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Hippocampus is one of the most important information processing units in the brain.
Input from the cortex passes through convergent axon pathways to the downstream
hippocampal subregions and, after being appropriately processed, is fanned out back
to the cortex. Here, we review evidence of the hypothesis that information flow and
processing in the hippocampus complies with the principles of Compressed Sensing
(CS). The CS theory comprises a mathematical framework that describes how and under
which conditions, restricted sampling of information (data set) can lead to condensed, yet
concise, forms of the initial, subsampled information entity (i.e., of the original data set).
In this work, hippocampus related regions and their respective circuitry are presented as
a CS-based system whose different components collaborate to realize efficient memory
encoding and decoding processes. This proposition introduces a unifying mathematical
framework for hippocampal function and opens new avenues for exploring coding and
decoding strategies in the brain.
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INTRODUCTION
The rules that govern information flow between different hip-
pocampal subregions represent the very quintessence of its main
functionality: the formation and retrieval of new memories.
However, various theoretical issues arise regarding those rules.
For instance, in what ways—if any—are the firing rates of two
interconnected regions causally related during memory forma-
tion? To what extent is a sparse neuronal population activity
required for efficient memory encoding? What are the crucial
limitations of inter-regional interactions for successful recon-
struction of memory entities in a neural circuit? All above-stated
queries incorporate concepts, such as, causality, sparsity, and
constraints’ definition, that introduce the need for a strict, math-
ematical interpretation.

Various models have been proposed regarding the concep-
tual relationship between hippocampal circuitry and function.
However, none of these models included a strict mathematical
formalization of their proposed theory (Lisman, 1999; Lisman
and Otmakhova, 2001; Lisman et al., 2005; Cheng, 2013). On
the other hand, a more mathematically oriented approach (Rolls,
2010), focused on the computational formalization for each hip-
pocampal subregion independently, without any unifying frame-
work that governs intra- or inter-regional relations. What is yet to
be revealed is the potential of using a single mathematically for-
mulated theory for the entire hippocampal formation. This would
be the first step toward a holistic interpretation of hippocampal
function and could provide new analytical tools for interpreting
experimental data while paving the way for an omnibus, black-
box-like modeling of hippocampus in brain networks. Toward
this goal, we introduce the hypothesis that hippocampus-related
regions, interact and function under the main principles of the

well-defined theory of Compressed Sensing (CS) (Candes and
Tao, 2006; Candès et al., 2006; Donoho, 2006; Baraniuk et al.,
2010).

CS, a recent breakthrough attainment within the Signal
Processing field, asserts a new encoding/decoding context. The
CS theory builds upon the fundamental fact that many signals
can be represented using only few (sparse), linearly combined,
elements of a suitable basis or dictionary. Nonlinear opti-
mization algorithms can then lead to recovery of such signals
from very few measurements/samples, significantly fewer than
the widely known Nyquist–Shannon sampling theorem implies
(Nyquist, 2002). The CS theory is emerging as a key mathe-
matical framework that can be of material value for multiple
facets of neuroscience research, particularly for neuronal data
analysis, fluorescence microscopy, gene-expression analysis, and
connectomics (Ganguli and Sompolinsky, 2012; Mishchenko and
Paninski, 2012; Advani et al., 2013). However, the possibility that
compressed sensing processes can actually be implemented by
neural tissue remains an elusive proposition.

Here, we provide evidence in support of a novel view of hip-
pocampal function. The specific hypothesis that we evaluate is
that Entorhinal Cortex (EC), Dentate Gyrus (DG), and the CA3
areas interact and function under the rules of CS (throughout this
paper, for simplicity reasons, we refer to EC as part of the hip-
pocampal formation). The conjectured mapping between CS and
hippocampus aims to associate the conceptual meaning of each
CS mathematical entity or principle with the functional role of
each hippocampal region. This is the cope stone of our work:
to reveal a plausible way, according to which, each hippocam-
pal subregion contributes to the CS-based model of hippocampal
function. Toward this goal, the main principles that govern CS
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are linked to the different aspects of memory encoding/decoding
in the hippocampal formation.

We start by presenting the conceptual and mathematical
framework of the CS theory. We then associate each one of the
three aforementioned hippocampal related regions, i.e., EC, DG,
and CA3, with certain aspects of the CS theoretical framework
and describe the contributions of each region in the CS manifes-
tation in the hippocampus. Moreover, a new, CS-based, memory
encoding/decoding model for the hippocampus is introduced.
Finally, conclusions along with future directions for hippocampal
research exploiting the new theoretical model are discussed.

COMPRESSED SENSING
The groundbreaking contribution of CS in the Signal Processing
field is that it revealed the possibility of achieving a compressed
encoding -and subsequently an efficient decoding- of a partic-
ular signal through a simple, linear measurement process. The
latter dramatically reduces the number of measurements needed
for efficient reconstruction, compared with the ones indicated by
the Nyquist–Shannon sampling theorem. As a result, CS has led
to some major advancements in the field of signal/image process-
ing (Lustig et al., 2007). In the following paragraphs we describe
the main theoretical aspects and formalization of CS and discuss
the conditions under which it can be applied.

CS BASICS
The CS theory originates from the field of high-dimensional
statistics. Recent advances in this field have led to a powerful,
yet extremely simple methodology for dealing with the curse of
dimensionality, termed Random Projections (RP). This entails a
random projection of data patterns from high dimensional spaces
to lower ones (Baraniuk, 2011), which reduces the dimensionality
while retaining the valuable content of the original data, allowing
for efficient processing in the lower dimensional space. What the
CS theory adds to this framework is that, once the data with high
dimensionality are represented by sparse components of a suitable
basis set, it is possible to reconstruct them by their RPs! Thus, low
dimensional RPs are not only suitable for interpreting the origi-
nal, high dimensional data patterns but also comprise an efficient
encoding that can be used as a compressed representation of the
original data; high dimensional patterns can then be recovered by
appropriate decoding processes. Figure 1A depicts 3D objects and
their 2D shadows which can be parallelized with the high dimen-
sional data and lower dimensional RPs, respectively. CS theory
implies that it is possible to infer the form of the 3D structure
using only a limited set of 2D shadows (random projections) of
the wired frames.

