-
trast stimulation: an increase in SF of 0.04◦ on average (p = 0.01;
Figure 3A) and an average decrease in surround diameter of 0.3◦
(p = 0.009; Table 1). These latter changes, however, were small in
comparison to the reduction in surround suppression observed
for high contrast stimuli. Together, these results indicate that the
main effect of feedback inactivation on area summation in V1
is to increase responses to large stimuli and therefore reduce the
overall strength of surround suppression (Nassi et al., 2013).

To gain insight into the mechanisms underlying the effects
of feedback inactivation, we examined how the variation of
each model parameter influences the area summation curve
(Figures 2C–F). These figures show that the normalization pool’s
spatial extent wN alone could account for the effect of feedback
inactivation, since reducing wN leads to an increased response
for large stimuli extending into the receptive field surround (i.e.,
increased Rasym), while leaving the responses to small stimuli con-
fined to the center unchanged (Figure 2F). By contrast, changes
in the gain parameters (kD, kN ) and the excitatory drive’s spatial
extent (wD) are unable to affect responses to large stimuli with-
out also affecting responses to smaller stimuli (Figures 2C–E).
Not only do the other parameters primarily affect Rpeak, but kN

and wD also tend to produce sizeable shifts in SF, both of which
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were not typically observed in our data. When we compared the
parameter estimates from the model across feedback conditions
at high contrast, wN was significantly reduced during feedback
inactivation from 1.96 ± 1.29◦ to 1.72 ± 1.22◦ (mean ± SD,

Table 1 | Feedback’s effect on area summation curve features and

model parameters.

High contrast Control Feedback inactive p-value

Summation field diameter (◦) 0.46 ± 0.20 0.51 ± 0.22 0.01
Peak response rate (s−1) 54 ± 32 59 ± 35 0.06
Surround diameter (◦) 4.4 ± 1.5 4.1 ± 1.6 0.009
Asymptote rate (s−1) 12 ± 15 19 ± 20 < 0.001
SSI (a.u.) 0.79 ± 0.17 0.71 ± 0.22 < 0.001
kD (a.u.) 1730 [3110] 1770 [2440] 0.7
kN (a.u.) 12.9 [13.8] 7.99 [14.5] 0.2
wD (◦) 0.32 ± 0.25 0.31 ± 0.18 0.8
wN (◦) 1.96 ± 1.29 1.72 ± 1.22 0.006

Low contrast Control Feedback inactive p-value

Summation field diameter (◦) 0.71 ± 0.65 0.72 ± 0.38 0.9
Peak response rate (s−1) 32 ± 22 37 ± 27 0.01
Surround diameter (◦) 4.6 ± 1.6 4.7 ± 1.5 0.6
Asymptote rate (s−1) 9.6 ± 12 12 ± 14 0.01
SSI (a.u.) 0.71 ± 0.26 0.68 ± 0.25 0.10
kD (a.u.) 532 [613] 450 [817] 1
kN (a.u.) 5.02 [5.89] 3.79 [5.82] 0.1
wD (◦) 0.39 ± 0.29 0.40 ± 0.20 0.8
wN (◦) 2.14 ± 1.31 2.11 ± 1.33 0.6

Mean ± SD and t-test used everywhere except for kD and kN reported as median

[IQR] and Mann-Whitney U-test.

p = 0.006; Figure 3H). The reduction in wN was not observed for
low contrast stimulation (2.14 ± 1.31◦ vs. 2.11 ± 1.33◦, p = 0.6;
Table 1). This is not surprising given the much weaker effects
of feedback inactivation at low contrast. Nevertheless, we did
detect a population-wide relationship between feedback-induced
changes in wN and SSI for both high and low contrast conditions
(rhigh = 0.30, rlow = 0.29, each p < 0.05). In agreement with
Figures 2C–F, the remaining parameters kD, kN , and wD showed
no trend of systematic change during feedback inactivation at
either of the two contrast levels tested (Mann-Whitney U-test for
k, and t-test for w parameters, each p > 0.1; Figures 3E–G).

