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Recent experimental and theoretical work has established the hypothesis that cortical
neurons operate close to a critical state which describes a phase transition from chaotic to
ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal
information processing. However, although critical dynamics have been demonstrated
in recordings of spontaneously active cortical neurons, little is known about how these
dynamics are affected by task-dependent changes in neuronal activity when the cortex is
engaged in stimulus processing. Here we explore this question in the context of cortical
information processing modulated by selective visual attention. In particular, we focus
on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an
increase in γ -band synchrony and a simultaneous enhancement of object representation
with attention. We reproduce these results using a model of integrate-and-fire neurons
where attention increases synchrony by enhancing the efficacy of recurrent interactions.
In the phase space spanned by excitatory and inhibitory coupling strengths, we
identify critical points and regions of enhanced discriminability. Furthermore, we quantify
encoding capacity using information entropy. We find a rapid enhancement of stimulus
discriminability with the emergence of synchrony in the network. Strikingly, only a narrow
region in the phase space, at the transition from subcritical to supercritical dynamics,
supports the experimentally observed discriminability increase. At the supercritical border
of this transition region, information entropy decreases drastically as synchrony sets in. At
the subcritical border, entropy is maximized under the assumption of a coarse observation
scale. Our results suggest that cortical networks operate at such near-critical states,
allowing minimal attentional modulations of network excitability to substantially augment
stimulus representation in the LFPs.
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1. INTRODUCTION
Self-organized criticality (SOC) is a property observed in many
natural dynamical systems in which the states of the system
are constantly drawn toward a critical point at which a phase
transition occurs. A variety of systems such as sandpiles (Held
et al., 1990), water droplets (Plourde et al., 1993), superconduc-
tors (Field et al., 1995), and earthquakes (Baiesi and Paczuski,
2004) exhibit SOC. In such systems, system elements are collec-
tively engaged in cascades of activity called avalanches, whose
size distributions obey a power-law at the critical state (Bak
et al., 1987). Scientists have long hypothesized that SOC might
also be a feature of biological systems (Bak and Sneppen, 1993)
and that criticality of dynamics is relevant for performing com-
plex computations (Crutchfield and Young, 1989; Langton, 1990).
Support was given by modeling studies showing that networks of
integrate-and-fire (IAF) neurons are able to display SOC (Corral
et al., 1995), and predicting that avalanches of cortical neurons
may belong to a universality class with a power-law exponent
τ = 3/2 (Eurich et al., 2002).

Experimental data indicates that cortical dynamics may indeed
assume a critical state: in 2003, Beggs and Plenz have shown

that neuronal avalanche size distributions follow a power-law
with τ = 3/2 in organotypic cultures as well as in acute slices
of rat cortex. The observed avalanche size distributions hereby
nicely matched the closed-form expressions derived for neural
systems of finite size (Eurich et al., 2002). Subsequently, the ability
of dissociated and cultured cortical rat neurons to self-organize
into networks that exhibit avalanches in vitro was presented
in Pasquale et al. (2008). Petermann et al. (2009) reported similar
avalanche size distributions in the spontaneous cortical activity in
awake monkeys. On a larger spatial scale, Shriki et al. (2013) pre-
sented scale-free avalanches in resting state MEG in humans. In
addition, recent studies address questions relating to, for example,
the rigorousness of statistical analysis (Klaus et al., 2011), sub-
sampling (Priesemann et al., 2009), and resolution restraints as
well as exponent relations (Friedman et al., 2012) in experimental
criticality studies.

Combined, such theoretical and experimental results con-
stitute the hypothesis that cortical neuronal networks operate
near criticality (Bienenstock and Lehmann, 1998; Chialvo and
Bak, 1999; Chialvo, 2004; Beggs, 2008; Fraiman et al., 2009).
What makes the criticality hypothesis especially compelling is
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the idea that a functional relationship may exist between criti-
cal dynamics and optimality of information processing as well
as information transmission (Bertschinger and Natschläger, 2004;
Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006; Nykter
et al., 2008; Shew et al., 2009). However, the majority of neuronal
avalanche observations are of spontaneous or ongoing activity
in the absence of an actual sensory stimulus being processed
by the cortex. In addition, no experimental studies exist to date
which explore the criticality of neuronal dynamics in vivo in con-
junction with a specific behavioral task, or under changing task
demands.

Nevertheless, criticality describes the border between asyn-
chronous and substantially synchronous dynamics, and in the
field of vision research, synchronization has been studied
extensively as a putative mechanism for information process-
ing (von der Malsburg, 1994). Experimental studies demon-
strated that in early visual areas, oscillations in the γ -range
(about 40–100 Hz) occur during processing of a visual stimu-
lus (Eckhorn et al., 1988; Gray and Singer, 1989). Hereby mutual
synchronization between two neurons tends to become stronger
if the stimulus components within their receptive fields are more
likely to belong to one object (Kreiter and Singer, 1996), thus
potentially supporting feature integration. Furthermore, it has
been shown that selective visual attention is accompanied by a
strong increase in synchrony in the γ -band in visual cortical net-
works (Fries et al., 2001; Taylor et al., 2005). In this context,
γ -oscillations have been proposed to be the essential mecha-
nism for information routing regulated by attention (Fries, 2005;
Grothe et al., 2012). Moreover, recent studies have demonstrated
links between synchronized activity in the form of oscillations in
MEG (Poil et al., 2012) and LFP recordings (Gireesh and Plenz,
2008) and in the form of neuronal avalanches.

These findings motivated us to explore the potential links
between synchronization, cortical information processing, and
criticality of the underlying network states in the visual system. In
particular, we investigated the criticality hypothesis in the context
of γ -oscillations induced by selective visual attention. If visual
cortical networks indeed assume a critical state in order to opti-
mize information processing, such a state should be prominent
during the processing of an attended stimulus, since attention is
known to improve perception (Carrasco, 2011) and to enhance
stimulus representations (Rotermund et al., 2009).

Specifically, we will focus here on a structurally simple net-
work model for population activity in visual area V4. We will
first demonstrate that our model reproduces key dynamical fea-
tures of cortical activation patterns including the increase in
γ -oscillations under attention observed in experiments (Fries
et al., 2001; Taylor et al., 2005). In particular, we will explain
how attention enhances the representation of visual stimuli, thus
allowing to classify the brain state corresponding to a particu-
lar stimulus with higher accuracy (Rotermund et al., 2009), and
we will identify mutual synchronization as the key mechanism
underlying this effect.

Construction of this model allowed us to analyze dependencies
between network states and stimulus processing in a parametric
way. In particular, we were interested in whether such a net-
work displayed critical dynamics, and how they relate to cognitive

states. We inquired: Is criticality a “ground state” of the cortex
which is assumed in the absence of stimuli, and helps process
information in the most efficient way as soon as a stimulus is pre-
sented? Or is the cortex rather driven toward a critical state only
when there is a demand for particularly enhanced processing,
such as when a stimulus is attended?