We will now present a stricter, mathematical formalization
of the CS framework. Let f be the N-dimensional signal (orig-
inal data of high dimension) that we wish to measure/encode
(project to a lower dimensional space). For instance, f , can be
an N-dimensional vector of the gray scale intensity of pixels of
a natural image. Alternatively, in the case of a spiking neural
network of N neurons, f could represent the firing rate of each
neuron. Now let y be a sampled vector from f with length M < N,
i.e., y is the set of projections of signal f to a lower dimen-
sional space. We can express the relationship between the signal

and the sampled vector as y = �f , where � is an M × N sam-
pling matrix (the matrix that performs the projection from one
space to another). For the natural image example, y is a com-
pressed version of the original image due to the projection of
the N-dimensional space to an M-dimensional space via �. For
the neural network case, y can be considered as the projection
from one brain area to another via a convergent axonal pathway.
For example, this could represent the projection from the cor-
tex (signal f ) to CA3 via perforant path. In this case y would be
the activity (firing rates) of a subset of M neurons in the CA3
region.

Furthermore, assume that the given signal can be represented
by a basis set according to the equation f = �x, where � is a
N × N matrix whose columns are the components of the basis
set, and x is the N × 1 vector which contains the coefficients
that analyze the signal f in basis �. Note that x is sparse, i.e.,
it has K � N nonzero values. For instance, in the case of a
gray scale natural image, � could be a wavelet basis set. For
the neural network example, the basis set can be represented
by the activity of cells that exhibit certain properties, regarding,
e.g., their receptive fields, such as mammalian visual cortex cells
(Olshausen and Field, 1996), or their spatial firing patterns, such
as grid cells (Hafting et al., 2005). Cells with such activity proper-
ties can form a basis set if their (appropriate) combination can
generate any signal f (activity pattern of neurons) in the cor-
tex. Figure 1A intuitively illustrates the meaning of each one of
the above entities in accordance with the wire frame paradigm
whereas Figure 2 graphically illustrates the mathematical formal-
ization of the CS framework in a matrix-like operation. In the fol-
lowing section we elaborate more on the measurement/encoding
(projection to a low dimensional space) and decoding (high
dimensional space data reconstruction) phases according to the
CS theory. Figure 1B graphically depicts the aforementioned
processes.

ENCODING
According to the CS theory, the encoding of a given signal is
a simple, linear sampling/measurement process whereby y = Ax
(Figure 1B) and A = �� (equations f = �x and y = �f are
combined). Matrix A is frequently referred as the measurement or
the sensing matrix. Thus, having determined the x vector accord-
ing to basis �, we can extract a measurement/encoding vector
by a mere matrix multiplication. At this point, it is obvious that
algebraic multiplications, as expressed in the CS formalization,
are straightforward in the natural gray scale image example. Yet,
they are not valid in a spiking neural network. Rather, in that case,
multiplication can be thought of as the influence of one region to
another. For instance, equation y = Ax of CS formulas, can be
interpreted as the concerted influence of regions whose activities
are described by matrix A and vector x to the region whose activity
corresponds to vector y.

It should be noted that in order to achieve an efficient and
reversible encoding process, matrices � and �, and subsequently
matrix A must fulfill three very important conditions termed
sparsity, incoherency, and isometry. The following paragraphs
elaborate on these conditions along with the role of randomness
on their fulfillment within the CS framework.
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FIGURE 1 | The Compressed Sensing framework. (A) The essence of the
CS framework can be conceived if we consider the example of the
wire-frame object (Ganguli and Sompolinsky, 2012). The three-dimensional
object (e.g., a wire-frame cube or a wire frame sphere) is projected onto a
two dimensional screen when a light beam is applied on it. The wired frame
represents the f signal, the light beams the sampling process (�) whereas
different shadows correspond to different samples of the signal (vector y ). CS
shows that it is possible to reconstruct the initial wire frame (e.g., the cube or
the sphere) from a set of different shadows, as long as the wire frame is
sparse enough and the sampling is random. For instance, consider a
non-random lighting where the light beams are aligned with a specific wire of
the object. The shadows would be biased to that wire and, as a result, not

representative of the higher dimensional structure of the object. Moreover, in
the case where the wire-frame object has dense wiring (i.e., not sparse), all
shadows would be almost the same no matter what the lighting angle was.
The basis � (blue box) includes items that can be used to reconstruct signal f
(the wired-object) as dictated by vector x, which is produced by the L1

minimization algorithm subject to measurements y (shadows). (B) CS
encoding and decoding schemes. The encoding of the signal is a simple,
linear sampling/measurement process derived as y = Ax, where A is
analyzed as A = ��. Thus, the decoding process is performed by knowing A
and vector y ′, which is a noisy version of y . CS theory provides mathematical
proofs that, knowing y ′ and A, it is possible to retrieve x or x ′ ≈ x by a L1

minimization procedure.

Sparsity
The first condition entails that � must be a sparsity basis. This
condition is met if the x vector is sparse, i.e., has very few nonzero
elements. Thus, only few components from basis � are required
in order to represent signal f . For instance, in case of a Fourier
basis set, �, sparsity implies that the majority of the energy of sig-
nal f is contained in a few frequency components. Concerning the
natural gray scale image example, very few coefficients are needed
to represent the image via a wavelet basis set, thus the x vector
is sparse. Regarding the spiking neural network example, sparse
representations (activity of few neurons) in one area may encode
redundant activity of many neurons in upstream areas. In fact,
CS, exploits the natural rule which states that many signals are
sparse when they are expressed in a proper basis � (Candes and
Wakin, 2008). Sparsity is the crucial property in the CS frame-
work, as without sparse representation in the higher dimensional

space, the lower dimension random projections (vector y) are
not sufficient for effective reconstruction. Note, however, that
the number, K, of the representative components of a signal in
a particular basis, i.e., the number of nonzero elements of x, is
not always known a priori. Yet, this is not a limitation for CS,
as the main constraint is the sparsity itself and not the actual
representation of the signal.

Incoherency
Next, we must define a suitable sampling matrix �, given a basis
�. According to the CS theory, matrices � and � must be as inco-
herent as possible. Incoherency implies that any component of
the matrix � (�) has dense (exactly the opposite of sparse) rep-
resentation in the matrix � (�). As a result, many components
(columns) of � are needed to represent each component in the
measurement matrix � and vice versa.
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To conceive the importance of the incoherency property
assume a chessboard and consider each square on the chessboard
as a component (column) of the basis �, thus N = 64. Assume
that there are three chess pieces (K = 3) on the chessboard and
you are asked to find their location (A–H, 1–8) and type (e.g.,
white tower, black king, etc.) given only five choices (M = 5).
If one decides to pick one square at a time, then the sampling
components coincide with the basis’ components and maximum
coherency is accomplished. As a result, the probability of find-
ing the three chess pieces with only five choices is extremely low.
Moreover, if the number of the chess pieces, K, is unknown, the
only way to find the position of all pieces would be to choose all
squares in the chessboard, thus M = N. However, if one enlarges
the sampling square by using blocks of squares for each choice,
the possibility of finding the three pieces increases. In this way,
each sampling square (block of squares) has a more dense repre-
sentation on the � basis (chessboard), as two, three, four etc.,
single squares are used to construct a sampling component. A
set of these sampling components is used to construct the matrix
�. The latter becomes increasingly incoherent to � as sampling
components (blocks of squares) become larger, increasing, at the
same time the probability of finding the three chess pieces with
five sampling choices.

