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As studies of the olivocochlear (OC) efferent system have matured, issues have been
identified that need to be taken into account in the design of new studies and in the
interpretation of existing work. The need for high signal-to-noise ratios (SNRs), multiple
alternations of conditions, and avoiding middle-ear-muscle activation have been previously
highlighted. Less well-known issues include: Contralateral medial OC (MOC) effects may
not be good proxies for ipsilateral (ipsi) MOC effects; MOC-induced changes in otoacoustic
emissions (OAEs) may not accurately show MOC-induced changes in auditory-nerve (AN)
responses; measuring OAE differences from before to after psychophysical trials yields
the transient OAE change but not tonic MOC activation; tonic MOC activation may be
measurable by several techniques including by OAE differences in trials in which the
subject’s judgment was correct vs. trials that were incorrect; SNRs can be preserved by
Bootstrap statistical tests; differences in task difficulty may outweigh differences in subject
attention; lateral efferent effects are little understood and may be tied to MOC effects; to
assess whether MOC strength predicts protection from acoustic trauma, prospective tests
in humans are needed.
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INTRODUCTION
The goal of this perspective is to provide little-appreciated obser-
vations that will help in interpreting the existing efferent literature
and in guiding future work. To do this, some general review is
necessary (for references see: Guinan, 1996, 2006, 2012a).

The olivocochlear (OC) efferents consist of medial (MOC)
and lateral (LOC) groups that innervate outer hair cells (OHCs)
and auditory-nerve (AN) dendrites under inner hair cells (IHCs),
respectively. MOC neurons with crossed and uncrossed pro-
jections to the cochlea both receive inputs from the oppo-
site cochlear nucleus and form MOC reflexes (MOCRs). The
result is that uncrossed fibers mediate the contralateral (con-
tra) MOCR, and crossed fibers mediate the ipsilateral (ipsi)
MOCR (which is a double-crossed reflex) (Liberman and Brown,
1986).

DO IPSILATERAL AND CONTRALATERAL SOUNDS PRODUCE
SIMILAR EFFECTS IN THE COCHLEA?
In most psychophysical studies of the detection of a signal in
noise, the signal and noise are both in the same ear, the ipsi
ear, so the noise elicits MOC activity through the ipsi MOCR.
However, for technical reasons, most human physiologic studies
monitor MOC effects using otoacoustic emissions (OAE) in the
ipsi ear, but activate MOC efferents with contra noise. Using
such a paradigm to correlate across-subject MOCR strengths
with signal-in-noise discriminations is comparing contra MOCR
strengths to ipsi MOCR effects.

Ipsi and contra MOCRs may be different in the brainstem
and/or in the cochlea. Crossed and uncrossed MOC efferents
originate in similar brainstem regions and appear to terminate
on OHCs in similar ways. Anatomically, no difference in crossed
and uncrossed MOC fibers has been described regarding where
on OHCs they synapse or in the transmitters they use, but many
anatomical experiments were not able to distinguish crossed from
uncrossed MOC fibers. One ipsi/contra difference is that relative
to ipsi MOCR fibers, contra MOCR fibers have an apical offset in
their OHC terminations and a larger span of innervation (Brown,
2014). MOC fibers also terminate on type II auditory nerve fibers
within the organ of Corti, and, in some species, on spiral-ganglion
cells (Rask-Andersen et al., 2000; Thiers et al., 2008). Both of
these are places where ipsi and contra reflex innervation may be
different.