According to the area summation model results (Figure 3), the
effects of feedback inactivation on area summation were best cap-
tured by changes in the normalization pool’s spatial extent (wN ).
In order to further determine the individual contributions of each
parameter, we compared versions of the model in which only one
of the four parameters was fixed across feedback conditions and
the other three parameters could freely vary. Only small reduc-
tions in percentage of variance explained were observed when
fixing any single parameter, primarily because all models captured
the main curve features well. Nevertheless, we detected significant
differences among these four fixed-parameter models (One-Way
ANOVA, main effect of model, p = 0.001; Table 2). Fixing wN

resulted in the worst fits to the data (Tukey’s test on fixed-wN sim-
ple effects, all p < 0.05), while differences in fit quality were not
detected for the three remaining fixed-parameter models (main
effect excluding fixed-wN model, p = 0.8). The differences among
the fixed-parameter models underscore that changes in wN were
important to capture the effects of feedback inactivation. In the
context of the normalization model, our results indicate that
the effects of feedback inactivation on area summation are best

FIGURE 3 | Population effect of feedback inactivation on high contrast

area summation. (A–D) Summation curve features: difference in summation
field (SF), peak response rate (Rpeak), asymptote response rate (Rasym), and
surround suppression index (SSI) between feedback inactive and control
conditions. Black triangle indicates population mean (with two-tailed t-test
p-value). (E–H) Parameter estimates (kD , kN , wD , wN ) for all units plotted for
Feedback inactive vs. Control conditions. p-values correspond to a two-tailed

Mann-Whitney U-test for kD and kN , and a t-test for wD and wN . Triangles
and circles indicate single- and multi-units, respectively. Differences were not
detected in any feature (A–D) or parameter (E–H) when comparing single-
and multi-unit subpopulations (each p > 0.05). In all panels, the magenta and
orange symbols indicate example units 1 and 2 in Figure 1. Feedback
inactivation reduced SSI by increasing Rasym. The model accounted for this
effect by systematically reducing wN across the population.
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explained by a reduction in the spatial extent of the normalization
pool.

CONTRAST GAIN MECHANISM UNALTERED DURING FEEDBACK
INACTIVATION
The above analysis suggests that feedback inactivation had lit-
tle or no effect on the gains of the underlying excitatory drive
and normalization pool components. In order to test this pos-
sibility further, we analyzed the effects of stimulus contrast on
area summation, both with and without V2/V3 feedback, which
have previously been shown to be mediated by changes in gain
(Cavanaugh et al., 2002). If feedback effects are indeed indepen-
dent of these gain mechanisms, we would expect the effects of
stimulus contrast to be unaltered during feedback inactivation.
We found that contrast had a significant effect on the area sum-
mation data for the majority of the population both with feedback
intact (55 of 64 units) and inactivated (47 of 64 units) (Two-
Way ANOVA, diameter × contrast interaction, each p < 0.05).
Consistent with previous reports, the typical effect observed
when lowering contrast was an expansion of the summation
field and a reduction in peak response rate (Figure 4) (Sceniak
et al., 1999). These effects were observed independently of feed-
back state. We quantified these effects at the population level
using the area summation curve features obtained from the area
summation model (Table 3). During the control condition, we
confirmed that reducing stimulus contrast significantly increased

SF from 0.46 ± 0.20◦ to 0.71 ± 0.65◦ (p = 0.002; Figure 5A)
and significantly decreased Rpeak from 54 ± 32 s−1 to 32 ± 22
s−1 (p < 0.001; Figure 5B). The magnitude of these contrast-
induced shifts in summation field diameter and peak response
rate did not differ between feedback conditions (�SF: −0.25 ±
0.60◦ vs. −0.21 ± 0.28◦, �Rpeak: 22 ± 20 s−1 vs. 22 ± 21 s−1,
feedback on vs. off respectively, each p > 0.1; Figures 6A,B), sug-
gesting that the effect of contrast on area summation remained
largely intact in the absence of feedback. In addition, there
was a smaller contrast-induced effect on Rasym (Figure 5C). The
contrast-induced decrease in Rasym was larger during feedback
inactivation than during the control condition. This asymmetry
explains why reducing stimulus contrast significantly decreased
SSI during the control condition (average 8% decrease, p < 0.001;
Figure 5D) but not during feedback inactivation (average 3%
decrease, p = 0.14; Table 3).