Restricted Isometry Property (RIP)
According to CS, the matrix A must obey the Restricted Isometry
Property (RIP) (Candes and Tao, 2005) as a fundamental
condition for efficient encoding and reconstruction/decoding.
Specifically, for a predefined integer, K, there must be an isometry
constant, δK , of a matrix A such that:

(1 − δK) ‖x‖2
L2

≤ ‖Ax‖2
L2

≤ (1 + δK) ‖x‖2
L2

(1)

holds for all K-sparse vectors x, i.e., for all vectors x that have
exactly K nonzero elements. The L2 norm is the magnitude of a
vector. Loosely, a matrix A obeys the RIP of order K if δK is suf-
ficiently smaller than one (Candes and Wakin, 2008). Intuitively,
RIP entails that all pairs of vectors, xi, xj, which are K-sparse in
�, preserve their between distance even after the projection to

FIGURE 2 | Matrix operations in Compressed Sensing. Figure illustrates
the encoding equation of CS y = Ax and the corresponding dimensionality.
It is actually a combination of the equationis f = �x (sparse representation
of signal f ) and y = �f (sampling of signal f ).

the M-dimensional space through matrix A. This preserves the
geometric properties of the vectors in the projected/measurement
space and ensures an efficient decoding. A representative example
of RIP is graphically illustrated in Figure 3.

Radomness
All the constraints introduced by CS for matrices �, �, and A
are fundamental for the encoding stage. Surprisingly, it can be
proved that randomness constitutes the main ingredient for the
construction of such matrices. Moreover, according to the CS the-
ory, random matrices are sufficiently incoherent with any given
basis matrix, �, where a signal f has concise representation. For
instance, for a fixed basis matrix �, it can be proved that random
waveforms used as columns for matrix �, with independent iden-
tically distributed (i.i.d) entries (e.g., gaussian or binary) exhibit,
with high probability, very low coherence with �. Furthermore,
the sensing matrix A meets the RIP property with overwhelming
probability if it incorporates i.i.d. entries from various distribu-
tions (Gaussian, Bernoulli etc.). One crucial result of CS is that
with such random measurements, only:

M ≥ C · K · log(N/K) (2)

FIGURE 3 | Restricted Isometry Property. Illustration of RIP for a K -sparse
model of signals, where geometric information is preserved when mapped,
via A, from the N-dimensional space to the M-dimensional one, M < N.
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samples are needed for efficient reconstruction (C is an appli-
cation specific constant). It can be proved analytically that ran-
domized sampling along with the decoding process described in
the subsequent section constitute a near-optimal sensing strat-
egy (Candes and Wakin, 2008). Finally, it should be noted that
randomness is a sufficient but not a necessary condition for inco-
herency. For instance, it is possible to find two matrices, � and
� that are incoherent but not random. In fact, it was recently
shown that certain types of nonrandom matrices exhibit the same
decoding performance (see Section Decoding) as random ones
(Monajemi et al., 2013).

DECODING
In many applications y is not the exact vector as in the encoding
process as it can be affected by noise (Figure 1B), e.g., trans-
mission noise through a communication channel. In a neuronal
network paradigm, noise could be considered, for instance, as the
slight difference in neuronal patterns activated during recall from
the pattern that was active during the formation of a memory.
Thus, the decoding process is performed given A and a noisy y′.

The set of equations determined by y = Ax do not have a
unique solution as M < N. Nevertheless, the CS theory provides
analytical verifications that, given y′ and A, it is possible to retrieve
x or x′ ≈ x (and therefore f ′ ≈ f due to f = �x) by a nonlinear
recovery/decoding process, termed the L1 minimization process.
L1 minimization is based on the minimization of the L1 norm and
is formulated as:

min||x′ ||L1
subject to ||Ax

′ − y
′ ||L2

≤ ε (3)

The L1 norm of a vector is simply the sum of the absolute values of
its elements whereas the L2 norm is the magnitude of the vector.
ε is just a bound on the noise. There are various efficient, and
computationally tractable algorithms that lead to a solution of (3)
(Maleki and Donoho, 2010), even for large numbers of entries in
A and x.

MEASUREMENT (�) AND BASIS (�) SETS IN THE
HIPPOCAMPUS
Memory formation in the hippocampus depends on process-
ing of information from distinct subregions. Information passes
from one subregion to the other toward a more efficient encod-
ing (Amaral, 1993). We assume that in the EC-DG-CA3 circuit
(Figure 4), information to be stored/processed is transferred from
EC to CA3 via the DG to achieve an orthogonal encoding, i.e.,
more distinguishable from other memory entities, and more
information-rich (compressed) than in its origin. Having estab-
lished the conceptual framework of CS, we propose that an
equivalent transformation of information is performed in the
hippocampus. Specifically, in the CS framework, the representa-
tion of a signal f , via a basis set �, is actually “summarized” by the
encoded, compressed version y through a measurement/sensing
procedure, hence, the term CS. Expanding on this parallelism, we
next search for basis and measurement sets in the hippocampus
and consider their conformation with the basic constraints (see
Section Encoding) of the CS theory.

ENTORHINAL CORTEX
EC comprises the main source of incoming/sensory information
for the hippocampus. It is divided into two distinct subregions,
the Lateral EC (LEC) and the medial EC (MEC) (Canto et al.,
2008). Both DG and CA3 receive excitatory input from LEC and
MEC (Figure 4; Witter et al., 2000). Despite their similar architec-
ture, it has been suggested that these two subregions implement
different functions (Van Cauter et al., 2013). In particular, there
is a consensus that LEC and MEC integrate nonspatial (sensory)
and spatial information, respectively (Hargreaves et al., 2005).
Based on such findings, it was proposed that the hippocam-
pus receives action (motor) and cue (sensory) information from
MEC and LEC subregions, respectively (Lisman, 2007). Motor
and sensory information are exploited for the accomplishment
of hippocampal functions like spatial orientation (McNaughton
et al., 2006), associative learning Gruart et al. (2006), and object
recognition (Clarke et al., 2010). It should be noted, however, that
motor-related information (such as eyelid position or velocity) is
not necessarily encoded by hippocampal neurons Múnera et al.
(2001). In this work, the term “motor,” refers primarily to the
information related to the space navigation task as reflected by,
e.g., the activity of grid cells in MEC.

