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Behavioral studies have shown that human cognition is characterized by properties such
as temporal scale invariance, heavy-tailed non-Gaussian distributions, and long-range
correlations at long time scales, suggesting models of how (non observable) components
of cognition interact. On the other hand, results from functional neuroimaging studies
show that complex scaling and intermittency may be generic spatio-temporal properties of
the brain at rest. Somehow surprisingly, though, hardly ever have the neural correlates
of cognition been studied at time scales comparable to those at which cognition
shows scaling properties. Here, we analyze the meanings of scaling properties and the
significance of their task-related modulations for cognitive neuroscience. It is proposed
that cognitive processes can be framed in terms of complex generic properties of brain
activity at rest and, ultimately, of functional equations, limiting distributions, symmetries,
and possibly universality classes characterizing them.
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INTRODUCTION
Ideally, cognitive psychology aims at providing a description of
the space of cognitive processes, the nature of each of them,
and the way they interact. Cognitive processes are unobservable
regimes of an underlying dynamical system. However, they can be
reconstructed by considering that sequences of observable quan-
tities, sampled during the execution of controlled cognitive tasks,
are the output of this system.

In behavioral studies, the underlying system is construed as
a black box function, with given tasks, supposed to summon
given cognitive processes, as inputs, and observable behavioral
performance as outputs.

Typically, a quantitative description of cognitive processes
consists in calculating means and standard deviations of trial-
averaged performance measures, implicitly assuming an under-
lying Gaussian distribution (which is completely described by its
first two moments), and statistical independence of the various
trials.

However, the results of numerous behavioral studies [see
(Kello et al., 2010) for a review] cannot be reconciled with
Gaussian distribution functions. Power-law distributions and
temporal scaling have consistently been found for relatively short
time series (∼102–103 time points) (Gilden, 2001) of inter-trial
fluctuations in performance levels, although finer temporal scales
have also been considered, particularly for motor tasks (Cabrera
and Milton, 2002; Diniz et al., 2011).

Behavioral scaling laws contain important information about
cognitive function, viz. on how (non observable) components
of cognition interact (Holden et al., 2009). For instance, power-
law scaling of trial-to-trial performance variations has been taken
to arise from multiplicative interactions among interdependent

processes, suggesting that the mechanisms through which pro-
cesses interact to give rise to cognitive performance may be no
less fundamental than single components’ functioning principles
(Holden et al., 2009; Ihlen and Vereijken, 2010).

The scaling properties appear to be modulated in a task-
specific way. For example, increasing task difficulty accelerates the
transition from 1/f to white noise in decision-making time series
(Correll, 2008; Grigolini et al., 2009).

Cognitive function is naturally understood as originating from
brain activity, and quantitatively characterized in terms of the
brain properties associated with the execution of given cognitive
tasks. Cortical activity adds spatial and temporal scales unavail-
able in behavioral studies, so that scaling can be assessed within
single process realizations.

The brain generates fluctuations with complex scaling proper-
ties (Novikov et al., 1997; Linkenkaer-Hansen et al., 2001; Gong
et al., 2002, 2007; Freeman et al., 2003; Bianco et al., 2007;
Suckling et al., 2009; Freyer et al., 2009), even in the absence of
exogenous perturbations or changes in parameters controlling its
activity. Only few experimental studies (Linkenkaer-Hansen et al.,
2004; Popivanov et al., 2006; Buiatti et al., 2007; Bhattacharya,
2009; He et al., 2010; Ciuciu et al., 2011, 2012; Zilber et al., 2012)
investigated the scaling properties of task-related brain activity, or
their relationship with behavioral ones (Monto et al., 2008; Palva
et al., 2013; Kello, 2013).

The aetiology and functional meaning of brain fluctuation
scaling have been discussed at length. For example, the presence of
spatial and temporal inverse-power law correlations is often taken
to suggest that the brain lives near a second order phase transition,
a condition optimizing information processing and storage, and
dynamic response (Chialvo, 2010).
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Papo Functional significance of complex fluctuations

Here, instead, we discuss ways in which fluctuation properties
can be used as metrics making cognitive function observable.

A RANDOM WALK AROUND BRAIN ACTIVITY’S SPACE
To garner a physical intuition of the meaning of brain fluctua-
tions one can think of brain activity as the motion of a random
walker making steps of size x at given times t, or, in the continuous
limit, of a diffusing macroscopic particle in a complex high-
dimensional space, subject to viscous friction, with a time scale
τm, and driven by an additive random force with a characteristic
time τη (Hsu and Hsu, 2009).