To gain insight into potential mechanisms underlying the
observed contrast-induced effects, we re-examined how the vari-
ation of each model parameter influences the area summation
curve (Figures 2C–F). Changes in any single parameter cannot
reproduce the summation field increase and peak response rate
decrease observed when reducing contrast. However, both effects
can be simultaneously achieved by changing pairs of parame-
ters. One possibility is that stimulus contrast simply regulates
both kD and kN : a gain-specific mechanism. Alternatively, low-
ering stimulus contrast might be accounted for by a decrease in

Table 2 | Model comparisons across feedback conditions.

Area summation kD fixed kN fixed wD fixed wN fixed

Variance explained (mean ± SD) 90 ± 8% 87 ± 7% 86 ± 9% 87 ± 9% 82 ± 11%

One-Way ANOVA (main effect): p = 0.001

Tukey’s (simple effects paired with wN fixed): p < 0.05

One-Way ANOVA (main effect without wN fixed): p = 0.8

Variance explained by the area summation model and the four versions that fix one parameter across feedback conditions.

FIGURE 4 | Contrast effects on V1 area summation persist during

cortical feedback inactivation. (A) Area summation curves during control
condition for same example units in Figure 1. (B) Area summation during

feedback inactivation. The typical effect of lowering contrast is a reduction in
peak response rate and an increase in summation field. This effect persists
without feedback from V2 and V3.

Frontiers in Systems Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 105 | 7

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Nassi et al. Feedback increases extent of normalization

kD and an increase in wD: an input-drive–specific mechanism. To
distinguish between these and other possibilities, we first com-
pared changes in all parameters estimated for high vs. low con-
trast during the control condition (Table 3). Lowering contrast

Table 3 | Contrast’s effect on area summation curve features and

model parameters.

Control condition High contrast Low contrast p-value

Peak size (◦) 0.46 ± 0.20 0.71 ± 0.65 0.002
Peak rate (s−1) 54 ± 32 32 ± 22 < 0.001
Asymptote size (◦) 4.4 ± 1.5 4.6 ± 1.6 0.09
Asymptote rate (s−1) 12 ± 15 9.6 ± 12 0.006
SSI (a.u.) 0.79 ± 0.17 0.71 ± 0.26 < 0.001
kD (a.u.) 1730 [3110] 532 [613] <10−10

kN (a.u.) 12.9 [13.8] 5.02 [5.89] <10−5

wD (◦) 0.32 ± 0.25 0.39 ± 0.29 < 0.001
wN (◦) 1.96 ± 1.29 2.14 ± 1.31 0.03

Feedback inactive High contrast Low contrast p-value

Peak size (◦) 0.51 ± 0.22 0.72 ± 0.38 < 0.001
Peak rate (s−1) 59 ± 35 37 ± 27 < 0.001
Asymptote size (◦) 4.1 ± 1.6 4.7 ± 1.5 0.001
Asymptote rate (s−1) 19 ± 20 12 ± 14 < 0.001
SSI (a.u.) 0.71 ± 0.22 0.68 ± 0.25 0.14
kD (a.u.) 1770 [2440] 450 [817] <10−8

kN (a.u.) 7.99 [14.5] 3.79 [5.82] < 0.001
wD (◦) 0.31 ± 0.18 0.40 ± 0.20 < 0.001
wN (◦) 1.72 ± 1.22 2.11 ± 1.33 0.003

Mean ± SD and t-test used everywhere except for kD and kN reported as median

[IQR] and Mann-Whitney U-test.

caused both gain parameters to decrease (Figures 5E,F) and both
size parameters to increase (Figures 5G,H). However, the effect
was at least three times larger for the gain parameters than
the field diameter parameters: �kD = −73%, �kN = −62%,
�wD = 21%, �wN = 9% (� indicates change from high to
low contrast), and the observed effects in gain parameters were
more consistent across the population: kD ↓ 95% units, kN ↓
83% units, wD ↑ 23% units, wN ↑ 38% units (arrow indicates
direction of parameter change followed by percentage of units).
The most likely interpretation is that stimulus contrast primarily