The following example highlights the EC features that con-
form to the CS theory. Assume an environment with fixed
geometric structure. The spatial information carried by MEC
would be mainly deterministic while cue changes within this
environment signaled by LEC will have a high degree of stochas-
ticity/randomness. For example, consider a person navigating
through his/her home. The familiar, fixed geometry of the rooms
will correspond to an already formed map of space (and respec-
tive place cell activity). This deterministic spatial information
would be signaled to the hippocampus via MEC. Slight changes
in the environment, like object displacements and lighting varia-
tion create stochasticity in the sensory signals which is assumed
to be carried by LEC inputs. Thus, the hippocampus is able to
process and store information that depends not only on deter-
ministic facts about the position or state of the subject (MEC),
but also on environmental conditions that are highly stochas-
tic/random (LEC). Similarly, the CS theory deals with situations
where random sampling of signals (environment) can lead to
perfect reconstruction (reconstruction of memories that are asso-
ciated with the environment), provided that the initial signal has
a deterministic, sparse representation (status) in a certain basis
set (� ≡ map of the environment). Subsequently, how is sam-
pling/sensing expressed in the hippocampal formation and what
is the basis set that defines the position/state of a subject in
accordance with motor information?

LEC
As previously mentioned, LEC is evidenced to project sensory
information to hippocampus (Gnatkovsky et al., 2004). Thus,
LEC can be considered to play the role of matrix �, as presented
in CS. The activity of LEC can be considered as the measure-
ment/sensing media of the environment which is delivered to DG
and CA3 via the perforant path (Figure 4). In accordance with
the sensing role of LEC, it has been shown that lesions in LEC-
hippocampal inputs, thus, ineffective sensing of the environment,
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FIGURE 4 | The EC-DG-CA3-CA1 circuit and the conceptual parallelism

with the CS framework (top: hippocampal structure; bottom: abstract

graphical representation of hippocampal structure and conceptual

parallelism with CS framework). The EC projection to DG and CA3, via the
perforant path (PP), represents the matrix A of the CS framework. It is
analyzed to matrices � and � that are linked with subregions LEC and MEC,
respectively. Vector x corresponds to the activity of DG afferents projecting

to CA3 (mossy fibers, MF). Input to the CA3 from PP and MF lead to the
activation of a CA3 population, the vector y . Backprojection from CA3 to DG
performs error correction tasks in order to transform a noisy version of the
vector y ′ to y while recurrent collaterals within CA3 are assumed to perform
association tasks. CA3 projects to CA1 via the Schaffer Collaterals (SC) and
the information loop closes by the CA1 feedback to the EC, which also
receives the EC input via the Temporoammonic pathway (TA).

led to malfunctions on novelty detection (Myhrer, 1988). In par-
allel, under the CS framework, ineffective sampling does not
capture the whole information spectrum of the signal leading
to dysfunctional reconstruction. Thus, LEC can be considered
to provide hippocampus with a sampled (sensed) version of
the environment. However, the exact mechanisms under which
information in LEC represents a sampled version of the envi-
ronment and what is the role of randomness in this sampling
process, remains an intriguing question. All in all, sensing is
random in terms of the acquisition of random cues of the envi-
ronment, including changes that occur to a specified, already
learned space and its deterministic structural properties; these
cues are reflected in the activity of LEC (firing rates and popula-
tion coding). However, randomness is just a sufficient condition
for effective measurement matrices in CS theory and not a nec-
essary one. The relevant necessity on that, according to the CS
framework, is that the measurement matrix and the sparsity basis
are incoherent. In this case, it is possible to construct a matrix �

(LEC activity) that is incoherent to a known basis set � (MEC
activity, e.g., grid cells). Whether LEC activity is inherently inco-
herent to MEC activity remains unclear and is a subject worth
further investigation.

MEC
Except for the sensing orienting inputs to hippocampus, EC
provides information for place-modulated activation of neuronal

patterns. Thus, activation patterns, e.g., in DG or CA3, depend
on the precise place of the subject in reference with the environ-
ment. This position-dependent encoding in hippocampus has its
origins primarily on the grid cells lying in MEC (Hafting et al.,
2005). Grid cells represent a type of place cells (O’Keefe, 1976)
but with a periodic firing in space instead of place-specific firing.
The place field of grid cells forms a triangular array (i.e., grid) that
expands throughout the whole environment explored by the sub-
ject (e.g., a rodent). Each grid is characterized by the spacing, i.e.,
the distance between the firing fields, the orientation (slope rela-
tive to a reference axis) and the phase (displacement relative to a
reference axis origin) (Moser et al., 2008). It has been shown that
these three variables of a grid field vary in different ways across
the MEC (Hafting et al., 2005) but may, to a large extend, be based
on hardwired network mechanisms (Hafting et al., 2005). Hence,
the instantaneous activity of the grid cells, and thus, of the MEC,
resembles the instantaneous value of a sinusoidal signal at specific
time point. Thus, each grid cell can be considered as a component
of a basis set that consists of items with various spacings, orienta-
tions, and phases, much like a sinusoid can be considered as the
component of a Fourier basis set with various frequency compo-
nents. These features are the main criteria that determine whether
a component will take part in the representation of a specified
signal. Consequently, the activity of the MEC might change in
terms of firing expressions through time, but the features that
characterize each grid cell, i.e., each component of the basis set,
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do not change. Actually it has been proposed that grid fields
of different spacing, which can be considered as periodic basis
functions, combine linearly to generate place fields in the hip-
pocampus(O’Keefe and Burgess, 2005; Fuhs and Touretzky, 2006;
McNaughton et al., 2006; Moser et al., 2008). Based on the above,
we suggest that for the hippocampus, MEC activity carries the
meaning and the functional concept that � represents in the CS
theory.