The relationship between τm and τη determines how the sys-
tem evolves in this complex space, including traveled distances,
velocity, degree to which the space is visited, time to reach a
given target point, system’s memory of its own trajectory within
the landscape, relationship between spontaneous and task-related
activity, and ultimately how microscopic fluctuations renormalize
to give rise to observable macroscopic statistical properties (Papo,
2013b).

If spontaneous fluctuations were Markovian, with Gaussian
δ-correlated noise, and τη � τm, the particle would undergo
normal diffusion: the step length would be taken from the
Maxwell-Boltzmann equilibrium distribution, and the mean-
square distance (MSD) traveled by the particle would scale
linearly with time

〈|x(t)|2〉 ∼ t. Under general conditions,
the first passage time from a prescribed phase space domain
would be characterized by a universal distribution, independent
of the jump length distribution (Sparre Andersen, 1953). For
t � τm, the temporal autocorrelation of velocity fluctuations
would behave as C(τ ) ∼ exp (−t/τm), with a unique character-
istic time τm. The dynamics would hop without memory from
one configuration to another, eventually visiting the whole phase
space.

However, the properties of observed brain fluctuations are
inconsistent with the Markovian approximation (Fraiman and
Chialvo, 2012). Spontaneous fluctuations show temporal and
spatial scale-free statistics (Novikov et al., 1997; Linkenkaer-
Hansen et al., 2001; Gong et al., 2002; Stam and de Bruin,
2004; Expert et al., 2010; van de Ville et al., 2010). The
MSD scales as

〈|x(t)|2〉 ∼ t2ν with ν �= 1/2, so that its diffu-
sion is anomalous, and indeed even strongly anomalous (Suckling
et al., 2009; Ciuciu et al., 2011, 2012; Zilber et al., 2012),
with the q-th moments scaling as

〈|x(t)|q〉 ∼ tqν(q), with ν(q) �=
const (Castiglione et al., 1999). Appropriately rescaled average
temporal fluctuations collapse onto universal scaling functions
(Sherrington, 2010; Friedman et al., 2012; Shriki et al., 2012).

Exponential relaxation is replaced by complex scaling, e.g.,
of a Mittag-Leffler type (Bianco et al., 2007), with stretched
exponential relaxation at microscopic scales (t < τ ), and inverse
power-law scaling C(τ ) ∼ τ−α, for t � τ , so that, for α ≤ 1, the

correlation time τC = ∫ ξ

0 C(t)dt diverges, leading to a scale-free
process with memory. The system undergoes ageing (Bianco et al.,
2007): correlations are time-inhomogeneous, with a dependence
on the time of application of a given field, history-dependent
(Sherrington, 2010), and weakly non-ergodic (Bianco et al.,
2007), as some phase space region may take extremely long times
to be visited (Bouchaud, 1992).

Activity shows statistical and dynamical intermittency: on the
one hand, although large-scale fluctuations are approximately
Gaussian, non-Gaussian fluctuations appear at higher frequencies
(Freyer et al., 2009). On the other hand, activity is characterized
by alternating laminar and turbulent phases (Gong et al., 2007;
Allegrini et al., 2010, 2011).

UNDERSTANDING BRAIN FLUCTUATIONS
The statistical and dynamical properties of brain fluctuations
contain information on the structure of the functional space
within which brain dynamics evolves, and on the style, as it
were, with which brain dynamics explores its dynamic repertoire
(Ghosh et al., 2007; Deco et al., 2011; Betzel et al., 2012).

FROM SINGLE STEPS TO COMPLETE WALKS
Scaling laws indicate that the walker takes steps of all sizes, from
local to extremely long jumps.

More importantly, probability distributions contain infor-
mation on how observable large-scale outcomes arise from
the interactions of many small-scale processes (Frank, 2009).
Observed probability distributions can be thought of as repro-
ducible macroscopic features emerging from the sum of highly
fluctuating individual elements. It is natural to see this sum as rep-
resenting the temporal aggregation of fluctuations within a given
time-window.

The central limit theorem (CLT) ensures that the limit distri-
bution of the sum of a large number of random variables is a
stable law. The law is Gaussian if the variables are independent
and have finite variance. For correlated or infinite variance fluc-
tuations, the CLT ought to be generalized, and the stable law is not
Gaussian but Lévy. Importantly, in the latter the largest term is of
approximately the same order of magnitude of the sum, indicat-
ing that extreme events dominate the underlying process (Laguës
and Lesne, 2008).