Physiological evidence shows ipsi-contra similarities and dif-
ferences in MOC activation and MOC effects. Most experiments
have been only done on one species, but anatomical results
suggest there may be little difference in these results across
most mammalian species. In cats, the MOC inhibition of AN
responses is similar in magnitude for crossed and uncrossed
MOC fibers on an inhibition-per-MOC-fiber basis (Gifford and
Guinan, 1987). In humans, OAE changes are twice as large for ipsi
noise as for contra noise when the MOC-elicitors are half-octave-
bands—which is consistent with a 2 to 1 ratio of ipsi to contra
MOCR fibers. However, ipsi and contra noises elicit similar-
amplitude OAE inhibitions when the noises are broad band
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(Lilaonitkul and Guinan, 2009). Thus the growth of MOCR
activation with bandwidth is different for ipsi and contra MOCRs,
which means that in the brainstem, the reflexes’ neural sum-
mation across frequency is different. Within the cochlea, ipsi
and contra MOCRs produce different relationships between the
changes in OAE phase and OAE amplitude (Lilaonitkul and
Guinan, 2012). Overall, while ipsi and contra MOCRs show many
similarities, in summation across frequency, cochlear effects, and
cochlear innervation anatomy, they are different.

Does measuring contra-MOCR strength adequately substi-
tute for measuring ipsi-MOCR strength? Contra-MOCR strength
varies greatly across humans (Backus and Guinan, 2007). It seems
reasonable to expect ipsi and contra reflex strengths to vary
similarly across subjects and to be correlated. However, since the
reflexes are different in some respects, it cannot be assumed that
their strengths are strongly correlated.

MOC-INDUCED CHANGES IN OAEs VS. IN AUDITORY NERVE
(AN) RESPONSES
MOC activation in humans can be assessed by the MOC-induced
changes in OAEs, but how well changes in OAEs represent changes
in neural responses is not known. The important MOC-induced
functional change is in the neural response. MOC-induced OAE
and neural changes have been compared in a few studies that
suggest that OAE changes are not good indicators of neural
changes (Puria et al., 1996; Chabert et al., 2002; Zhao et al., 2012;
Lichtenhan et al., 2014).

The changes with sound level of MOC effects on OAEs vs.
on neural responses are informative. Many studies have shown
that MOC-induced changes in basilar membrane (BM) responses,
OAEs, and AN compound potentials (CAPs) are largest at thresh-
old and decrease as sound level is increased. For AN fibers with
high spontaneous rates (SRs), MOC-induced inhibition is great-
est at low sound levels, but for low-SR fibers, MOC inhibition
is highest at mid-to-high sound levels (Guinan and Stankovic,
1996). It might seem that MOC effects on low-SR fibers can
be ignored because they are only a small fraction of AN fibers.
However, low-SR fibers are the main ones whose firing rate grows
at mid-to-high sound levels, and their responses most likely play
an outsized role in behavioral discriminations at these levels.
Additionally, the motion at the top of the organ of Corti is
different from BM motion in tuning and growth with sound level
(Zha et al., 2012). Motion at the top of the organ of Corti drives
IHCs, not BM motion. Finally, the coupling between organ of
Corti motion and the drive to IHC stereocilia is complex (Guinan,
2012b). Overall, one should beware of thinking that the MOC
effects on AN responses (and thus, in psychophysical tests) follow
MOC inhibition of BM motion and are always largest at low
sound levels.

ISSUES IN COMPARING MOC EFFECTS AND
PSYCHOPHYSICAL PERFORMANCE
As noted earlier, contra MOCR measurements may not accurately
represent ipsi MOCR activation, so comparisons of psychophysi-
cal performance and MOC activation are best done using the ipsi
MOCR. How is the ipsi MOCR to be measured? One possible
test is the DPOAE-onset-adaptation test (Liberman et al., 1996).

In humans (where, in contrast to animals, efferents cannot be
cut as a control), this test does not distinguish MOC effects
from intrinsic cochlear adaptation. The heavy dominance of ipsi
adaptation over contra adaptation in humans (Kim et al., 2001)
indicates that human ipsi DPOAE adaptation contains a large
intrinsic component. Another technique that works in animals
but not humans is measurement of DPOAE 2F1-F2 adaptation
(F1 and F2 are the primary-tone frequencies) at frequencies
near DPOAE response dips. In animals dips arise from OHC
stereocilia nonlinearity (Lukashkin and Russell, 2002) and the
MOCR directly changes OHC properties. In contrast, in humans
most dips are due to interference between DPOAE distortion and
reflection components (Talmadge et al., 1999) and the depth of
these dips is due to how well they cancel which is only indirectly
affected by the MOCR.