According to the CS theory, the matrix that is associated with
the encoding and the decoding processes is the A matrix that com-
bines the properties of � and �. It would be more convenient if
we could assume the projection of EC to hippocampus as a unify-
ing activity and not as two distinct influences from MEC and LEC,
respectively. Indeed, it was recently proposed (Van Strien et al.,
2009) that due to the overlapping afferents of EC and the inter-
connections of MEC and LEC, spatial information in MEC and
nonspatial (sensory) information in LEC may be already asso-
ciated as early as at the stage of EC processing. This association
supports the assumption that EC provides hippocampus with the
neuronal activity that can be parallelized with the contribution of
matrix A in the CS framework.

CA3
The proposed manifestation of matrix A by the EC provides
insights about the possible role of DG and CA3 in the encoding
or decoding processes described in CS. As depicted in Figure 4,
CA3 receives two main inputs, one from DG via the mossy fibers
(MF) and one directly from EC via the perforant path (PP).
Thus far, we assumed that the whole encoding-decoding pro-
cess according to CS takes place in the EC-DG-CA3 circuit and
claimed that the final compressed, encoded information is incor-
porated in CA3. Thus, activity patterns in CA3 could represent
vector y as described under the CS framework. The proposed
mapping between CS (Figure 1B) and the EC-DG-CA3 circuit is
graphically depicted in Figure 4.

A number of studies suggest that the recurrent connectivity
of CA3 pyramidal cells enables CA3 to act as an autoassocia-
tive network (Treves and Rolls, 1992; Lisman et al., 2005) or a
heteroassociative one (Lisman, 1999; Cheng, 2013). Hence, with
an appropriate initial activation pattern, recurrent connections
within CA3 can perform either a pattern completion task (autoas-
sociation) or a transition to a new, subsequent state of a sequential
order of states (heteroassociation). In both cases, an association
is formed between the current activation pattern and the initial
one. The ability to achieve this association has been suggested
to depend on the total amount of information stored in the ini-
tial pattern, relative to the total number of neurons (Rolls, 2007).
Specifically, it has been shown that in terms of efficient transi-
tion from the initial pattern to the associated one, the information
stored in each firing pattern, ip, must satisfy the inequality:

ip > k ln 1/k (4)

Where k stands for the sparsity of the activation pattern in rela-
tion to the population size (Rolls, 2007). This lower boundary for
ip is consistent with the lower boundary of the sample number
required for efficient reconstruction (Equation 2) in CS theory.

Despite the fact that Equation 2 determines only the number of
samples acquired randomly from the signal, it can be implicitly
related with ip as the sparsity measure, k, reflects both the size of
the neuronal population, N, and the firing properties (firing rates
r) of the active population. Specifically, k, is defined as per (Rolls,
2007):

k =
∑ ( r

N

)2
/
∑ r2

N
. (5)

The requirement for effective association between patterns in
(Equation 4) must be imposed by an afferent input to CA3. In the
case of CS, M, the number of required measurements/samples, is
determined by the sparsity of the basis set, K (see Equation 2).
In hippocampus, it was suggested (Treves and Rolls, 1992) that
the requirement in (Equation 4) is satisfied by the mossy fibers’
synapses on CA3. Mossy fibers, originating from DG, function as
detonators on CA3 and impose both the sparse activation and the
appropriate information transfer. The above described consensus
indicates that the sparse vector x is represented by the activity of
the DG. This, completes the representation of the encoding step
of CS, i.e., y = Ax, by interpreting the activity of CA3 (y) as a
result of the interaction of EC (A) with DG (x) and CA3. As pre-
viously mentioned, the implementation of the equation y = Ax
of CS formulas, can be interpreted in the hippocampal network
as the concerted influence of regions EC and DG to the CA3
region.

L1 MINIMIZATION BY NEURAL CIRCUITS
So far, the interpretation of the hippocampal function in terms of
the CS theory concerns the encoding phase depicted in Figure 1B.
The decoding process depends on an optimization procedure
called L1 minimization (Equation 3) (Candes and Tao, 2005),
whose goal is to approximate vector x, a task often called sparse
approximation. Thus, the next question is whether neural circuits
are capable of implementing L1 minimization and where does this
process take place in the hippocampus?

LOCALLY COMPETITIVE ALGORITHMS (LCA)
The first attempt for a neurally plausible L1 minimization algo-
rithm was made by competitive neural circuit architectures
(Rozell et al., 2008). The main principles that govern the proposed
architecture are the local competition between neurons in a popu-
lation and the thresholding that leads to the activation of a subset
of neurons that exceed a specified threshold. Thus, the proposed
Locally Competitive Algorithms (LCA) facilitate sparse approxi-
mation through neuronal populations that continually compete
within a restricted area using lateral, mostly one-way, inhibition.
Thresholding of the firing rate of the aforementioned population
leads to sparsely active neurons that represent the coefficients (x)
that describe an input signal using an overcomplete dictionary
(M < N). It was shown both theoretically (Balavoine et al., 2012)
and by implementation using integrate and fire neurons (Shapero
et al., 2013) that LCA corresponds to a robust sparse approxi-
mation problem that accounts not only for the minimization of
the error depicted in (Equation 3) but also for the sparsity of the
solution.
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In sum, LCA provide a neurally-based methodology for
implementing an L1 minimization process that is consistent with
the CS framework. The question that remains is whether such an
algorithm can be implemented in the hippocampus. We propose
that DG is a suitable candidate region where this function can be
performed.

DENTATE GYRUS
Sparse representations are the common way of exhibiting mem-
ory oriented activity in DG. Cellular studies have indicated that
sparse populations of granule cells, the main encoding cells in
DG, are concisely activated, not exceeding 2–4% of the total pop-
ulation (Schmidt et al., 2012). This sparsity enhances the ability
of DG to perform one of its most valuable functions during mem-
ory formation: pattern separation. Pattern separation guarantees
that two separate inputs from EC, even slightly different from
each other, are coded by two separate activation patterns in CA3
(Bakker et al., 2008). In CS terms, pattern separation refers to the
fact that measurements, y1 and y2 of different signals, f1 and f2
are due to the different representations, x1 and x2, of these sig-
nals according to the basis set, �. In the hippocampus, the DG is
capable of retrieving the unique sparse representation (x) of the
cortical input (f ), according to the grid cells basis (�) of MEC and
the sensing information of the environment (LEC ≡ �). As these
unique representations are uncovered via the L1 minimization
process in the CS framework, the possibility of DG performing
such a task is investigated next.