From a dynamical view-point, the CLT accounts for normal
diffusion and the time dependence of the MSD (or the walker’s
position), while generalized CLTs result in anomalous diffusion,
which differs both in relaxation speed, and in the probability
distribution’s shape, even at very long times.

Probability distributions can be seen as resulting from the
iteration of some action on them. For instance, stable laws are
fixed points of the convolution operation. Somehow equiva-
lently, fluctuation distributions can be understood as asymptotic
behaviors emerging as the system is coarse-grained and rescaled
(Hochberg and Pérez-Mercader, 2003). Scale-free distributions
are fixed points of a renormalization flow, and universality classes
are their basins of attraction. The surface comprising the mod-
els flowing into the same fixed point separates the space into
phases, corresponding to different macroscopic phenomenolo-
gies (Laguës and Lesne, 2008). Universality can be understood in
terms of relevant and irrelevant operators, depending on the con-
sequence they have on the statistical behavior (Laguës and Lesne,
2008).

Probability distributions can also be seen as solutions to spe-
cific problems expressed e.g., by differential equations (Barenblatt
and Zel’dovich, 1972). For instance, probability distributions
are solutions of the Fokker-Planck equation of evolution of the
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particle’s transition probabilities, under given information con-
straints (Jaynes, 1957). For the linear diffusion equation, the
solution is a time-evolving spatial Gaussian probability function
maximizing the Shannon entropy. Correlated anomalous diffu-
sion is governed by a nonlinear Fokker-Planck equation whose
exact stationary solutions are probability distributions maximiz-
ing Tsallis generalized entropy (Borland, 1998).

EMERGENCE OF STRUCTURE: MEMORY, TEMPORAL ORDER, AND
NON-LOCALITY
Correlations are propagators, whose characteristic length ξ con-
stitutes an active time window within which all points are some-
how related to each other.

A Markovian system has perfectly elastic almost instantaneous
relaxation and no memory: the time axis tends to be infinitely
fragmented, so that activities of overall duration L are temporally
disordered (L � ξ).

Brain fluctuations’ loss of scale separation allows micro-
scopic randomness to renormalize and become macroscopically
detectable (Grigolini et al., 1999): correlated driving noise and
cross-scale relationships produce temporally ordered structures
(L ∼ ξ), so that activity at a given time point is temporally non-
local, and not easily divorced from that occurring within the
scaling range.

With temporal scaling, fluctuations no longer have a character-
istic time; more than to a multiplicity of scales {τi}, the emphasis
shifts to some relationship between them. The brain’s functional
heterogeneity introduces a spatial distribution of time scales {σi}
inducing a structure S. Eventually, the studied dynamics is a field
φ
(−→s , t

) ∈ �, where � = {φ} is a space of systems, endowed
with a spatio-temporal structure {S ∗ 
}, with arbitrarily com-
plex topological properties (Zaslavsky, 2002), and which can
become observable through a wealth of collective state variables
X ∈ X.

The structure {S ∗ 
} is a dynamical system in the space of
fields φ, relating representations of the process at different scales
(Friedrich et al., 2000; Bacry et al., 2001; Longo et al., 2012). For
instance, at any given scale λ within the scaling range, the prob-
ability P(x, t) that the particle traveled a distance x at time t can
be thought of as the convolution of the distribution P�(x, t)
at the coarsest scale � and a probability distribution G(.),
not necessarily a power-law (Chainais et al., 2005), expressing
the relationships across time scales (Castaing et al., 1990). For
scale-invariant processes, P(x, t) = t−νF(x/tν), G collapses into
a single point, and is simply the scaling exponent ν. Scale invari-
ance breakdown indicates that P(x, t) is specified by a complex
spectrum of scaling exponents.

The set of renormalization operators is endowed with some
structure, e.g., a multiplicative semi-group structure, and a
covariance property comparable to that of tensors under the
action of rotations, with scale invariance replacing Galilean
invariance and fractal geometry the Euclidean one (Lesne, 2008a).
In turn, scaling laws can be seen as the statistical properties pre-
scribed by the symmetries of a (semi)group on the time-scale
space (Borgnat et al., 2003).

Altogether, the presence of complex fluctuations allows treat-
ing brain activity as a physical object, defining subparts, and

relationships among them, and ultimately using theoretical
physics tools such as functional analysis and algebra to charac-
terize them.

VELOCITY AND OPERATIONAL TIME
The presence of scaling can be interpreted in dynamical terms in
various ways.