Another issue in measuring ipsi MOCR effects is that ipsi elic-
itor sounds suppress concurrent ipsi OAEs. This can be avoided
by using MOCR elicitors with no energy near the OAE-probe
frequency, but such a choice may not be compatible with the
psychophysical test. For most psychophysical tests (e.g., signal-
in-noise discriminations), ipsi OAE measurements cannot be
done simultaneously with the stimuli being discriminated. An
alternative is to measure MOC effects from OAEs before and
immediately after each psychophysical trial. The difference in
OAE amplitudes from before to after the trial provides a measure
of the trial-locked change in MOC activation. However, the dif-
ference misses any tonic MOC activation, i.e., MOC activation
that begins at the beginning of a block of trials and contin-
ues throughout the block during both the pre- and post-trial
measurements.

If the subject’s mental getting ready at the beginning of a task
brings about tonic MOC activation (presumably from cortical
activation of descending pathways), then when the same sounds
are heard without a task (called “passive listening”), perhaps there
is no tonic MOC activation. In passive listening, the difference
between OAE measurements before and after the trial sounds
is from transient MOC activation. If during pre-measurements
in passive listening there is no tonic activation, then any OAE
differences in the pre-trial measurements from active compared
to passive listening would reveal tonic MOC activation during
the active-listening trials. To avoid effects of drift and differences
across measurement sessions, interleaving blocks of task and no-
task trials within a measurement session is probably necessary. On
the interleaved no-task blocks, the subject must “relax” and not
attempt discriminations, i.e., not tonically activate their efferents.
A long training period may be required for subjects to achieve
good performance in tasks with alternation of MOC activation.
Not all subjects may be able to do this, i.e., to achieve perfor-
mance on blocks alternating MOC-on/MOC-off that equals their
performance when doing long sequences of just MOC-on or just
MOC-off.

One method to reveal tonic MOC activation would be to inter-
leave a task that has a MOC perceptual benefit and a task in which
MOC activation would be detrimental (e.g., detecting a tone in
quiet at a frequency far from spontaneous OAEs (SOAEs)—see
Dewey et al., 2014). Optimum performance would require MOC
activation in the first case, and turning-off MOC activation in the
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second case. Alternating these would allow tonic MOC activation
to be detected by comparing the pre-trial OAE levels. Again, a long
training period may be required to achieve good performances.
Whenever there is long training, presumably there is learning
involved and this may change the OAE results over time and make
it difficult to obtain the stationary periods necessary for good
averaging.

A powerful but difficult to apply method is the cor-
rect/incorrect comparison. In a series of trials using identical
stimuli, some subject judgments are correct and some are incor-
rect. Since the stimuli are the same (with random permutations
in presentation order), differences in subject judgments are pre-
sumably due to internal variations within the subject (e.g., in
subject alertness, MOC activation, etc.). If correct trials, on aver-
age, have more MOC activation than incorrect trials, this would
be strong evidence that the MOC activation actually produced
the perceptual benefit, since all stimulus variables are the same
(although correlation doesn’t prove causation). With this method,
transient activation during each trial is shown by the difference
in before-trial to after-trial OAE amplitudes, and variation in
tonic activation may be revealed by comparing the pre-trial OAE
amplitudes from correct vs. incorrect trials. A variant of this
method was used in chinchillas who skipped making a choice on
many trials (which is not allowed in the normal human paradigm)
with the result that a difference in MOC activation was found
between trials when the animal made a choice vs. the skipped
trials, but not between correct and incorrect trials (Delano et al.,
2007).

STATISTICAL TESTS
Both the pre-to-post trial method and the correct/incorrect com-
parison method require many trials to achieve adequate signal-
to-noise ratios (SNRs). The best SNR is achieved by computing
differences using all of the available trials. If the data are broken
into N subsets to have N tokens for a statistical test, then each
token has poorer SNR than the grand average. One way to keep
the highest SNR is to use a bootstrap method.