For answering these questions, we (a) characterized the net-
work state based on neuronal avalanche statistics (subcritical,
critical, or supercritical), (b) quantified stimulus discriminabil-
ity, and (c) analyzed the richness of the dynamics (information
entropy of spike patterns) in the two-dimensional phase space
spanned by excitatory and inhibitory coupling strengths. Within
this coupling space, we identified a transition region where the
network undergoes a phase transition from subcritical to super-
critical dynamics for different stimuli. We found that the onset
of γ -band synchrony within the transition region is accompa-
nied by a dramatic increase in discriminability. At supercritical
states epileptic activity emerged, thus indicating an unphysiolog-
ical regime, and both information entropy and discriminability
values exhibited a sharp decline.

Our main finding is that cortical networks operating at
marginally subcritical states provide the best explanation for
the experimental data (Fries et al., 2001; Taylor et al., 2005;
Rotermund et al., 2009). At such states, fine modulations of
network excitability are sufficient for significant increases in
discriminability.

2. RESULTS
2.1. ATTENTION ENHANCES SYNCHRONIZATION AND IMPROVES

STIMULUS DISCRIMINABILITY
Our study is motivated by an electrophysiological experiment
(Rotermund et al., 2009) which has demonstrated that atten-
tion improves stimulus discriminability: While a rhesus monkey
(Macaca mulatta) attended to one of two visual stimuli simultane-
ously presented in its left and right visual hemifields, epidural LFP
signals were recorded in area V4 of the visual cortex. Power spec-
tra of the Wavelet-transformed LFPs display a characteristic peak
at γ -range frequencies between 35 and 80 Hz as well as a 1/f offset
(Figure 2A). For assessing stimulus discriminability, Rotermund
et al. used support vector machines (SVMs) on these spectral-
power distributions in order to classify the stimuli on a single trial
basis. A total of six different visual stimuli (complex shapes) were
used in the experiments, therefore, the chance level was around
17%. This analysis yielded two results which are central for this
paper:

1. Stimulus classification performance was significantly above
chance level even in the absence of attention (35.5% for the
V4 electrode with maximum classification performance).

2. Discrimination performance increased significantly (by 6.7%
for the V4 electrode with maximum classification perfor-
mance) when the monkey attended the stimulus inside the
receptive field (RF) of the recorded neuronal population.

In this study, we present a minimal model which allows us to
investigate putative neural mechanisms underlying the observed
data.
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2.2. REPRODUCTION OF EXPERIMENTAL KEY FINDINGS
The spectra recorded in the experiment are consistent with
neural dynamics comprising irregular spiking activity (the 1/f -
background) and oscillatory, synchronized activity in the γ -band.
In order to realize such dynamics in a structurally simple frame-
work, we considered a recurrently coupled network of IAF neu-
rons which is driven by Poisson spike trains. The network consists
of both excitatory and inhibitory neurons interacting via a sparse,
random coupling matrix with a uniform probability of a con-
nection between two neurons (for details see Section 4.1). The
strengths Jinh and Jexc of inhibitory and excitatory recurrent cou-
plings are homogeneous. While oscillatory activity is generated
as a consequence of the recurrent excitatory interactions, the
stochastic external input and inhibitory couplings induce irregu-
lar spiking, thus providing a source for the observed background
activity.

We consider this network as a simplified model of a neuronal
population represented in LFP recordings of area V4 and the
external Poisson input as originating from lower visual areas such
as V1. One specific visual stimulus activates only a subset of V4
neurons by providing them with a strong external drive while
the remaining V4 neurons receive no such input (Figure 1A).
We drove a different, but equally sized subset of V4 neurons
for each stimulus. Hence in a recording of summed population
activity (e.g., LFPs), where the identity of activated neurons is
lost, stimulus identity is represented in the particular connectivity
structure of the activated V4 subnetwork. We simulated a total of
N = 2500 neurons but kept the number of activated V4 neurons
fixed at Nactive = 1000 since every stimulus in the experiment was
approximately the same size. With this setup, we ensured that
the emerging stimulus-dependent differences in the network out-
put are a consequence of stimulus identity and not of stimulus
amplitude.

The variability of the couplings in our network mimics the
structure of cortical couplings, which are believed to enhance
certain elementary feature combinations [such as edge elements
aligned to the populations’ RF features (Kisvárday et al., 1997)]
while suppressing others. Consequently, there will be stimuli acti-
vating subsets of V4 neurons which are strongly interconnected,
while other stimuli will activate subsets which are more weakly
connected.

We simulated the network’s dynamics in response to Na = 6
different stimuli in Ntr = 20 independent trials. Comparable to
the experiments, LFP signals were generated by low-pass filter-
ing the summed pre- and postsynaptic V4 activity (Section 4.1.3).
We computed the spectral power distributions using the wavelet-
transforms of LFP time series.

For sufficiently large Jexc the neurons in the V4 population
were mutually synchronized, leading to a peak in the power spec-
tra at γ -band frequencies. The average frequency of the emergent
oscillations depends mainly on the membrane time constant τ
for the particular choice of external input strength. Averaged over
trials, these power spectra reproduced all the principal features
displayed by the experimental data (Figure 2). In particular, spec-
tra for individual stimuli differed visibly, with largest variability
observed in the γ -range. Since the identity of activated neu-
rons is lost in the population average, any differences in strength

FIGURE 1 | Network structure and analysis of spike patterns. We model
V4 populations using a randomly coupled recurrent network of mixed
excitatory (80%) and inhibitory (20%) integrate-and-fire neurons.
(A) Depending on their receptive field properties, a different set of V1
neurons are activated by different stimuli. Activated V1 neurons provide
feedforward input to V4 neurons j in the form of Poisson spike trains with
rate fmax . Consequently, a different, random subset of V4 neurons are
driven by external input for each stimulus. Recurrent connections within V4
are represented by the random, non-symmetric coupling matrix wji .
(B) Information entropy of the spike patterns generated by area V4 is
calculated using state variables xi . At the finest observation scale (K = 1),
xi consist of N-dimensional binary vectors, which represent whether each
neuron j fired a spike (1) or not (0) at a given point in time. For larger K , the
activity of K adjacent cells is summed to construct xi .

of the observed γ -oscillations can only be attributed to subnet-
work connectivity. This result has a natural explanation because
connection strength and topology strongly determine synchro-
nization properties in networks of coupled oscillatory units (see
for example Guardiola et al., 2000; Lago-Fernández et al., 2000;
Nishikawa et al., 2003).
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FIGURE 2 | Comparison of model dynamics to experimental recordings.

LFP spectral power distributions in (A) the experiment and (B) the model for
non-attended (left) and attended (right) conditions. In each case, spectra
averaged over trials is shown for 6 stimuli (different colors). In both (A,B) the
spectra for each stimulus is normalized to its respective maximum in the
non-attended case. Model spectra reproduce the stereotypical 1/f background

as well as the γ -peaks observed in the experimental spectra. Under attention,
γ -band oscillations become more prominent and spectra for different stimuli
become visibly more discriminable. (C) Single trial LFP time-series from the
model, illustrating the analyzed signals in the non-attended (top) and attended
(bottom) conditions. [Data shown in (A) is courtesy of Dr. Andreas Kreiter and
Dr. Sunita Mandon and Katja Taylor (Taylor et al., 2005)].