FIGURE 6 | Contrast-induced effects remain largely intact during

feedback inactivation. (A) Shift in summation field from high to low
contrast (�SF) plotted per unit for Feedback inactive vs. Control conditions.
(B) Corresponding shift in the peak response rate (�Rpeak). For both panels
p-values correspond to a two-tailed t-test between feedback conditions.
The magenta and orange symbols indicate shifts for the example units in
Figure 1. No systematic change in contrast-induced effects were detected
when feedback was inactivated.

FIGURE 5 | Population effect of stimulus contrast on area summation

during the control condition. (A–D) Summation curve features: difference
in summation field (SF), peak response rate (Rpeak), asymptote response rate
(Rasym), and surround suppression index (SSI) between high and low contrast
stimuli. Black triangle indicates population mean (with two-tailed t-test
p-value). (E–H) Parameter estimates (kD , kN , wD , wN ) for all units plotted for
high contrast vs. low contrast conditions. p-values correspond to a two-tailed
Mann-Whitney U-test for kD and kN , and a t-test for wD and wN . Triangles

and circles indicate single- and multi-units, respectively. Differences were not
detected in any feature (A–D) or parameter (E–H) when comparing across
single- and multi-unit subpopulations (each p > 0.05). In all panels, the
magenta and orange symbols indicate features for example units in Figure 1.
Reducing contrast increased the summation field, decreased the peak
response rate, and yielded a small decrement in the asymptotic rate and
suppression index. Both gain parameters increased and wD decreased with
high contrast.
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engages a gain-specific mechanism of area summation, whereby
both the excitatory drive and normalization pool signals scale in
proportion to stimulus contrast.

To further evaluate the possibility of a contrast-related gain
mechanism, we followed the approach of Cavanaugh et al. (2002)
by comparing three fixed-parameter versions of the area sum-
mation model for each unit. The uniform model varies kD

only; the gain model varies {kD, kN }, and the size model varies
{kD, kN , wD}. Each version of the model is rendered more com-
plex than the previous one by allowing an additional parameter
to vary across contrast conditions. Note that the sequence of
adding parameters here follows the magnitude of the effects
described in the previous paragraph when examining changes
in individual parameters (�kD, �kN , �wD, �wN ). Therefore,
our approach progressively makes the models more complex
by allowing the next best-available parameter to vary across
contrast. Model comparisons were again judged in terms of
goodness-of-fit, but this time, in addition to percentage of vari-
ance explained, we used the χ2

N statistic in order to account for
the differing degrees of freedom across models (see Materials and
Methods). In agreement with Cavanaugh et al. (2002), we found
that the gain model was most efficient in explaining the con-
trol data in terms of variance explained (Figure 7A) and χ2

N, the
goodness-of-fit per df (uniform χ2

N = 5.60; gain χ2
N = 4.78; size

χ2
N = 5.13; see Materials and Methods). Therefore, during con-

trol conditions, the effects of contrast on area summation were
best explained by changes in the gains of the underlying exci-
tatory drive and normalization components, with no need to
invoke any changes in their sizes. During feedback inactivation,
we again found that the gain model was the best at explaining
the effect on contrast (uniform χ2

N = 4.65; gain χ2
N = 3.79; size

χ2
N = 3.95; Figure 7B). Indeed, fixing wD and wN reduced the

variance explained by only a few percent, and their feedback-
induced parameter shifts were qualitatively similar (Table 4).
These results show that the effect of stimulus contrast on area

FIGURE 7 | Constrained model comparisons. (A) Variance explained per
unit during the Control condition, plotted for the gain model vs. uniform
model. Color scale indicates additional variance explained by the size model
relative to gain model. Gray region cannot be occupied because the gain
model has one additional parameter than the uniform model. Similarly, the
color scale is non-negative because the size model has one additional
parameter than the gain model. (B) Same format as (A) for the Feedback
inactivation condition. The gain model considerably improves the
goodness-of-fit, while only slight improvements are observed with the size
model. For all panels, triangles and circles indicate single- and multi-units,
respectively.

summation in V1, as well as the underlying gain-related mech-
anism, remains largely intact in the absence of feedback from V2
and V3.

