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Epilepsy is one of the most common neu-
rological disorders in humans afflicting
more than 1% of the population and
65 million people worldwide (England
et al., 2012). The most common form of
acquired epilepsy is temporal lobe epilepsy
(TLE), and over 30% of patients with TLE
have seizures that are refractory to com-
monly used anticonvulsant drugs (Bauer
and Burr, 2001). Mesial temporal lobe
sclerosis (MTS) is the most common
pathological abnormality in TLE (Bronen
et al., 1997). The histopathological hall-
marks of hippocampal sclerosis include
segmental loss of pyramidal neurons,
granule cell dispersion, and reactive glio-
sis (Sutula et al., 1989). Indeed, changes
in the integrity of hippocampus and sur-
rounding hippocampal white matter is
postulated to influence overall temporal
lobe network connectivity, hippocampus
efficiency, seizures (Cadotte et al., 2009),
and memory function (Eichenbaum et al.,
2007, 2012). Indeed, animal and human
studies show that abnormalities in the hip-
pocampus and its white matter inputs and
outputs are correlated with the severity
of memory dysfunction (Christidi et al.,
2011).

TEMPORAL LOBE CONNECTIVITY IN
TLE: FILLING GAPS IN KNOWLEDGE
Patterned inputs to the hippocampus from
mediobasal cortical regions and entrorhi-
nal cortex are hypothesized to support
critical memory functions of recollection
(controlled, deliberate recall) and famil-
iarity (automatic, item-based memory),
respectively (Eichenbaum and Lipton,
2008; Eichenbaum et al., 2012; Dixon
et al., 2014). An integrated theory of

parahippocampal (PHc), perirhinal (PRc),
entrorhinal (ERc), and hippocampal (HC)
functioning [the ‘Binding of Items and
Context [BIC] Model (Diana et al., 2007)],
suggests that these structures form an inte-
grated circuit that supports recollection
and familiarity. The PRc is proposed to
be important in encoding and retriev-
ing items (e.g., objects, words, and ideas),
whereas the PHc is responsible for rep-
resenting spatial, temporal, and semantic
context. The HC supports memory for
episodes by integrating these inputs and
binding the item-based contextual infor-
mation together as a unique event in
space and time. In this view, the forma-
tion of new memories depends upon the
integrated series of inputs from PRc and
PHc components of the parahippocampal
gyrus and their respective targets in the
ERc and hippocampus. Despite extensive
animal work, it is unknown in humans
whether selective damage to these areas
or their interconnections that produce
subtypes of memory impairment might
differentially respond to different types
of memory training. Although some data
exists on the efficacy of memory reha-
bilitation programs, little is known about
the neural basis of individualized rehabil-
itation responses from a mechanistic per-
spective (Wagner, 2011).

IMPLICATIONS FOR MEMORY
REHABILITATION
Understanding individual differences in
morphological and connectional compo-
nents of medial temporal lobe injury in
TLE can lead to identification of sub-
types of memory impairment, and thus
help identify clinically important targets

for memory augmentation. Our hypothe-
sis is that the subtypes of memory impair-
ment that result will preferentially respond
to specific memory interventions, a notion
that is also being addressed in the apha-
sia treatment literature (Kim et al., 2011).
To this end, an emerging method for
treating neurologically-induced memory
impairment is non-invasive brain stimula-
tion (NIBS), including transcranial direct
current stimulation (tDCS) and transcra-
nial magnetic stimulation (TMS). Both
tDCS and TMS are safe for use in human
subjects (Nitsche et al., 2003b), and have
been used widely to test hypothesis about
causal links between specific brain struc-
tures supporting cognition and mem-
ory (Dayan et al., 2013; Hummel, 2014).
Indeed, several studies support the use
of NIBS techniques as tools for enhanc-
ing cognitive function in normal subjects
and as therapeutic agents for individu-
als with psychiatric and neurologic disor-
ders (Hummel and Cohen, 2006; Miniussi
et al., 2008). NIBS consist of applying a
weak (0.5–2.0 mA in tDCS) direct current
through the scalp and skull. Depending on
the polarity of the current during stim-
ulation, NIBS may increase or decrease
the rate of neuronal firing by modu-
lating the resting membrane potentials
(Creutzfeldt et al., 1962; Bindman et al.,
1964; Liebetanz et al., 2002; Nitsche et al.,
2003a; Zaghi et al., 2010). Although these
studies are preliminary, they do pro-
vide reassuring proof-of-principle that the
stimulated brain region is part of a criti-
cal circuit for performing the task under
investigation.