Differences in power spectra become even more pronounced
if a stimulus is attended. We modeled attention by globally
enhancing excitability in the V4 population. This can be real-
ized either by increasing the efficacy of excitatory interactions, or
by decreasing efficacy of inhibition. In this way, the gain of the
V4 neurons is increased (Reynolds et al., 2000; Fries et al., 2001;
Treue, 2001; Buffalo et al., 2010), and synchronization in the γ -
range gets stronger and more diverse for different stimuli while
the 1/f -background remains largely unaffected (Figure 2B). For
visualizing the effect of attention, single trial LFP signals corre-
sponding to attended and non-attended conditions for a specific
stimulus are given in Figure 2C. Note that the change induced
by attention does not need to be large; in the example in
Figure 2 inhibitory efficacy was reduced by 10% from jinh = 0.80
to 0.72.

The observed changes in the power spectra with attention
can be interpreted in terms of the underlying recurrent network
dynamics: each activated subnetwork has a particular composi-
tion of oscillatory modes, and enhancing excitability in such a
non-linear system will activate a larger subset of these modes
more strongly. This effect is enhanced by synchronization emerg-
ing at different coupling strengths for different stimuli. With a
further increase in the coupling, however, groups of neurons
oscillating at different frequencies will become synchronized at a
single frequency (Arnold tongues, Coombes and Bressloff, 1999),
which ultimately decreases the diversity of power spectra.

2.3. ENHANCEMENT OF STIMULUS DISCRIMINABILITY IS A ROBUST
PHENOMENON

The spectra in Figure 2B were generated using coupling parame-
ters Jexc and Jinh specifically tuned for reproducing the experimen-
tal data. However, the basic phenomenon is robust against large
changes in the parameters: Discriminability increase is coupled to
the emergence of strong γ -oscillations. To show this, we varied

the excitatory and inhibitory coupling strengths independently,
and quantified stimulus discriminability using SVM classification
for every parameter combination. When varying the inhibitory
efficacies, we used a step size that is proportional to the excita-
tory efficacy: Jinh = ε · Jexc · jinh for every point in the coupling
space where jinh is the inhibitory scaling factor. We set the upper
bound of excitation and the lower bound of inhibition so as
to avoid unphysiologically high firing rates due to the activa-
tion of all neurons, including those that did not receive external
input. Figure 3A shows the classification results in coupling space,
averaged over Nw = 5 independently realized random connectiv-
ity architectures of the V4 network. The coupling values used
for generating the spectra in Figure 2B are indicated by white
markers. Classification performance is 24.2% in the non-attended
(white cross) condition (significantly above chance level, ∼17%,
via a one-tailed binomial test with p < 0.005) and 32.8% in the
attended (white circle) condition. Notably, discriminability is sig-
nificantly above chance level only in a bounded region of the
parameter space. Within this region, relatively small increases in
excitatory, or decreases in inhibitory coupling strengths lead to an
acute discriminability enhancement.

This effect comes about in the following way: In networks
with low excitation and high inhibition, the dynamics are asyn-
chronous and the LFP spectra are dominated by the 1/f -noise.
In this case, every stimulus input is mapped to a network output
with similar spectral components and with a large trial-to-trial
variance. This severely impedes the ability to classify stimuli cor-
rectly. On the other hand, in networks with very high excitation
and low inhibition, synchronous activity dominates the dynamics
and epileptic behavior is observed. Mutual synchronization of the
activated V4 neurons leads to co-activation of the otherwise silent
V4 neurons which do not receive external input. This means that
every stimulus input is mapped to spike patterns where almost all
neurons are simultaneously active at all times. The corresponding
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FIGURE 3 | SVM test results and the discriminability index. (A) SVM
classification performance as a function of the excitatory coupling strength
Jexc and the inhibitory coupling scaling factor jinh (obeying
Jinh = ε · Jexc · jinh). The coupling values representing the non-attended and

attended conditions in Figure 2B are marked by a cross and a circle,
respectively. (B) Discriminability index in the coupling space for the same
spectra. For both (A,B), the strength of the background noise was
cmix = 0.2.

spectra have reduced trial-to-trial variability but are almost iden-
tical for different stimuli. Consequently, stimulus discriminability
reaches a maximum only in a narrow region of the parameter
space which is associated with the onset of synchrony.

It is necessary to point out that the absolute magnitude of
the SVM performance depends strongly on the background noise
(i.e., on the value of cmix) which constitutes the 1/f -background
in the spectra. For example, without the addition of the back-
ground noise (i.e., cmix = 0), SVM classification performance is
36.67% for the non-attended and 43.83% for the attended spectra
in Figure 2B. Nevertheless, the observation of a bounded region
of enhanced discriminability persists even in the absence of 1/f -
noise. This finding has an important consequence: It allows us
to identify coupling parameters which cannot explain the experi-
mental data regardless of the “real” noise level. Thus, it outlines a
specific working regime in which the model can reproduce both
of the experimental findings described in Section 2.1.

2.4. CHARACTERIZATION OF DYNAMICAL NETWORK STATES
Our findings indicate that a significant discriminability increase
correlates implicitly with the onset of synchronous dynamics. In
the following, we will focus on this network effect in more detail,
and investigate its ramifications for information processing in the
visual system.

In order to obtain a better understanding of the behavior of
the system, we implemented certain reductions to our simula-
tions. First, we excluded regions in parameter space where all
neurons not receiving external input became activated. For most
of the phase space, recurrent excitation is not strong enough
to activate these stimulus-nonspecific neurons. At the supercrit-
ical regions, where excitation is strong and neurons are firing
synchronously, however, these silent neurons become activated.
This effect further increases the average excitatory input strength
in the recurrent V4 population, leading to epileptic activity at
very high (biologically implausible) frequencies. Such a regime
would be highly unrealistic, since neurons in V4 populations
have well-structured receptive fields and are only activated by

specific stimuli (Desimone and Schein, 1987; David et al., 2006).
Therefore, we proceeded to isolate the activity of externally driven
subnetworks and focused our analysis on their output. This was
realized by limiting the number of neurons in the network to N =
Nactive = 1000 and by assigning different random coupling matri-
ces to simulate different stimulus presentations. Thus, distinct
network architectures stand for distinct stimulus identities.

When constructing the output signal, we now excluded the
background noise induced by the V1 afferents (i.e., we set cmix =
0), but note that the V4 neurons were still driven by this stochas-
tic, Poisson input. This segregation of V4 activity from back-
ground noise was necessary for the analysis of network dynamics,
in order to ensure that the observed variance of the LFP spectra
across trials originated in the V4 population.

In the reduced simulations, spikes propagated and impacted
the postsynaptic neurons’ membrane potentials instantaneously
(see Section 4.3). We also prevented neurons from firing twice
during an avalanche. These latter changes were introduced for
inspecting criticality in the system dynamics (described in detail
in Section 2.4.1), allowing us to quantify the number of neurons
involved in an avalanche event accurately.