Given that LCA algorithms constitute a proved paradigm
of an artificial neural circuit that performs L1 minimization
(Balavoine et al., 2012; Shapero et al., 2013), realization of their
key properties by the DG circuitry would reveal the possibility
that DG networks express L1 functions. Interestingly, sparse cod-
ing via “competitive learning” in a lateral inhibition framework
in DG has already been documented (Ewell and Jones, 2010).
Specifically, granule cells excite different kinds of DG interneu-
rons, which in turn inhibit other granule cells of the same cluster
(e.g., neighboring cells) (Myers and Scharfman, 2009), enabling
the implementation of a locally competitive learning task, one of
the main principles of LCA algorithms. The specific role of each
kind of interneurons in the L1 minimization process however
remains an open, intriguing question.

Moreover, it is possible that active DG neurons are the result of
a thresholding process like the one imposed within LCA networks.
More precisely, it has been conjectured (De Almeida et al., 2009)
that gamma cycle, a fundamental frequency component in DG
and the hippocampus in general, plays a crucial role in the firing
task. The critical step is the “search” for the most excitable neu-
rons which become active as inhibition decays during the gamma
cycle, followed by those who are less excited (i.e., less tuned to
the input). The ordered firing also enhances the sparsity of the
outcome, as cells that fire first impose inhibition to other cells
and force them to remain silent. This theory proposed by De
Almeida et al. (2009), expresses a situation where thresholding
is not performed with a fixed predefined threshold but allows for
a dynamical tuning of it, so as to enable only the most excited
percentage of the population to fire. This process of condition-
ally tuned thresholding is also adopted by many other algorithms

for L1 minimization (Maleki and Donoho, 2010), revealing the
potential L1 functionality of biological neural circuits. All in all,
the abovementioned evidence point to DG as an ideal testbed for
L1-minimization algorithm implementation in the hippocampus.

MEMORY STORAGE AND RETRIEVAL: A MODEL
The association of the CS theory with the main properties of
the three different subregions, EC, DG, and CA3, unravels the
hypothesized, component-wise manifestation of CS in the hip-
pocampus. Nevertheless, an abstract model of the role of each
region in the encoding and decoding phases, during memory
formation, needs to be more comprehensively described. In the
following paragraphs we describe a novel model according to
which encoding as per CS (Figure 1B) constitutes the retrieval
phase in hippocampus and decoding corresponds to memory
storage. Thus, given an input from EC (matrix A) and an active
projection from DG to CA3 (vector x), an already learned mem-
ory (vector y), is represented by the produced activity in CA3 (i.e.,
y = Ax). If the EC input carries new information (i.e., new mem-
ories) error terms (depicted as noise in Figure 1B, also see below)
are produced and DG performs L1 minimization in order to pro-
vide a new vector x (appropriate active population in DG) that
forms/stores (through mossy fibers) new memories in CA3. These
storage and retrieval phases are further explained below. In gen-
eral, the proposed model intends to show that already established
functional properties of the hippocampal subregions coincide
with the unifying theory of CS and, specifically, that CS provides
the theoretical framework to interpret the concerted interaction
of different functions (pattern separation, pattern completion
etc.) to form hippocampal memories.

STORAGE
The formation of memory engrams as these are represented by
active population patterns and connectivity relations in DG and
CA3, is based on the fundamental principle that different memo-
ries must be stored in different patterns. As previously mentioned,
pattern separation is a crucial function of DG and is mostly based
on its sparse activity which also provides orthogonal represen-
tations in CA3 (Treves et al., 2008). Thus, rarefying the active
population in DG according to the given information (from EC),
represents a good approach for effective orthogonalization of
memory engrams.

In CS, this is accomplished by revealing the sparsest rep-
resentation, x, of the signal, f , in basis �, according to the
information provided by vector y (measurement). Under the CS
framework, the sparse representation of signal f in � is a prereq-
uisite. However, due to the abstract status of the f entity in cortex,
which is intended to be stored/encoded in the hippocampus, spar-
sity is not predefined but can be imposed by the hippocampal
circuitry, in order to exploit benefits that have to do with pattern
separation issues but also with energy consumption. This can be
thought of as an ill-posed mathematical problem. For instance,
someone is thinking of two integers whose average is 5; what are
those numbers? Of course there are multiple answers to this ques-
tion but [10,0] is the sparsest one. In case that these numbers are
firing rates of neurons, only one out of two neurons is needed to
fire to meet the context of the algebraic query (average 5). The

Frontiers in Systems Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 141 | 8

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Petrantonakis and Poirazi Compressed sensing and hippocampus

above-described rationale facilitates the need for a process that
imposes a sparse representation in DG, with respect to the basis’
information derived from the EC. The L1 minimization process
is proposed here as a memory storage mechanism that sparsi-
fies the DG activity subject to the context (information measured
from the environment). As discussed above (see Section Dentate
Gyrus), the implementation of such a process by the DG circuitry
is plausible. In sum, we propose that the hippocampal circuitry
uses an L1 minimization process to estimate a sparse represen-
tation of the initial cortical state. This process takes place in the
DG taking into account the compressed version of signal f , i.e.,
vector y, which is expressed in CA3. The sparsification of the ini-
tial signal provides not only with the computational benefit of
processing compressed versions of it during its pass from hip-
pocampus, but also enables the “reconstruction” of the cortical
representation when the hippocampal outcome is fed back to the
EC (see Section The role of CA1).

Figure 5 summarizes the different storage steps according to
the L1 minimization concept. The reasoning adopted here is actu-
ally an enhanced version of the context-based model of episodic
memory formation proposed by John Lisman (Lisman, 1999).
Assume that the EC input to DG and CA3 via the perforant
path causes the firing of a population of granule cells and a
subthreshold depolarization of a subset of CA3 pyramidal cells
(Figure 5A). Information conveyed to CA3 can be differentiated
from that sent to DG. It is assumed to deliver contextual con-
tent that is not expressed by the explicit firing of the CA3 cells,
but by the positively biased potential of the forthcoming exci-
tation through the mossy fiber afferents (Lisman, 1999). Then,
apart from the excitation of the positively biased pyramidal cells

in CA3 (Figure 5B, green cycles), other CA3 cells may also fire due
to the strong mossy fiber connections (Henze et al., 2002). These
cells, the ones excited after the subthreshold depolarization and
the directly excited ones, constitute the joint contribution of EC
(matrix A) and DG (x′, where x

′
is just an estimation of signal

x) to CA3 activation. The noisy subset y′ of neurons (concep-
tually described in Figure 1B) is expressed by the subthreshold
depolarized cells (green cycles, Figure 5A). Thus, the divergence
of the joint EC-DG (Ax′) effect on CA3 from the subthreshold
activated CA3 population (y′) stands for the error minimization
term described by the second part of equation (Equation 3), i.e.,
||Ax