CENTER CONTRAST SENSITIVITY UNALTERED DURING FEEDBACK
INACTIVATION
The above results show that feedback inactivation had little or no
effect on the gains of the underlying excitatory drive and normal-
ization pool components. If this is indeed the case, we would not
expect to observe population-wide changes in contrast sensitiv-
ity for small stimuli restricted to the receptive field center. We
measured the contrast response function for 36 units from the
same two monkeys (24 single units, 12 multi-units). The exper-
imental protocol was identical to that used for area summation
measurements, except that gratings were fixed in size, appeared
entirely within the experimentally-derived high contrast sum-
mation field, and eight contrast values were pseudo-randomly
presented. All 36 units were sensitive to contrast (Two-Way
ANOVA, main effect contrast, each p < 0.05), and the rela-
tionship between contrast and neural responses was a roughly
sigmoidal, monotonic-increasing function (Figure 8A). Although
17 of 36 units demonstrated some sensitivity to feedback, the
effects were weak and variable and thus did not result in sig-
nificant effects at the population level (Two-Way ANOVA, main
effect of feedback and contrast × feedback inactivation, both
p > 0.05).

We fit each unit’s contrast sensitivity curve with the Naka-
Rushton hyperbolic ratio function (see Materials and Methods),
which explained on average over 90% of the variance across the
population. We found no trends for systematic differences across
feedback conditions for either the exponent parameter n or the c50

parameter (Mann-Whitney U-test, both p > 0.2; Figures 8B,C).
In addition, we did not detect a change in contrast response
saturation across the population (Rmax: 52 ± 35 s−1 vs. 52 ±
32 s−1, feedback on vs. off respectively, p = 0.86). Despite the
lack of evidence for a contrast gain mechanism contributing to
the effects of feedback inactivation on area summation, we tested
for a correlation between changes in either n or c50 and the
corresponding feedback-related changes in surround suppression
(�SSI from the area summation data) and found no correlation
in either case: r(�SSI, �n) = 0.03 and r(�SSI, �c50) = −0.22
(both p > 0.1). The absence of a systematic influence of feed-
back inactivation on contrast sensitivity within the high con-
trast summation field provides a second line of evidence—
consistent with the area summation analysis—that feedback does
not influence area summation properties in V1 via a contrast-gain
mechanism.

DISCUSSION
Our results suggest that feedback from V2 and V3 contributes to
area summation properties in V1 through normalization. During
feedback inactivation, we observed increased responses in V1 to
large stimuli, with little or no effect on responses to small stimuli,
leading to a reduction in the strength of surround suppression
(Figure 3). The effects of V2/V3 cooling on the area summation
curves were well explained by a normalization model in which
feedback inactivation reduced the spatial extent of a divisive
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Table 4 | Comparison of area summation model and gain model.

Area summation model Gain model

Free across contrast: kD, kN, wD, wN kD, kN

Control condition High contrast Low contrast High contrast Low contrast

Peak size (◦) 0.46 ± 0.20 0.71 ± 0.65 0.47 ± 0.19 0.61 ± 0.26

Peak rate (s−1) 54 ± 32 32 ± 22 54 ± 32 31 ± 21

Asymptote size (◦) 4.4 ± 1.5 4.6 ± 1.6 4.3 ± 1.5 4.2 ± 1.6

Asymptote rate (s−1) 12 ± 15 9.6 ± 12 12 ± 16 11 ± 13

SSI (a.u.) 0.79 ± 0.17 0.71 ± 0.26 0.78 ± 0.19 0.67 ± 0.27

kD (a.u.) 1730 [3110] 532 [613] 1720 [3220] 600 [636]

kN (a.u.) 12.9 [13.8] 5.02 [5.89] 13.6 [16.5] 4.59 [5.27]

wD (◦) 0.32 ± 0.25 0.39 ± 0.29 0.34 ± 0.17 (fixed)

wN (◦) 1.96 ± 1.29 2.14 ± 1.31 1.79 ± 1.19 (fixed)