Since SVM classification is a comparatively indirect method
for quantifying discriminability, employing classifiers which are
difficult to interpret, we introduce the discriminability index (DI)
as a simplified measure. The DI quantifies by how much, aver-
aged over frequencies, the distributions of LFP spectra over trials
overlap for each stimulus pair (see Section 4.2.3). As oscillations
emerge in network dynamics, trial-to-trial variability of the spec-
tra decrease (i.e., width of the distributions become narrower),
and the average spectra for each stimulus is more distinct (i.e.,
the means of the distributions disperse). Hence, DI provides
us with a meaningful approximation of the SVM classification
performance. We find that the DI yields a phase space portrait
(Figure 3B) similar to the SVM classification result (Figure 3A)
for the full network simulations.

In order to compute discriminability in the reduced simula-
tions, we used Ntr = 36 trials from each of the Na = 20 different
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stimuli. Simulations with the reduced network produce the same
qualitative behavior in phase space (Figure 4A), in the sense that
discriminability increase is only observed in a narrow region in
the phase space, located in the border between regimes with and
without strongly synchronous activity. Discriminability is maxi-
mized as oscillations emerge, and decays quickly in the regions
where epileptic behavior is observed as all neurons fire simulta-
neously. Combined with the experimental evidence, our findings
suggest that the cortex operates near a particular state where

FIGURE 4 | Discriminability of the LFP spectra in relation to the

avalanche statistics. (A) Discriminability index in the reduced simulations.
As in the full simulations (Figure 3B), stimulus discriminability increases
dramatically in a narrow region of the coupling space. (B) Avalanche size
distributions P(s) in the sub-critical (green), critical (blue), and super-critical
(red) regimes for a single stimulus. Insets show how the corresponding
avalanche duration distributions P(T ) and the mean avalanche sizes 〈s〉
conditioned on the avalanche duration T behave in the three distinct
regimes. The corresponding coupling parameter values are marked with
crosses in (A). (C) The values of the estimated power-law exponents τ , α,
and 1/σνz for each value of the excitatory coupling strength Jexc . The lines
mark the mean exponent at the critical point for each stimulus and the
corresponding colored patches represent the standard deviation over the
stimuli. The black dashed line shows the value of α computed using
Equation 3, by plugging in the other two exponents.

small modifications of excitability lead to substantial changes in
its collective dynamics.

However, time-averaged power spectra of local field poten-
tials are not well suited for characterizing different aspects of this
state. Since epidural LFPs are signals averaged over large neu-
ronal populations, dynamic features in spiking patterns become
obscured, and temporal variations in the network dynamics are
lost in the averaging process. In the following, we will go beyond
LFPs and focus on (a) the size distribution of synchronized events
(avalanche statistics), and (b) on the diversity and richness of
patterns generated by the network (measured by information
entropy).

2.4.1. Criticality of dynamics
The network dynamics can be classified into three distinct
regimes of activity characterized by their avalanche size distri-
butions: subcritical, critical, and supercritical (Figure 4B). In the
subcritical state spiking activity is uncorrelated, events of large
sizes are not present and the probability distributions P(s) of
observing an avalanche event of size s exhibit an exponential
decay. In the supercritical state, spiking activity is strongly syn-
chronous and avalanches spanning the whole system are observed
frequently. This behavior is represented in the avalanche size
distributions by a characteristic bump at large event sizes. The
critical state signifies a phase transition from asynchronous to
oscillatory activity and the corresponding avalanche size distri-
butions P(s) display scale-free behavior.

P(s) ∝ s−τ (1)

Even though power-law scaling of the avalanche size distributions,
combined with the sudden emergence of oscillatory behavior
in the system strongly suggest a phase transition in network
dynamics, it is not sufficient to definitively conclude that the sys-
tem is critical (Beggs and Timme, 2012; Friedman et al., 2012).
Therefore, for inspecting criticality in the network dynamics, we
have investigated the behavior of two other, relevant avalanche
statistics: the distribution P(T) of avalanche durations T and the
mean avalanche size 〈s〉 given the avalanche duration T, 〈s〉(T).
We find that both of these distributions follow a power-law for
intermediate values of T at the critical points (Figure 4B, insets).

P(T) ∝ T−α (2)

〈s〉(T) ∝ T1/σνz (3)

We observe that the behavior of P(T) within the phase space
is similar to that of P(s). In the subcritical regime, there are
only avalanches of short durations, and P(T) has a short tail.
In the supercritical regime, P(T) displays a bump at large event
durations. For 〈s〉(T), we observe scale-free behavior of the dis-
tributions in both subcritical and critical regimes. Again a bump
appears for large T at the supercritical regimes. In order to quan-
tify the power-law scaling of the avalanche size and duration
distributions we applied a maximum-likelihood (ML) fitting pro-
cedure (Clauset et al., 2009) and obtained an ML estimation
of the power-law exponent for every stimulus. We obtained the
power-law exponent of the mean size distributions conditioned
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on the avalanche duration using a least squares fitting proce-
dure (Weisstein, 2002). Notably, the exponents obtained from
the simulated dynamics fulfill the exponent scaling relationship
(Figure 4C)

α − 1

τ − 1
= 1

σνz
(4)

as predicted by universal scaling theory (Sethna et al., 2001;
Friedman et al., 2012).

As a goodness-of-fit measure for the avalanche size distribu-
tions, we employed the Kolmogorov–Smirnov (KS) statistic. The
KS statistic D averaged over all stimuli (i.e., network architec-
tures) is given in Figure 5A. However, for identifying points in
the phase space at which the network dynamics are critical, the
KS statistic is ineffective: Even in the transition region from sub-
critical to supercritical behavior, the avalanche size distributions
rarely display a perfect power-law which extends from the smallest
to the largest possible event size. Therefore, we introduced lower
and upper cut-off thresholds on the avalanche sizes during the
fitting process (see Section 4.3). While this procedure allowed us
to do better fits, it also lead to a large region of subcritical states
which had relatively low (and noisy) D-values. This presents a
predicament for automatically and reliably detecting the critical
points by searching for minima in the D-landscape. Furthermore,
we found that avalanche size distributions become scale-free at
different points in phase space for different stimuli (Figure 5B).
Therefore, the minima of the average KS statistic in Figure 5A are
not representative of the critical points of the system.

Visual inspections revealed that the subcritical avalanche size
distributions converge slowly to a power-law as inhibition is
decreased. At a critical value of inhibition, a phase transition
occurs and the bump characteristic of supercritical distribu-
tions appears abruptly. Consequently, it is trivial to determine
the transition regions graphically. We automatized this proce-
dure by using a binary variable γ , which assumes a value of
1 if a bump is detected in the avalanche size distributions (if

the distribution is supercritical) and 0 otherwise (if the distri-
bution is subcritical). Its mean 〈γ 〉 over all stimuli is given in
Figure 6A. We observed that there are clearly defined regions of
sub- and supercritical dynamics, where γ is 0 or 1 for all stimuli,
respectively. The points for which 0 < 〈γ 〉 < 1 define the transi-
tion region, where synchronization builds up rapidly for different
stimuli.

In Figure 6B the transition region is plotted together with the
discriminability index for comparison. We observe that the points
at which discriminability is enhanced are confined to the neigh-
borhood of the transition region. Discriminability is maximized
within the transition region, where the network dynamics are
supercritical for a subset of architectures and subcritical for the
remaining ones. This means that if cortical neurons were to max-
imize discriminability, a set of stimulus inputs would effectively
map to epileptic output activity. Such a scenario is not only phys-
iologically implausible, but actually pathological. Taken together,
these findings suggest that only marginally subcritical points, and
not ones within the transition and supercritical regions, qualify
for explaining the experimental observations.