Furthermore, the Lamperti transform establishes a bijec-
tive correspondence between self-similar processes on R

+ and
stationary processes on R (Flandrin et al., 2003). Self-similar
solutions reflect a uniform propagation regime (Barenblatt and
Zel’dovich, 1972), and the system can be seen as moving at con-
stant velocity, given by the scaling exponent (Sornette, 2004),
whereas the breakdown of exact self-similarity indicates that the
propagator is not time-stationary.

The scaling properties also define an intrinsic time of the pro-
cess. This can be seen by considering that the random walk of
brain activity has a waiting-time distribution (WTD) between
jumps scaling as a power-law. The WTD defines an internal oper-
ational time, which can grow sub- or super-linearly with physical
time (Sokolov and Klafter, 2005). Without multiplicative interac-
tions, operational and physical time coincide. Multiplicative cross-
scale interactions bias the WTD so that, local probability densities
become time-dependent and intermittent, and time translational
invariance is broken (Crisanti and Ritort, 2003). The observed
Mittag-Leffler fluctuation distribution (Bianco et al., 2007) may
in fact stem from the process intermittent subordination with
internal time.

DYNAMICAL REGIMES AND FLUCTUATION DISSIPATION
RELATIONS
Brain fluctuation properties help relating two only seemingly
antagonistic aspects of brain activity: spontaneous and task-
induced brain activity. For Gaussian δ-correlated fluctuations,
the fluctuation-dissipation theorem (FDT) ensures that the sys-
tem’s integrated response χ(t, t′) at time t to an external field
applied at time t′ and the autocorrelation function CX(t, t′)
of the unperturbed system are linked by the temperature T of
the bath with which the system is in equilibrium (Kubo, 1966).
Translated in terms of brain activity, the FDT would establish
an equivalence between stimulus-evoked and spontaneous brain
fluctuation correlations (Papo, 2013c).

Complex multiscale fluctuations suggest that thermalization
happens simultaneously at widely different timescales, so that the
FDT in its classical form is not expected to hold (West et al.,
2008). For systems with the type of intermittency observed for
brain activity, the linear response is anomalous even with simple
stimuli (Silvestri et al., 2009; Allegrini et al., 2010). The way the
FDT is violated and the ingredients necessary to recover it can be
used in various ways as descriptors of brain activity.

First, the properties of ongoing fluctuations define the form
of the generalized FDT holding for brain activity and, in fine, the
way stimulus information is transferred to the brain. The pres-
ence of correlated noise affects the particle’s transport properties
and corresponding dynamics (Machura and łuczka, 2010), and
information transfer is maximized when stimuli and brain fluc-
tuations display similar scaling properties (Allegrini et al., 2007;
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West and Grigolini, 2010; Aquino et al., 2011). Moreover, scaling
exponents mark dynamical transitions between qualitatively dif-
ferent response regimes (Burov and Barkai, 2008).

Second, the nature of FDT violation helps understanding at
what scales correlations and memory start playing a role, and cor-
rectly characterizing the underlying dynamics by specifying the
additional degrees of freedom necessary to recover Markovianity
(Zwanzig, 2001).

Finally, effective temperatures, i.e., what a thermometer
responding on the time scale at which the system slowly reverts to
equilibrium would measure, which may be used to derive a gen-
eralized FDT (Cugliandolo et al., 1997), constitute intrinsic time
scales of the system. Fluctuations ultimately identify a spatial dis-
tribution of scale-dependent relationships between spontaneous
and stimulus-induced brain activity, quantifying the extent to
which each scale deviates from equilibrium (Papo, 2013a). This
reflects the fact that a path realizes qualitatively different diffusion
processes at different temporal and the spatial scales.

TASK-RELATED MODULATIONS
Because most complex scaling properties are presumably generic,
psychologists are primarily interested in the extent to which cog-
nitive activity may affect them. Furthermore, precisely because
they are generic, task-induced modulations of these properties
represent powerful descriptors of the underlying processes.

CROSS-OVERS AND SYMMETRY CHANGES
Numerous cognitive tasks have been shown to modulate the
scaling exponents of brain fluctuation probability functions
(Linkenkaer-Hansen et al., 2004; Popivanov et al., 2006; Buiatti
et al., 2007; He et al., 2010; Ciuciu et al., 2011, 2012; Zilber et al.,
2012). Task demands also appear to enhance data collapse and
universality of brain fluctuations (Bhattacharya, 2009).