Normalized χ2 5.68 4.78

Variance explained (%) 88% 87%

Feedback inactive High contrast Low contrast High contrast Low contrast

Peak size (◦) 0.51 ± 0.22 0.72 ± 0.38 0.52 ± 0.22 0.65 ± 0.32

Peak rate (s−1) 59 ± 35 37 ± 27 59 ± 35 36 ± 27

Asymptote size (◦) 4.1 ± 1.6 4.7 ± 1.5 4.1 ± 1.5 4.1 ± 1.6

Asymptote rate (s−1) 19 ± 20 12 ± 14 19 ± 20 14 ± 15

SSI (a.u.) 0.71 ± 0.22 0.68 ± 0.25 0.71 ± 0.22 0.61 ± 0.27

kD (a.u.) 1770 [2440] 450 [817] 1830 [2290] 509 [857]

kN (a.u.) 7.99 [14.5] 3.79 [5.82] 10.2 [14.9] 3.80 [4.98]

wD (◦) 0.31 ± 0.18 0.40 ± 0.20 0.36 ± 0.22 (fixed)

wN (◦) 1.72 ± 1.22 2.11 ± 1.33 1.36 ± 1.07 (fixed)

Normalized χ2 4.32 3.79

Variance explained (%) 92% 90%

Mean ± SD used everywhere except for kD and kN reported as median [IQR]. Some results from Table 1 are repeated here for convenience.

normalization pool (Figures 2, 3). Contrast-dependent effects
on area summation were unaltered during feedback inactivation
(Figure 6), as was contrast sensitivity within the receptive field
center (Figure 8), providing evidence that feedback acts indepen-
dently of previously described contrast-gain mechanisms known
to exist in V1 (Sclar et al., 1990; Levitt and Lund, 1997; Cavanaugh
et al., 2002).

The original normalization model (Heeger, 1992) was put for-
ward to account for two shortcomings of the Hubel-Wiesel linear
model of simple cells (Hubel and Wiesel, 1962): (1) response
saturation at high contrast and (2) non-specific suppression of
responses due to additional stimuli in or near the classical recep-
tive field. Although the normalization model accounts for both
processes with the same equation, recent evidence indicates that
the two may in fact be mechanistically distinct (Olsen et al.,
2010): Working in the olfactory system of Drosophila, these inves-
tigators demonstrated that response saturation occurred within
each glomerular channel, while normalization was due to lat-
eral inhibitory interactions between glomeruli. Our results show a
similar dissociation. We found that feedback inactivation reduced
surround suppression solely by shrinking the spatial extent of the
normalization pool and, remarkably, that this effect was inde-
pendent of the gain modulations that accounted for effects of
stimulus contrast on area summation. We further confirmed that

contrast sensitivity within the classical receptive field is unaltered
when inactivating feedback. Insofar as divisive normalization
underlies area summation, our results provide direct evidence
that corticocortical feedback participates in normalization inde-
pendent of the circuit mechanisms involved in contrast-gain
control. It is nevertheless important to note that we applied nor-
malization as a premise for interpreting these data. Therefore,
our results do not rule out alternative models that account for
summation properties (e.g., Sceniak et al., 1999).

Based on our data, feedback from V2 and V3 interacts pref-
erentially with the pool of neurons that produces surround sup-
pression in V1 rather than the pool that provides the excitatory
drive. This is consistent with earlier propositions that feedback
acts as a modulator of neural activity as opposed to a driver (Shao
and Burkhalter, 1996; Sherman and Guillery, 1998; Angelucci
and Bressloff, 2006). Such a characterization is based largely on
anatomical work which has shown that feedback axons tend to
target the distal apical dendrites of pyramidal neurons (Rockland
and Virga, 1989; Anderson and Martin, 2009) and are therefore
capable of having an impact on the gain of neuronal outputs
(Larkum et al., 2004). However, here we have provided evidence
contrary to the idea that feedback modulates gain, but rather that
it sets the size of the suppressive field. The idea that feedback’s role
as a modulator can be suppressive has not been fully appreciated
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FIGURE 8 | Contrast sensitivity is unaltered by feedback inactivation.