Therefore we propose that the cortex operates at near-
critical states, at the subcritical border of the transition region.
Such near-critical states are unique in their ability to dis-
play significant discriminability enhancement under attention
while avoiding pathologically oscillatory dynamics. In addition,
strongly correlated activity is associated with encoding limita-
tions. However, neither the discriminability of LFP spectra, nor
the avalanche statistics considered putative, neurophysiologically
plausible decoding schemes used by downstream visual areas. To
address this issue, we next inspected the diversity of spike patterns
generated in the V4 network, and how this diversity behaves in the
neighborhood of the transition region.

2.4.2. Information entropy
We computed information entropy (Shannon, 1948) in order to
assess the diversity of V4 spike patterns generated in response to

FIGURE 5 | KS statistic as a measure of criticality. (A) KS statistic D of the
avalanche size distributions in the reduced network, averaged over all
stimulus presentations. Visual inspections reveal that the avalanche size
distributions P(s) are characteristically subcritical (exponential) for most
points in the coupling space with low D-values. The transition region

calculated using the γ measure is given in white. (B) KS statistic D as a
function of inhibitory coupling scaling factor jinh for two exemplary stimuli, a1

(blue) and a2 (red), illustrating how the D minima occur at different points in
the phase space for different stimuli (Jexc = 0.2 mV). The γ -transition region
is given in magenta.
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FIGURE 6 | Discriminability is enhanced in the region defining a

phase transition from subcritical to supercritical avalanche statistics.

(A) γ measure averaged over all stimulus presentations. The network
dynamics are subcritical for all stimuli in the regions of the phase
space where the mean 〈γ 〉 = 0, and supercritical in the regions where

〈γ 〉 = 1. A phase transition from subcritical to supercritical dynamics
takes place between these two regions, at different points for different
stimuli. This transition region where 0 < 〈γ 〉 < 1 is indicated by white
dots. (B) Comparison of the discriminability index (Figure 4A) and the
transition region.

stimuli within the coupling space. In doing so, we considered dif-
ferent scales on which read-out of these patterns, e.g., by neurons
in visual areas downstream of V4, might take place.

At the finest scale of observation, the read-out mechanism has
access to complete information about V4 spiking activity. In this
case, it can discriminate between spikes originating from distinct
presynaptic V4 neurons. At the coarsest observation scale, the
read-out mechanism is not capable of observing every individ-
ual neuron, but rather integrates the total V4 input by summing
over the presynaptic activity at a given time. To account for this,
we introduce a scale parameter K which reduces a spike pattern
X comprising spikes from N neurons to a representation of N/K
channels with each channel containing the summed activity of K
neurons (Figure 1B).

Figures 7A,B show how information entropy compares with
the transition region of the system for K = 1 (full representation)
and for K = N (summed activity over whole network). For each
inhibitory coupling, the value of the excitatory coupling which
maximizes information entropy is marked with a dashed line. For
both conditions, we see that information entropy displays a sharp
decline near the transition region. This behavior is consistent with
a phase transition toward a regime of synchronous activity as the
emergence of strong correlations attenuate entropy by severely
limiting the maximum number of possible states. In compari-
son to the finest scale of observation (K = 1), we find that the
maxima of information entropy are shifted to greater values of
excitation at the coarsest scale of observation (K = N = 1000).
Figure 7C shows how the maxima of information entropy evolve
as a function of observation scale K, converging onto near-critical
points. This effect arises because, as K increases, the points with
the greatest number of states in the network activity are shifted
toward the transition region. By construction, the number of pos-
sible states of X is finite, and the uniform distribution has the
maximum entropy among all the discrete distributions supported
on the finite set {x1, . . . , xn}. Hence, information entropy of the
spike patterns increases with both an increase in the number of

observed states and an increase in the flatness of the probabil-
ity mass function P(X) of the states. For the coarsest scale of
observation, P(X) is equivalent to the avalanche size distribu-
tions, and it is clear that a power-law scaling of these distributions
cover the largest range of states (Figure 4B). However, for large
jinh (jinh � 0.6), entropy maxima persist at moderately subcritical
regions. For large K, these regions are characterized by P(X) with
smaller supports but more uniform shapes than the P(X) near
the transition region. The flatness of these distributions, espe-
cially at small event sizes, causes the entropy maxima to appear
around Jexc = 1.8 mV, instead of being located at higher values of
excitation.

Combined, our results can be interpreted in the following way
for the two extreme conditions discussed:

1. If neurons in higher areas of the visual system perform a spa-
tial integration of the neuronal activity in the lower areas (K
large), V4 networks operating at near-critical regimes both
maximize information entropy and achieve significant dis-
criminability enhancement under attention.

2. If V4 neurons employ a more efficient encoding strategy,
where both spike times and neuron identities contain mean-
ingful information for higher areas (K small), entropy is
maximized by subcritical states with asynchronous dynamics.
In such a scenario near-critical states represent a best-of-both-
worlds optimization. At the subcritical border of the transition
region, onset of oscillations and discriminability enhance-
ment can manifest while avoiding a drastic loss in information
entropy.

3. DISCUSSION
In this paper we addressed the criticality hypothesis in the context
of task-dependent modulations of neuronal stimulus processing.
We focused, in particular, on changes in cortical activity induced
by selective visual attention. We considered recent findings that
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FIGURE 7 | Analysis of information entropy in V4 spike patterns.

Information entropy in coupling space for the finest observation scale
(K = 1) (A) and the coarsest observation scale (K = N = 1000)
(B) averaged over all stimuli. In (A,B), the dashed white lines indicate the
entropy maxima for each value of the inhibitory coupling scaling factor jinh.
The magenta dots mark the transition region. (C) The maxima of
information entropy for different observation scales K . Entropy maxima
converge toward the transition region (black) as K is increased.

γ -band oscillations emerge collectively with an enhancement
of object representation in LFPs in macaque area V4 under
attention (Rotermund et al., 2009). We reproduced these results
using a model of a visual area V4 population comprising IAF
neurons recurrently coupled in a random network. Attention
induces synchronous activity in V4 by modulating the efficacy
of recurrent interactions. In the model, we investigated the link
between experimentally observed enhancement of stimulus dis-
criminability, scale-free behavior of neuronal avalanches and
encoding properties of the network quantified by information
entropy.

We found that the emergence of γ -band synchrony is strongly
coupled to a rapid discriminability enhancement in the phase

space. Notably, we observed that discriminability levels compa-
rable to the experiments appear exclusively in the neighborhood
of the transition region, where network dynamics transition from
subcritical to supercritical for consecutive values of excitation for
different stimuli. This effect arises because synchronizability of
the network depends inherently on its connectivity structure, and
the strength of synchrony for different stimuli is most diverse near
and within the transition region. However, this also means that
information entropy displays a sharp decline as network activity
becomes strongly correlated for some stimuli, beginning within
the transition region and reaching a minimum in the supercriti-
cal regions. Therefore, we propose that cortical networks operate
at near-critical states, at the subcritical border of the transition
region. Such marginally subcritical states allow for fine modu-
lations of network excitability to dramatically enhance stimulus
representation in the LFPs. In addition, for a putative encoding
scheme in which higher area neurons integrate over the spik-
ing activity in local V4 populations (coarse observation scale),
near-critical states maximize information entropy.