The bootstrap method is described initially with a cor-
rect/incorrect comparison. First, OAEs should have passed SNR
criteria to remove those with excessive noise. Also, to minimize
effects of drift, pre and post data from a trial should both be
used or both excluded. Suppose there are Nc and Ni correct and
incorrect noise-minimized trials: (1) Pre-trial and post-trial OAE
averages are done using all of the Nc trials and separately using
all of the Ni trials. The statistic of interest (the “real-stat”) is
then computed from these averages. (2) The null-hypothesis is
that there is no difference between Nc and Ni trials, so all trials
are pooled (i.e., their actual correct/incorrect value is ignored).
From this pool, Nc trials are randomly chosen to form a pseudo-
Nc set which are averaged. The remaining Ni trials become the
pseudo-Ni set and are averaged. Both selections must be done
without replacement so the noise from a trial is never added
in twice (different random noises add orthogonally, but the
same noise added to itself adds linearly and would produce a
noise summation that is not equivalent to the noise summation
in step 1). The statistic of interest (the “pseudo-stat”) is then
computed from these averages exactly as in step 1. (3) Step 2 is

done 1000 times (10,000 is even better), each with a different
randomization, yielding 1000 pseudo-stats which show the “null-
hypothesis” distribution. (4) If there are fewer than 50 out of 1000
pseudo-stats that have more extreme values than the real-stat,
then the real stat is statistically significant at the 0.05 level. Since
usually Nc > Ni, the average of the correct trials will generally
have a lower noise level than the average of the incorrect trials.
However, no noise correction is needed in the statistical test
because the real and pseudo averages use the same number of
trials. However, the Nc > Ni difference in noise level can bias the
average difference and needs to be considered in the interpretation
of this difference. Control computations should be done to check
that the Nc and Ni noise-levels-per-trial are not different and
to inform the interpretation. If instead of correct/incorrect, the
pre/post difference is tested, then the null hypothesis is that
there is no pre/post difference. On each trial, pre and post
values are pooled and are randomly assigned to be pseudo-
pre and pseudo-post when calculating the pseudo distributions.
The rest of the bootstrap is done as in the correct/incorrect
comparison.

TASK DIFFICULTY AND THE COMPARISON OF TASK/NO-TASK
CONDITIONS
A potentially important but little considered issue is task diffi-
culty. It is well established that the pupillary reflex varies with task
difficulty, including for auditory tasks (Kahneman and Beatty,
1966; Zekveld and Kramer, 2014). Like the pupillary reflex, the
MOCR is a brainstem-level reflex that receives descending inputs.
Furthermore, MOC activation has been shown to vary with task
difficulty (Delano et al., 2007). To validate that a difference in
MOC activation is due to selective attention and not to task
difficulty, the task difficulty must be kept constant in the tasks
compared. This might be done by setting the parameters so the
compared tasks yield the same percentage of correct trials. Reports
that claim to show differences in MOC activation due to selective
attention (e.g., differences ascribed to auditory vs. visual atten-
tion) should be examined closely to determine if the supposed
selective attention difference may actually be from differences in
task difficulty.

It is well known that pushing a button can cause noise. Less
well known is that subjects sometimes make small settling move-
ments at the beginning of trials that add noise at the earphone.
Large noises from gross motion can be removed easily by an
artifact rejection system. However, small noises (which can be
revealed by averaging two adjacent responses after reversing one)
vary in amplitude over a wide range and are difficult to reject.
Care must be taken to insure that differences between pre and
post-task OAEs are not contaminated by differences in pre-post
noise levels.

There are several areas of the MOC literature in which the
existing reports appear to give contradictory results (e.g., atten-
tion increases MOC activation, or decreases MOC activation).
Some of these may become clearer when the above considerations
are taken into account. Less weight should be given to studies
that have methodological deficiencies based on the issues pre-
sented above. However, even well-done studies can be expected
to depend on the stimulus parameters explored and reported
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differences may be due to difference in the parameters used. Too
many studies look only at one condition, or a very few conditions,
and then state conclusions as if these conclusions apply widely.
More studies are needed that vary the sound parameters over a
large enough range to capture how the MOC effect varies with
the parameters.