(A) Contrast response functions plotted for two example units. The grating
was restricted to the center of the receptive field. Data are shown as mean ±
s.e.m., and curves were obtained using the Naka-Rushton model (inset
equation) by fitting the parameters n and c50. The spike rates for
spontaneous activity (R0) and maximum response (Rmax) were measured.

(B) Difference in parameter n between Feedback inactive and Control
conditions. (C) Difference in parameter c50 between Feedback inactive and
Control conditions. Black triangle indicates population median (with two-tailed
Mann-Whitney U-test p-value). Magenta and orange symbols indicate shifts
for example units shown in (A). Feedback-inactivation did not lead to a
systematic effect in contrast response function parameters.

until recently (Nassi et al., 2013). Previously, one of the only clues
regarding feedback’s involvement in area summation was the
relatively fast response facilitation from far regions of the recep-
tive field surround (Ichida et al., 2007). Surround suppression
could be mediated by feedback connections directly onto local
inhibitory neurons (Gonchar and Burkhalter, 2003; Anderson
and Martin, 2009). This would be consistent with recent work
in the rodent, showing that somatostatin-positive inhibitory neu-
rons play an important role in surround suppression (Adesnik
et al., 2012) and that long range excitatory projections can have a
net suppressive effect through the recruitment of local inhibitory
neurons (Iurilli et al., 2012; Palmer et al., 2012). Suppression
through feedback could also be mediated indirectly via horizon-
tally projecting excitatory neurons in superficial layers which are
known to target inhibitory neurons (McGuire et al., 1991) and
have been implicated in several forms of “top-down” modula-
tory influences (Ito and Gilbert, 1999; Li et al., 2004; Ramalingam
et al., 2013). Feedback need not rely solely on inhibitory neu-
rons in order to produce suppression, as increases in conductance
as well as synaptic depression can lead to reduced neuronal out-
put without a net increase in inhibition. In fact, recent evidence
suggests that surround suppression relies on the dynamic inter-
play between highly interconnected excitatory and inhibitory
networks, such as an inhibition-stabilized network, and there are
likely to be many ways by which feedback could modulate such
a balanced network regime (Ozeki et al., 2009; Haider et al.,
2010).

In distinction to inputs from the normalization pool, driv-
ing inputs received by V1 neurons are thought to establish basic
selectivity for such properties as spatial position and orientation,
and are likely mediated primarily by feed-forward connections
(Priebe and Ferster, 2012). In support of this idea is our previ-
ously reported observation that orientation preference within the
receptive field center is unaffected during feedback inactivation
(Nassi et al., 2013). However, we did find that selectivity for ori-
entation was often reduced due to slightly increased responses to
orthogonal orientations when feedback was inactivated. This is
consistent with models of orientation tuning that depend on local
cortical circuits to sharpen orientation preference (Ben-Yishai
et al., 1995; Somers et al., 1995; Troyer et al., 1998); an operation
that may also rely on normalization (Heeger, 1992).

According to our modeling results, feedback from V2 and
V3 contributes to the overall size but not the gain of normal-
ization in V1. Specifically, feedback increases the spatial extent
over which normalization operates. An increase in the size of
the normalization pool leads to increased suppression in the sur-
round while leaving responses within the receptive field center
unchanged (Figure 2F). This is consistent with both the area sum-
mation data and center contrast response function data presented
here (Figures 1, 8), as well as the fact that receptive fields increase
in size along the visual cortical hierarchy. Feedback from V2 and
V3 can cover aggregate visual fields five–ten times the size of the
receptive field center in V1 (Angelucci and Bressloff, 2006). This
may explain why observed effects of feedback inactivation were
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strongest for stimulus diameters approximately two–eight times
the size of the receptive field center and relatively weaker for the
largest stimulus diameters tested (Nassi et al., 2013), which likely
evoked stronger responses from areas such as MT that remained
active during cooling of V2/V3 (Ponce et al., 2008). Indeed, sub-
stantial suppression remained during feedback inactivation, not
only for the largest stimulus diameters tested, but also for stimu-
lus diameters that extended just beyond the center of the receptive
field. These results suggest that, in addition to feedback from
V2/V3, other cortical sources of feedback, as well as horizontal
connections intrinsic to V1, all combine to produce the level of
surround suppression observed under normal conditions. Each
of these distinct sources of suppression likely operates at different
spatio-temporal scales (Bair et al., 2003; Angelucci and Bressloff,
2006; Reynaud et al., 2012) and their interaction with one another
within the context of normalization will be an important question
to be addressed in the course of future research.