3.1. ROBUSTNESS OF RESULTS
In this work we aimed to reproduce reproducing the characteris-
tic features of the experimental findings with an uncomplicated
model, in part due to considerations of computational expense.
The conclusions of this paper depend mainly on the facts that in
our model: (1) the emergence of synchronous spiking activity can
be described by a phase transition as a function of an excitabil-
ity parameter, and (2) synchronizability of the network depends
implicitly on the topography of its connections. Therefore, we
believe that as long as these requirements are met, discriminabil-
ity enhancement will correlate with a narrow choice of parameters
which generate near-critical dynamics. This will also be the case
in more complex and biologically plausible models which detail
different synchronization mechanisms which might be responsi-
ble for generating neural γ -activity (see, for example, the reviews
Tiesinga and Sejnowski, 2009; Buzsáki and Wang, 2012).

In fact, recent modeling work by Poil et al. (2012), which
employed a network consisting of IAF neurons with stochas-
tic spiking and local connectivity, reported a result which nicely
parallels our findings. For random realizations of their network
architecture, the greatest variance of the power-law scaling of the
avalanche size distributions was found near the critical points.
In this framework, different random realizations of network
connectivity were used to describe differences between human
subjects, and the authors concluded that their findings provide
an explanation for interindividual differences in α-oscillations in
human MEG.

3.2. PHYSIOLOGICAL PLAUSIBILITY
We simulated cortical structure employing a random network of
finite size, thus our model had a connectivity structure which var-
ied for different subpopulations of activated neurons. This setting
spared us any particular assumptions about the connection topol-
ogy of V4 neurons, which is still subject of extensive anatomical
research. In the brain, variability in connectivity of neurons in
a local population is not random, but signifies a highly struc-
tured global network. Such functional connectivity is exemplified
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in the primary visual cortex by long-range connections between
neurons with similar receptive field properties such as orienta-
tion preference (Kisvárday et al., 1997). These connections are
thought to serve feature integration processes such as linking edge
segments detected by orientation-selective neurons in V1 or V2
into more complex shapes, thus giving rise to the array of recep-
tive field structures found in V4 (Desimone and Schein, 1987;
David et al., 2006). In consequence, connection variability in the
brain is significantly higher than random. Specifically, the vari-
ance of degree distributions is higher, the synaptic weights are
heterogeneous, and the coupling structures are more anisotropic
than in our simulations. Hence connection variability across dif-
ferent local networks is not decreased as drastically when the
number of neurons is increased. In fact, assuming random vari-
ability implied a trade-off in our simulations: On the one hand,
increasing the number of neurons decreased diversity in activa-
tion patterns and pattern separability, while on the other hand,
it improved the assessment of criticality by increasing the range
over which avalanche events could be observed.

In addition, in our model, we posited that attention modulates
the efficacy of interactions, in order to reproduce the attention
induced gain modulation and γ -synchrony using a reduction-
ist approach. In biological networks, these effects may originate
from more complicated mechanisms. For example, previous stud-
ies have shown that such an increase in gain (Chance et al.,
2002) as well as synchronous activity (Buia and Tiesinga, 2006)
can be achieved by modulating the driving background current.
However, as described in Section 3.1, we expect our results will
persist in other models where the network dynamics undergo a
phase transition toward synchronous dynamics as a function of
the responsiveness of neurons which is enhanced by attention. As
an alternative to enhancing synaptic efficacy, we also tested a sce-
nario in which attention provided an additional, weak external
input to all neurons (results not shown). This led to qualitatively
similar findings, with a quantitatively different discriminability
boost.

Lastly, our current understanding of cortical signals strongly
suggests that LFPs are generated mainly by a postsynaptic con-
volution of spikes from presynaptic neurons (Lindén et al., 2011;
Makarova et al., 2014) and that even though other sources may
contribute to the LFP signal, they are largely dominated by
these synaptic transmembrane currents (Buzsáki et al., 2012).
We generate the LFP signal through a convolution of the sum
of appropriately scaled recurrent and external spiking activity. In
our model, this closely approximates the sum of postsynaptic cur-
rents to V4 neurons: We are considering a very simple model of
a small V4 population in which the postsynaptic potentials are
evoked solely by these recurrent and external presynaptic spikes;
degree distributions in the connectivity structure of the network
has a small variance; the recurrent synaptic strengths are homo-
geneous; and there is no stochasticity in the recurrent synaptic
transmission (i.e., every V4 spike elicits a postsynaptic poten-
tial in the V4 neurons it is recurrently coupled to). In addition,
there is no heterogeneity in cell morphologies or the location
of synapses, which are believed to influence the contribution of
each synaptic current to the LFP signal in cortical tissue (Lindén
et al., 2010). Combined, this means that each spike elicited by a

model V4 neuron has a similar total impact on the postsynaptic
membrane potentials, and the low-pass filtered spiking activ-
ity represents the postsynaptic currents well. Furthermore, even
though our model does not incorporate the full biological com-
plexity of cortical neurons, we believe that the particular choice
of constructing the LFP signal in our model is not consequen-
tial for our results. The increase in discriminability of the LFP
spectra originate primarily in the γ -band (both in the model and
the experimental data), and we assume that correlated synaptic
currents emerge simultaneously with correlated spiking activity,
as there is experimental evidence that spiking (multi-unit) activ-
ity is synchronized with the LFP signal during attention-induced
γ -oscillations (Fries et al., 2001).

3.3. DYNAMICS, STRUCTURE, AND FUNCTION
In order to scrutinize the role of synchrony in enhancing stimulus
representations, we considered an idealistic scenario: Each stimu-
lus activates a different set with an identical number of neurons,
so that without synchronization stimulus information encoded in
activated neuron identities would be lost in the average popula-
tion rate. By means of the different connectivities within different
sets, however, this information becomes re-encoded in response
amplitude and γ -synchrony. In principle, this concept is very sim-
ilar to the old idea of realizing binding by synchrony (von der
Malsburg, 1994), namely, using the temporal domain to represent
information about relevant properties of a stimulus, for exam-
ple, by tagging its features as belonging to the same object or to
different objects in a scene.

However, strong synchronization hurts encoding by destroy-
ing information entropy. This is visible in the dynamics in the
supercritical regime where ultimately all neurons do the same:
fire together at identical times. Therefore, synchronization is only
beneficial for information processing if additional constraints
exist: for example, a neural bottleneck in which some aspect of
the full information available would be lost, or a certain robust-
ness of signal transmission against noise is required and can be
realized by the synchronous arrival of action potentials at the
dendritic tree.