′ − y
′ ||L2

≤ ε.
If we want to store a memory in CA3 that is related to the

context, presented by the biased CA3 population, with as sparse
representation in DG as possible, these two regions must be recip-
rocally connected. Indeed, except for the direct projection of DG
to CA3 there is also a backprojection path from CA3 to DG
(Lisman et al., 2005; Scharfman, 2007; Figure 4). The role of this
backprojection on pattern separation in the DG was previously
investigated (Myers and Scharfman, 2011) revealing its contribu-
tion to sparsity through inhibition. Based on this evidence, we
propose that the error term (noise) produced in CA3 is fed back
to DG in order to participate in the L1 algorithm, i.e., the effort
to find the sparsest population in DG (min||x′ ||L1

, see Equation
3) that meets the demands of the contextual information from
which the current activity of CA3 diverges (Figure 5C); in other
words, to perform the minimization task described by Equation
3. Then, the algorithm evolves and the next step incorporates the
sparser projection from DG to CA3 (Figure 5D) causing a new
Ax′ joint effect.

FIGURE 5 | Processing scheme in hippocampus according to the CS

theory. (A) The EC input causes the firing of a population of granule cells in
DG (filled red cycles) and a subthreshold depolarization of a subset of CA3
pyramidal cells (empty green cycles). Source of excitation and corresponding
activity are depicted with the same colors. Excited cells are depicted by filled
cycles. Colored empty cycles represent near-thershold cells, which are
depolarized but not active. Black cycles represent cells at rest. (B) In CA3,
excited cells, the ones excited after the subthreshold depolarization and the
ones directly excited by mossy fibers (filled red cycles in CA3), constitute the

joint contribution of EC (matrix A) and DG (x ′) to CA3 activation (Ax ′). The
noisy subset y ′ of neurons is expressed by the subthreshold depolarized cells
(green cycles in CA3). (C) The error term produced in CA3 (||Ax ′ − y ′||L2

) is
fed back to DG in order to participate in the L1 minimization algorithm taking
place in DG. DG’s activity leads to the sparsest population (min||x ′ ||L1

) that
meets the demands of the contextual information (green empty cycles in
CA3) from which current activity of CA3 (filled cycles) diverges. (D) The
algorithm evolves with the incorporation of the sparser projection from DG to
CA3 causing a new Ax ′ activity in CA3 (filled cycles).
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It should be stressed out that there is no need for the final
active population to cover the entire y′ population (the contex-
tual content of information described by y′ neurons in CA3). In
other words, the same contextual information may take part in
different potential memory engrams. In fact, vector y is consid-
ered as the final active population of CA3 (Figure 1B) and, hence,
the whole storage process through the L1 algorithm, also performs
a “denoising” action which is critical for the decoding/retrieval
process.

All in all, the estimation of x through the aforementioned pro-
cess is vital for the storage/encoding phase. Actually, the final,
refined encoding of the cortex state f is imposed to CA3 by its
sparse representation, x, instead of the whole redundant cortex
representation. This reveals once again the need for sparsifica-
tion of the initial cortical state f . Upon retrieval (decoding) of a
specific memory, the sparsified version of the initial information
entity(f ), namely signal x, is sufficient to recall the final activity
state of CA3, namely signal y (see also subsequent “Retrieval”
Section). Usage of a sparsified version of signal f , i.e., x, instead
of the whole representation, greatly reduces the computational
effort of hippocampus, especially when sequences of heteroasso-
ciated memories are stored/processed.

RETRIEVAL
The process of memory retrieval according to the proposed model
is basically a static L1 minimization. In other words, the error
term (noise) produced in CA3 causes no change in DG activ-
ity and consequently CA3’s activity remains approximately the
same. As a result, the joint contribution from EC and DG (Ax′)
produces the, already stored, pattern y. In an episodic mem-
ory retrieval case, multiple, sequential y populations must be
retrieved, corresponding to different episodes of the memory.
The heteroassociation between the different y populations and
the autoassociation (pattern completion) can be accomplished by
the reciprocal connection between DG and CA3 (Lisman et al.,
2005) whereas DG can contribute, by the process previously dis-
cussed (L1 algorithm), to the correction of probable errors. For
instance, if the needed heteroassociation is y1 → y2 and there is
an error term causing y

′
1 instead of y1, this error would be propa-

gated and enhanced, to the next pattern causing y
′′
2 (number of

primes stands for the level of noise). Nevertheless, this can be
avoided by the reciprocal information exchange between DG and
CA3, which is possible to be performed a few times before the
heteroassociation step (Lisman, 1999). In sum, the retrieval phase
of the proposed model is assigned to the encoding step of the CS
framework, where A and x explicitly produce y (without addi-
tional L1 processing), namely the compressed version of the initial
“signal” f .

THE ROLE OF CA1
In a previous paragraph it was conjectured that the hippocam-
pus exploits the benefits of CS by creating a sparse representation
of the initial cortical information, according to the basis set
and sensory cues provided by the EC. Based on this, memories
are encoded/stored in CA3 in condensed neuronal populations,
allowing for manipulation and heteroassociation of compressed
embodiments of the initial information formed in the cortex.

Thus, a compressed version of the more complex representation
in the cortex is used during processing in the hippocampus. This
is also one of the main contributions of CS in information theory:
enabling the efficient processing of a measured, compressed ver-
sion of the initial signal without the need for its full representation
(Davenport et al., 2010). It can be conjectured that hippocampus
has evolved to exploit this particular benefit instead of processing
widespread cortical information of episodic memory engrams.

Moreover, the outcome of hippocampal tasks is fed back
to the EC probably for further processing and/or for updating
the EC status (match/mismatch computation) (Lisman, 1999).
According to the model proposed here, the sparsity of the cortical
signal f is not predefined but rather imposed by the hippocam-
pus in accordance with the information received from EC; thus,
the basis sets in EC must be updated accordingly. In agreement, it
was recently shown that grid cell formation in MEC is affected by
the hippocampal feedback (Bonnevie et al., 2013).

Importantly, we do not claim that the signal reconstruction
phase described in CS is faithfully reproduced in the EC-GD-
CA3 circuit. What we propose is that compressed engrams formed
in the hippocampus are transformed to the redundant forms of
cortical signals through a fanning out process using the same
alphabet (dictionary set); the exact reverse process takes place
during the EC to DG to CA3 information transfer. In other
words, incoming cortical signals are compressed, processed and
then transformed into a conceivable representation that can be
read out by the cortex (Lisman, 1999). It should be stressed that
the possibility of signal reconstruction from random projections
(measures) to the initial form of information (see Section CS
Basics) can be realized under the assumptions of the CS theory
and the sparsity constraint.