The application of brain stimulation
in combination with specific memory
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rehabilitation methods (Stringer and
Small, 2011) has been put forth as a strat-
egy to compensate for basic defects in
TLE-related memory processing (Miatton
et al., 2011; Sankar et al., 2012; Suthana
et al., 2012; Fell et al., 2013; Hariz et al.,
2013; Hartikainen et al., 2014; Suthana
and Fried, 2014). These studies demon-
strate that electrical neuromodulation of
specific deep structures within the medial
temporal lobe may have persistent benefits
in memory function.

NIBS has been shown to signifi-
cantly decrease seizures in individuals with
treatment-resistant epilepsy (Fregni et al.,
2006; Nitsche and Paulus, 2009; San-Juan
et al., 2011; Varga et al., 2011; Yook et al.,
2011; Auvichayapat et al., 2013; Parazzini
et al., 2014). Whether NIBS techniques
can also improve memory function in TLE
is an area of much interest. To this end,
recent reports suggest that NIBS may aug-
ment cognition in a wide array of neuro-
logic and psychiatric disorders, including
schizophrenia (Minzenberg and Carter,
2012), Alzheimer’s disease (Boggio et al.,
2006), depression (Brunoni et al., 2012),
and post-stroke recovery (Floel, 2014).
Although the underlying mechanism that
produces the cognitive deficits associated
with epilepsy may differ from those that
produce similar deficits in other disor-
ders, the mechanism that enables tDCS’
therapeutic effect appears to transcend
individual disease. These results strongly
suggest that tDCS may represent an excel-
lent potential new treatment modality for
epilepsy. Therefore, future studies on the
possible effects of tDCS in TLE are highly
warranted. There are however, a number
of significant issues that must be addressed
for tDCS to become practical as a treat-
ment for TLE.

FUTURE DIRECTIONS
While NIBS has been shown to be rela-
tively safe, currently there is surprisingly
little known about the specific mecha-
nisms underlying the therapeutic effects
(Reato et al., 2013). Nevertheless, various
postulates have been put forward such as
N-methyl-D-aspartate receptor mediated
long and short-term potentiation modula-
tion (Liebetanz et al., 2002; Nitsche et al.,
2004; Thickbroom and Mastaglia, 2009).
Studies aimed at defining the dose for
NIBS techniques in space and in time, as

well as determining the safe stimulation
intensity parameters and electrode posi-
tions, are now critical to propel this field
forward. Finally, with regard to tDCS, it
was initially believed to primarily affect
cortical regions directly beneath the elec-
trode. However, there are now a number
of reports based on results from com-
puter modeling suggesting that the current
during tDCS may in fact reach deeper
areas, such as the hippocampus (Sadleir
et al., 2010; Parazzini et al., 2012). In
order to systemically reach the hippocam-
pus and surrounding structures at thera-
peutic levels, computer modeling will be
needed and will likely play an increasingly
important role in the design of electrode
montages that can consistently reach these
areas in the future. Fortunately, a num-
ber of groups now use computer modeling
to gain a better understanding of where
current is flowing during NIBS as well as
methods to guide or focus current (Datta
et al., 2009; Bai et al., 2013; Dmochowski
et al., 2013; Edwards et al., 2013). While
NIBS techniques offer the capability to
modulate large or diverse areas of the
brain, it is still an open question as to
what extent electrical neuromodulation in
one brain area may affect adjacent or more
distant areas and mechanism of action.
However, recent efforts are beginning to
explore these many complex issues directly
(Keeser et al., 2011; Polania et al., 2011;
Lamy et al., 2012; Polania et al., 2012;
Park et al., 2013; Hampstead et al., 2014;
Notturno et al., 2014).

Future advancements in current
methodologies for NIBS may provide
substantial improvements during focal
delivery of stimulation to the temporal
lobe for memory augmentation. Also,
improvements in multi-modal non-
invasive techniques such as fMRI or MEG,
may be able to detect neural signatures
reflective of NIBS related neurophysio-
logical changes within the hippocampus
and surrounding structures that result in
memory enhancement. Through the com-
bined use of NIBS and multiunit local field
potential recordings in combination with
non-invasive measurements such as EEG
and fMRI studies we may be able to opti-
mize detection and determine the precise
neuronal correlates of NIBS related behav-
ioral changes. Other training techniques
such as neurofeedback may also allow

patients the ability to modulate electrical
stimulation oscillatory activity in order to
achieve improvements in memory.

In summary, it will become increas-
ingly important for future studies to
build upon and elucidate the mecha-
nism of action used in NIBS enhancement
of memory. The location, parameters,
and phase of delivery of NIBS may
need to vary amongst individuals. Hence,
systematic comparisons and consistent
methodologies across studies will likely
contribute to a solid understanding of
NIBS and its effects on learning and mem-
ory. Resolution of these issues may be cru-
cial as to whether NIBS based therapeutics
will advance toward a useful treatment
for patients with TLE related memory
problems.
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