In our setting, this bottleneck is the coarse observation scale
where neuron identity information is lost by averaging over all
neural signals. In such a case, information entropy is maximized
as oscillations emerge at near-critical points. Although this situa-
tion is most dramatic for epidural LFPs that sum over thousands
of neurons, it may also arise in more moderate scales if neurons in
visual areas downstream of V4 have a large fan-in of their presy-
naptic connections. Naturally, this does not exclude the possibility
that such a bottleneck may be absent and that cortical encod-
ing can make use of spike patterns on finer spatial scales. This
would shift the optimal operating regime “deeper” into the sub-
critical regime, and away from the transition region. Nonetheless,
for this finer scale assumption, marginal subcriticality might rep-
resent a best-of-both-worlds approach. In particular, a penalty in
information entropy may be necessary to ensure a certain level
of synchronous activity required for other functionally relevant
aspects of cortical dynamics, such as information routing regu-
lated by attention via “communication through coherence” (Fries,
2005; Grothe et al., 2012).
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In general, coding schemes being optimal for information
transmission and processing always depends strongly on neural
constraints and readout schemes. Nevertheless, specific assump-
tions about stimulus encoding do not influence our conclu-
sion that the experimentally observed effects are unique to
near-critical dynamics.

3.4. OUTLOOK
In summary, our study establishes several, novel links between
criticality, γ -synchronization, and task requirements (attention)
in the mammalian visual system. Our model predicts that
the cortical networks, specifically in visual area V4, operate
at marginally subcritical regimes; task-dependent (e.g., atten-
tion induced) modulations of neuronal activity may push
network dynamics toward a critical state; and the experimen-
tally observed discriminability increase in LFP spectra can
be attributed to differences in the network structure across
different stimulus-specific populations. It remains for future
studies to explore these links in more detail, and provide
experimental support for our model’s predictions. With recent
advances in optogenetic methods and multielectrode record-
ing techniques, assessing avalanche statistics in behaving, non-
human primates with the required precision will soon be
possible.

4. MATERIALS AND METHODS
4.1. NETWORK MODEL
4.1.1. Structure and dynamics
The V4 network consists of N recurrently coupled IAF neurons
i = 1, . . . ,N described by their membrane potential V(t):

τmem
dVi(t)

dt
= − (Vi(t) − VR) + Jext

∑
k

δ(t − t′ik)

+ Jexc

Nexc∑
j = 1

wijδ(t − tjk) − Jinh

N∑
j = Nexc + 1

wijδ(t − tjk)

(5)

The membrane potential evolves according to Equation 5 where
every V4 neuron i has a resting potential VR = −60 mV
and generates an action potential when V crosses a threshold
Vθ = −50 mV. After spiking, V(t) is reset back to VR. We picked
the parameters to be representative of those of an average cortical
neuron (Kandel et al., 2000; Noback et al., 2005). We used a mem-
brane time constant of τmem = 10 ms. In Equation 5, tjk denotes
the k-th spike from V4 neuron j, and t′ik the k-th spike from V1
(external input) to V4 neuron i.

V4 neurons are primarily driven by the external (feedfor-
ward) input once a stimulus is presented (see Section 4.1.2).
Presynaptic V1 spikes have an external input strength
Jext = 0.1 mV.

Ninh V4 neurons are inhibitory (interneurons) and the remain-
ing Nexc are excitatory cells (pyramidal neurons). We assumed a
fixed ratio of ε = Nexc/Ninh = 4 (Abeles, 1991). The neurons are
connected via a random coupling matrix with connection prob-
ability p = 0.02 (Erdös-Renyi graph). Connections are directed
(asymmetrical), and we allow for self-connectivity. wij assumes

a value of 1 if a connection exists from neurons j to i, and is 0
otherwise. Global coupling strengths can independently be varied
by changing Jinh and Jexc.

Simulations were performed with an Euler integration scheme
using a time step of 
t = 0.1 ms. Membrane potentials of
V4 neurons were initialized such that they would fire at ran-
dom times (pulled from a uniform distribution) when iso-
lated and driven by a constant input current (asynchronous
state). We simulated the network’s dynamics for a period of
Ttotal = 2.5 s and discarded the first, transient 500 ms before
analysis.

4.1.2. Stimulus and external input
For comparison with the experimental data, we drove our net-
work using Na different stimuli. Specifically, we assumed that
each stimulus activates a set of neurons in a lower visual area
such as V1 or V2 whose receptive fields match (part of) the
stimulus (Figure 1A). These neurons in turn provide feedfor-
ward input to a subset of Nactive neurons in the V4 layer. We
realized this input as independent homogeneous Poisson pro-
cesses with rate fmax = 10 kHz. This situation is equivalent to
each activated V4 neuron receiving feedforward input from
roughly 1000 neurons, each firing at about 10 Hz during stimulus
presentation.

Since stimuli used in the experiment had similar sizes, we
assumed the subset of activated V4 neurons to have constant size
Nactive = 1000 for all stimuli. For each stimulus, we randomly
choose the subset of V4 neurons which were activated by feed-
forward input. With a total of N = 2500 neurons, these subsets
were not mutually exclusive for different stimuli. The remaining
N − Nactive neurons received no feedforward input. Each stimu-
lus was presented to the network in Ntr independent trials, and
the simulations were repeated for Nw independent realizations of
the V4 architecture wij.

4.1.3. Local Field Potentials (LFPs)
In the experiments motivating this work, spiking activity was not
directly observable. Only neural population activities (LFPs) were
measured by epidural electrodes. Likewise, using our model we
generated LFP signals U(t) by a linear superposition of spiking
activities of all neurons j in layer V4 and spiking activities of V1
neurons presynaptic to V4 neurons i, scaled by a mixing constant
of cmix = 0.2. This was followed by a convolution with an expo-
nential kernel Kexp (low-pass filter). In our network, this is a close
approximation of summing the postsynaptic transmembrane cur-
rents of the V4 neurons (Lindén et al., 2011; Buzsáki et al., 2012;
Makarova et al., 2014).

U(t) = Kexp(t, τk) ⊗
⎛
⎝∑

jk

δ(t − tjk) + cmix

∑
ik

δ(t − t′ik)

⎞
⎠ (6)

Kexp(t, τk) = 1

τk
e−t/τk . (7)

We used a time constant of τk = 15 ms for the kernel and dis-
carded a period of 50 ms (∼3.3 τk) from both ends of the LFP
signal in order to avoid boundary effects.
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4.2. ANALYSIS OF NETWORK DYNAMICS
4.2.1. Spectral analysis
Mirroring the experiments, we performed a wavelet transform
using complex Morlet’s wavelets ψ(t, f ) (Kronland-Martinet
et al., 1987) for time-frequency analysis. We obtained the spectral
power of the LFPs via

p(t, f ) =
∣∣∣∣
∫ +∞

−∞
ψ(τw, f ) U(t − τw) dτw

∣∣∣∣
2

. (8)

In order to exclude boundary effects, we only took wavelet coef-
ficients outside the cone-of-influence (Torrence and Compo,
1998). Finally, we averaged the power p(t, f ) over time to obtain
the frequency spectra p(f ). This method is identical to the one
used for the analysis of the experimental data (Rotermund et al.,
2009). The power p(t, f ) of the signal was calculated in Nf = 20
different, logarithmically spaced frequencies f , in the range from
fmin = 5 Hz to fmax = 200 Hz.