The hippocampal region that mediates the abovementioned
feedback from hippocampus to EC is the CA1 (Figure 4). This
region receives input directly from CA3 and EC (layer III) and
projects back to different layers (V and VI) of the EC (Witter
et al., 2000). Thus, by incorporating the information from CA3
(y) and EC (� and � from LEC and MEC, respectively, albeit via
a different route), we propose that the CA1 area can convert the
compressed information to the same form as the initial informa-
tion that was processed. This closes the information loop which
incorporates the compression and decompression of messages
while passing through hippocampus with a profound benefit: the
low computational cost yet effective information processing.

CONCLUSIONS AND FUTURE CONSIDERATIONS
This work provides extensive evidence in support of a new the-
oretical framework that explains hippocampal processing. Unlike
previous theories that lacked a unifying, mathematically formu-
lated view of inter- and intra-regional relationships, we propose
that the EC-DG-CA3-CA1 circuit operates under the condi-
tions and with the advantages of compressed sensing, a recent
breakthrough in signal processing.

The CS perspective provides revolutionary insights regard-
ing the interpretation of hippocampal function. Specifically,
this paper provides extensive evidence that redundant corti-
cal signals are compressed within the hippocampus in order
to be manipulated faster and more efficiently before sent back
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to the cortex. Encoding and decoding phases are actually the
two sides of the same coin, which is essentially the transform
from a coarse/redundant to a condensed version of informa-
tion. Heteroassociation of these compressed information pack-
ages underlines a key hippocampal function, namely the ability
to form episodic memories.

In addition to a novel view of hippocampal processing, this
perspective has a number of contributions that can lead to the-
oretical and experimental investigations needed to corroborate
the CS theory. These include (a) the predicted L1 minimization
realized by DG and its critical role in memory storage; (b) the
prediction that different inhibitory cells in the DG contribute to
the realization of this process; (c) the prediction that the EC pro-
cessing is characterized by the RIP property; (d) the predicted
association between LEC and MEC signals dictated by the inco-
herency property, and (e) the predicted updating of EC basis sets
achieved via the CA1 backprojection. In the next paragraphs we
discuss the importance of these contributions and suggest ways
for their further investigation.

The adoption of the CS framework as a representative the-
ory of hippocampal function provides a verifiable ground truth
against which the contributions of various circuits in the hip-
pocampus can be tested. For instance, the proposed L1 mini-
mization function of DG opens new avenues for dissecting the
role of different cell types (mossy cells, hillar cells, etc) in DG
processing. Based on this proposition, one can expand the LCA
network by adding cell-type specific features of the DG circuitry
and investigate their impact on the L1 minimization task. In addi-
tion, it would be crucial to investigate the role of neurogenesis that
takes place in DG on the same task, via incorporating for exam-
ple neurogenesis in the abovementioned models. Specifically, it
has been suggested that newly generated granule cells during
adulthood modulate local network inhibition (Sahay et al., 2011;
Kheirbek et al., 2012), which constitutes one of the fundamen-
tal features of the LCA architecture. Experimental studies could
be designed to manipulate neurogenesis in animals and assess
the effect of these manipulations on the sparsity of DG activity
and the storage/retrieval capacity of the hippocampus as foreseen
by CS.

The RIP property, a prerequisite for the A matrix that is linked
with the activity of EC, paves the way for more efficient calcula-
tion of memory-related parameters. A recent study used the RIP
mathematical formalization (Charles et al., 2014) to show that
memory capacity of randomly connected recurrent networks (like
the ones in CA3) receiving inputs that are approximately sparse in
some basis, can scale superlinearly with the number of neurons.
Moreover, under certain conditions, memory capacity was found
to largely exceed network size. While RIP has yet to be proved for
the EC projection to the hippocampus, evolutionary aspects sup-
port the plausibility of such an assumption. In essence, the RIP
property ensures that two memories represented by two distinct
activation patterns in DG map onto two separable representa-
tions in the CA3. In other words, the EC activity, due to the RIP
property, enhances the pattern separation task. This can be tested
experimentally using optogenetic stimulation of the EC in ani-
mals trained to learn two distinct memories and looking at the
overlap of the cellular populations that capture each memory with

plasticity markers (Ramirez et al., 2013). Computational models
could investigate this prediction by looking at how pattern sep-
aration is affected by manipulations of the RIP property in EC
inputs.

Moreover, incoherency, as interpreted in a previous section,
implies an association between LEC and MEC. Conceptually,
information propagated to the hippocampus from MEC can be
regarded as incoherent with the one projected by LEC due to
the geometric (grid cells) and non-geometric (contextual) infor-
mation represented by each subregion, respectively. Furthermore,
since contextual information was shown to affect place field for-
mation (Anderson and Jeffery, 2003), it would be intriguing
to investigate if the incoherency between LEC and MEC is not
only conceptual but also activity oriented, i.e., in terms of fir-
ing patterns and correlation of populations’ activity. For example,
recordings from LEC and MEC during the performance of a
memory task could be used to test whether the activity of the two
regions is incoherent. The incoherency, from the mathematical
perspective, may provide valuable insights on this investigation.

Furthermore, we propose that the CA1 backprojection ensures
that the EC basis components, used for the storage of a new mem-
ory, are selected again (see Section Retrieval), without learning
(i.e., no plasticity in the DG), upon subsequent presentation of
this memory (retrieval). Experiments could be designed to test
this hypothesis by lessioning the CA1 backprojection and mea-
suring the levels of plasticity in DG along with the CA3-DG
backprojection (error signaling).

Besides the benefits that may be gained from the neuro-
science point of view, engineering aspects could also be affected
by the CS perspective of hippocampal function. For instance,
new L1 minimization algorithms can emerge from the DG cir-
cuitry interpretation. Moreover, robot navigation systems, can
be constructed based on the hippocampal functioning. Systems
that exhibit similar architecture with the hippocampus have been
suggested (Verschure et al., 2003) and better interpretation of hip-
pocampal functioning will lead to further enhancement of such
systems.

To conclude, the CS framework seems to align with various
aspects of hippocampal function. In addition, it provides analyti-
cal tools to breakdown and compartmentalize its contribution to
neural information processing. A complete understanding of the
hypothesized CS manifestation by the hippocampus, demands
both experimental and theoretical work and is likely to lead
to reexamination of various aspects of information flow in the
brain.
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