LOC FUNCTION AND MOC-LOC INTERACTIONS
There is good evidence that LOC activity reduces acoustic trauma
and auditory aging (Liberman et al., 2014). There is no direct
evidence for activation of LOC neurons by sound, but it is
presumed they respond to sound, in part because they are located
in a brainstem auditory nucleus. Neurons in this brainstem region
are excited by ipsi sound and inhibited by contra sound. If LOC
neurons respond with the same laterality pattern, then those that
inhibit AN fibers (some LOCs excite and some inhibit), may
balance left-right cochlear outputs to optimize sound localization
from interaural intensity differences (Guinan, 1996). Darrow
et al. (2006) presented data favoring this hypothesis, but Larsen
and Liberman (2010) presented data opposing this hypothesis.
LSO fibers are unmyelinated, conduct slowly and change AN
firing over the course of minutes (Groff and Liberman, 2003) so
whatever they do is likely to be on a slow time scale.

There are several ways in which the MOC and LOC systems
interact. MOC activity reduces cochlear amplifier gain which
reduces AN firing rates, and thus MOC activity may reduce
LOC activity. Likewise, LOC fibers change AN activity and thus
influence MOC firing. MOC-LOC interaction also occurs within
the tunnel of Corti where LOC fibers synapse on MOC fibers
(Liberman, 1980), but it is unknown whether these synapses are
excitatory or inhibitory. Overall, there is ample opportunity for
MOC-LOC interactions so that their effects may be correlated
across subjects and circumstances. Thus, effects attributed to one
system, may be due in part to, or influenced by, the other system.

TESTS TO PREDICT SUSCEPTIBILITY TO ACOUSTIC TRAUMA
AND AUDITORY AGING: ISSUES
Considering the strong evidence that the MOC and LOC systems
help protect from both acoustic trauma and auditory aging,
it would be highly desirable to have tests for MOC and LOC
function. At present, there is no LOC test, but MOC function
can be tested in humans by sound-evoked MOC effects on OAEs.
Many prior studies of MOC function in humans used group
averages, but for prediction in an individual the MOC test must
be accurate in the individual. This requires achieving an adequate
SNR in each subject, something which is especially difficult when
small MOC effects are to be measured in the most-vulnerable
subjects. SNRs of 25 dB or more are likely to be needed (e.g.,
Goodman et al., 2013, Figure 8). To minimize test time, an
averaging stopping rule should be used that is based on achieving
the SNR to detect a pre-determined low-amplitude MOC effect
(Guinan, 2006, 2012a). One little-discussed issue is: “How many
frequencies need to be tested?” Related questions are: “How much
does MOC activation vary across frequency in different subjects?”
What does finding MOC activation at an easy-to-test frequency
(e.g., one with large OAEs) indicate about the MOC activation at
hard-to-test frequencies? More work on these questions is needed.

One possibility is that MOC activation at non-traumatic levels
is aimed at gaining perceptual benefits, but for protection at
very high sound levels other brainstem mechanisms are activated,
similar to those that activate the middle-ear-muscle system. The
relative strengths of such low-level and high-level MOC systems
may vary across individuals. Animal work indicates that MOC
tests at low sound levels can be predictive of MOC anti-trauma
strength (Maison and Liberman, 2000) but this does not rule
out low-to-high-level differences. Prospective tests in humans are
needed to show how well MOC tests predict susceptibility to
acoustic trauma, e.g., MOC tests applied at the start of a person’s
work in a loud-sound environment (e.g., Lapsley Miller et al.,
2006).

CONCLUSION
There are many potential problems in studying efferents. Some
have clear solutions. Others do not. In all cases it is important
to be aware of the potential problems so that experiments can be
designed well and interpreted properly.
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