Area summation properties are not only dependent on top-
down feedback signals but also on bottom-up stimulus properties
such as luminance contrast (Levitt and Lund, 1997). As stimu-
lus contrast is reduced, the size of the summation field increases.
This was first accounted for with a difference of Gaussians model
in which a reduction in contrast increases the spatial extent of
excitatory drive (Sceniak et al., 1999). In subsequent work, it was
shown that the increase in summation field size at low contrast
could be more parsimoniously explained by a divisive normal-
ization model in which input drive and the normalization pool
are stable in spatial extent and only their relative gains depend on
contrast (Cavanaugh et al., 2002). Our analysis reproduced the
contrast gain results of the Cavanaugh model (Figure 7). The cur-
rent results further showed that inactivation of feedback leaves
contrast-gain effects on area summation unaltered (Figure 6).
This suggests that the effects of contrast on area summation
are mediated by circuit mechanisms independent of feedback.
One likely candidate would be horizontal connections intrinsic
to V1, which have been shown to cover the necessary visuotopic
extent (Angelucci and Bressloff, 2006). Indeed, recent evidence
from voltage-sensitive dye imaging in alert macaques suggests
that horizontal connections may act to dynamically clamp local
contrast gain mechanisms (Reynaud et al., 2012). Interestingly,
these investigators were able to account for their observed results
with two distinct normalization processes, proposing that recur-
rent polysynaptic intracortical loops mediate contrast gain and
long-range monosynaptic horizontal spread mediates surround
suppression. Taken together, our results suggest that horizon-
tal connections in V1 may set the gain of normalization in V1,
whereas feedback sets the extent over which horizontal connec-
tions are effective—essentially gating horizontal signals depend-
ing on stimulus conditions and behavioral state (Gilbert and
Sigman, 2007). This view is consistent with the idea that feedback
can modify the “association field” that is likely comprised of local
horizontal inputs (Field et al., 1993; Ramalingam et al., 2013).

Recent studies on attention have provided increasing sup-
port for the idea that feedback modulates properties of spatial
integration (Roberts et al., 2007; Anton-Erxleben et al., 2009;
Sundberg et al., 2009). For example, in V4 attention directed
to the receptive field center weakened suppression from the
surround, while attention to the surround enhanced suppression

(Sundberg et al., 2009). These effects were accounted for by a nor-
malization model similar to the one considered here (Lee and
Maunsell, 2009; Reynolds and Heeger, 2009). In V1, effects of
attention have been found to be more complicated: some stud-
ies have found that attention reduces the impact of the surround,
whereas others have found that the impact of the surround is
enhanced (Ito and Gilbert, 1999; Roberts et al., 2007; Chen et al.,
2008; Poort et al., 2012). These effects appear to depend on several
factors including stimulus eccentricity, whether surround stim-
uli are facilitatory or suppressive and the nature of the perceptual
task. In the current study, the behavioral task was simply to fixate
a central cross, leaving the attentional focus of the animals uncon-
trolled and thus indeterminate. It is probable, however, that the
receptive fields we studied fell outside of the locus of attention
which was most likely directed toward the fixation point—a con-
figuration for which suppressive effects are expected. A prediction
for future studies is that training the animal to direct attention
toward the receptive fields under study might uncover excitatory
influences of feedback.
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