Cognitive demands may push brain activity toward the basin
of attraction of adaptively advantageous probability distributions.
Cognitive function would be tantamount to designing a driving
noise function making the system’s stationary distribution equal
a desired target one. Moreover, insofar as power laws are solutions
of functional equations, rather than frequency or amplitude mod-
ulators, cognitive processes may be conceptualised as operators
acting upon the functional form of brain activity.

A still poorly explored possibility is that these modulations
represent cross-overs between universality classes. This would
allow classifying observed cognitive function as operators act-
ing on symmetries (Lübeck, 2004). Renormalization flows would
represent generalized dynamic pathways within the functional
space, and universality classes a partition of this space, quan-
tifying robustness with respect to control parameter variations
(Lesne, 2008a,b).

Whether and how cognitive demands act on brain activity’s
symmetries is a deserving matter (Freeman and Vitiello, 2006;
Buice and Cowan, 2009). For instance, the transition from mono-
to multifractal distributions has been reported at the late stages
of various fracture phenomena (de Arcangelis and Herrmann,
1989; Kapiris et al., 2004). However, whether spontaneous activ-
ity is temporally scale-free (van de Ville et al., 2010) or breaks
down scale invariance (Ciuciu et al., 2011, 2012; Wink et al., 2012;

Zilber et al., 2012) is still an open debate. Existing discrepancies
may stem from the order parameter used to evaluate scaling, e.g.,
whether it is local or has prominent spatial extension, as hetero-
geneity and disorder may directly affect the scaling exponents.

The shrinking of the multifractal spectrum associated with
performance of cognitive tasks may amount to selecting a set
of complex patterns from the available repertoire, or to mod-
ifying the rate at which these patterns are re-edited across the
system (Kenet et al., 2003; Betzel et al., 2012). On the other hand,
stimuli drive neural activity away from criticality (Kohen-Kashi
Malina et al., 2013), an action reminding the interruption of age-
ing caused by an external field forcing a glassy material (Kranz
et al., 2010). In this sense, one may interpret multifractality as a
sign of ageing (Allegrini et al., 2004).

STEERING WITHIN THE PHASE SPACE
As they modulate the temporal scaling of fluctuations, cognitive
demands affect the temporal organization of brain activity and
the corresponding operational time.

The observable outcome could come in the form of a modula-
tion of cross-over scales, e.g., the time scales at which fluctuations
start converging to a Gaussian distribution, varying the likeli-
hood of large scale events (Mantegna and Stanley, 1994), the
length interval over which activity can be considered a Markov
process, the time scale of the transition from microscopic to
macroscopic dynamics (Aquino et al., 2007), or the degree of non-
ergodicity, corresponding to different ways of visiting the state
space (Lomholt et al., 2013).

Furthermore, stimulus-induced modulations of temporal cor-
relations may induce phase transitions in first-passage times
(Carretero-Campos et al., 2012) and in response regimes (Burov
and Barkai, 2008), and may influence fluctuations’ transition to
scaling, while endogenous activity likely affects the WTD scaling
properties (Aquino et al., 2011).

Finally, cognitive demands may bias either the probabilities
or the occurrence times of the walker’s jumps (Allegrini et al.,
2004), and therefore the operational time associated with a given
process.

CONCLUSIONS
We addressed the question of whether and how brain fluctuations
help describing non observable cognitive processes.

That observed behavior is a product of brain activity is a matter
of general consensus. Here, we further proposed that the former
can be described in terms of the generic properties of the latter,
such as scaling regimes and their basins of attraction, symme-
tries (not only scale invariance), FDT violations. Ultimately, it is
tempting to conceive of observed behavior as a macroscopic prop-
erty emerging from the renormalization of microscopic brain
fluctuations.

Such characterization of the action of cognitive demands on
brain activity affords a wealth of order parameters through which
activity becomes observable, each representing a cut, in differ-
ent dimensions and scales, of the same underlying space. More
generally, it allows a conceptualization whereby cognitive pro-
cesses operate upon the structure of brain activity, producing
effects observable from various perspectives (e.g., structural or
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dynamical). Eventually, this shapes a functional space for which
internal structure, and transition and combinatory rules can be
extracted.

Finally, it is important to warn that these descriptions do not
unambiguously characterize the aetiology of fluctuation prop-
erties, as similar scaling properties may stem from qualitatively
different generators (Magdziarz et al., 2009; Meroz et al., 2013;
Thiel et al., 2013) which may be difficult to distinguish with a
finite amount of data (Grigolini, 2008).
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