4.2.2. Support vector machine classification
In order to assess the enhancement of stimulus representation in
the LFPs, we performed SVM classification using the libsvm pack-
age (Chang and Lin, 2011). The SVM employed a linear kernel
function and the quadratic programming method to find the sep-
arating hyperplanes. We implemented a leave-one-out routine,
where we averaged over Ntr results obtained by using Ntr − 1
randomly selected trials for each stimulus for training and the
remaining trial for testing.

4.2.3. Discriminability index
The discriminability index DI(Jexc, jinh) was defined as

DI = 1

Na(Na − 1)/2

1

Nf

1

Ntr

Na−1∑
i = 1

Na∑
j = i + 1

∑
f

∑
tr

erf(ZDI(f , tr, i, j)/
√

2)

2
+ 1

2
(9)

with

ZDI(f , tr, i, j) = |pi(f , tr) − pj(f , tr)|
σtr(pi(f , tr)) + σtr(pj(f , tr))

(10)

where σtr is the standard deviation of frequency spectra p over
different trials tr and erf( · ) is the error function. The assump-
tion underlying the DI measure is that, at a given frequency f ,
the magnitude of the LFP power distribution for different trials
tr is normally distributed. Discriminability of two stimuli thus
depend on how much the areas under their corresponding distri-
butions overlap. DI represents the mean pairwise discriminability
of unique stimulus pairs {i, j}, averaged over frequencies and tri-
als. For one particular frequency band, the DI measure is related
to the area-under-the-curve of a receiver-operator-characteristic
of two normal distributions. By this definition, DI is normalized
between 0.5 and 1, a higher DI indicating better discriminabil-
ity. Because of trials having a finite duration, however, DI has
a bias which took an approximate value of 0.69 in our simula-
tions (Figures 3B, 4A, 6B). In addition, since there are typically

frequencies which carry no stimulus information (e.g., the 110
Hz-band, see Figure 2B), DI is confined to values smaller than 1.

The discriminability index was further averaged over Nw inde-
pendent realizations of the coupling matrix in the full simu-
lations. In the reduced model, we ran the simulations for an
extended duration of Ttotal = 12 s. For computing DI, we then
divided the LFP time series into Ntr = 36 trials.

4.3. NEURONAL AVALANCHES
4.3.1. Separation of time scales
A neuronal avalanche is defined as the consecutive propagation
of activity from one unit to the next in a system of coupled
neurons. The size of a neuronal avalanche is equal to the total
number of neurons that are involved in that avalanche event,
which starts when a neuron fires, propagates through generations
of postsynaptic neurons, and ends when no neurons are activated
anymore. Avalanche duration is then defined as the number of
generations of neurons an avalanche event propagated through.
In such a system, the critical point is characterized by a scale-free
distribution of avalanche sizes and durations.

In simulations assessing avalanche statistics, recurrent spikes
were delivered instantaneously to all postsynaptic neurons for
proper separation of two different avalanches. This means that as
soon as an avalanche event started, action potentials were prop-
agated to all the generations of postsynaptic spikes within the
same time step, until the avalanche event ended. This corresponds
to a separation of timescales between delivery of external input
and avalanche dynamics. In this way we could determine the
avalanche sizes precisely, by “following” the propagation of every
spike through the network.

In addition, we implemented a basic form of refractoriness
which prevented a neuron from firing more than once during an
avalanche event (holding its membrane potential at VR after it
fired). Since each avalanche event took place in a single time step of
the simulations, this corresponded to each neuron having an effec-
tive refractory period equivalent to the integration time step 
t.

4.3.2. Analysis of criticality of dynamics
For each network realization, we obtained the probability P(s)
of observing an avalanche of size s by normalizing histograms of
avalanche sizes.

For every distribution P(s) obtained from our simulations, we
calculated a maximum-likelihood estimator τ̂ for the power-law
exponent τ using the statistical analysis described in Clauset et al.
(2009) for discrete distributions. For a comprehensive account of
the fitting method please see Clauset et al. (2009). To explain the
procedure briefly, we started by defining a log-likelihood func-
tion L(τ ). This quantifies the likelihood that the n empirical
avalanche size observations si (i = 1, . . . , n), which were recorded
during our simulations, were drawn from a perfect power-law
distribution with exponent τ .

L(τ ) = −n ln ζ (τ, smin) − τ

n∑
i = 1

ln si (11)

where

ζ (τ, smin) =
∞∑

n = 0

(n + smin)−τ (12)
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is the Hurwitz zeta function. For a set of τ -values in the interval
[1.1, 4], we computed L(τ ) (using Equation 11) and the value of
τ which maximized the log-likelihood was taken as the exponent
τ̂ of the power-law fit Pfit(s) ∝ s−τ̂ . During the fitting procedure,
we used a lower cut-off threshold smin = N/100 = 10 and an
upper cut-off threshold smax = 0.6N = 600. In other words, we
fit a power-law to the set of empirical observations in the inter-
val smin ≥ si ≥ smax. We repeated this fitting procedure to obtain
power-law exponents α for the avalanche duration distributions
P(T) ∝ T−α , using Tmin = 5 and Tmax = 30.

For clarity, it is important to point out that the ML analysis
described in Clauset et al. (2009) does not take into consideration
an upper cut-off in the empirical power-law distributions. One of
the reasons we used an upper cut-off threshold during fitting is
that the automated detection of critical points using the γ mea-
sure required us to fit a power-law exponent also to subcritical
and supercritical avalanche size distributions. Using the complete
tail of the distribution during the fitting procedure, for example
in supercritical regimes, would yield a bias toward lower expo-
nent estimates which would make it difficult to reliably detect
the bump at large event sizes. This would hinder the detection
of critical points using the γ measure, as it depends on an expo-
nent which reliably represents the behavior of the distribution
in the medium range of event sizes. More importantly, most of
the size and duration distributions we observed at critical points
displayed an exponential upper cut-off, as also observed in other
experimental and theoretical work (Beggs and Plenz, 2003; Beggs,
2008; Petermann et al., 2009; Klaus et al., 2011; De Arcangelis
and Herrmann, 2012). In statistics of neuronal avalanches, the
exact location of the cut-off threshold depends strongly on sys-
tem size and the duration of observations, and increasing either
will increase the number of sampled avalanches and shift the cut-
off threshold to higher values, but not make it vanish. In addition,
excluding the observations above a cut-off threshold reduced the
absolute magnitude of the log-likelihood function for all values
of τ (Equation 11), but the value of τ which maximized the log-
likelihood provided us with a better estimate of the exponent for
the middle range of the distributions where power-law scaling was
prominent.

We used a least squares fitting procedure to find the power-law
exponents for 〈s〉(T) (Weisstein, 2002), as it is not a probability
distribution, using Tmin = 2 and Tmax = 20. In this procedure,
the exponent 1/σνz of the function 〈s〉(T) ∝ T1/σνz is given by
the closed expression

1

σνz
= m

∑m
i = 1 ( ln Ti ln〈s〉i) − ∑m

i = 1 ( ln Ti)
∑m

i = 1 ( ln〈s〉i)

m
∑m

i = 1 ( ln Ti)2 − (
∑m

i = 1 ( ln Ti))2
(13)

where m is the total number of points on the function 〈s〉(T),
Ti are the duration values of the points and 〈s〉i are the
corresponding 〈s〉 values.

The KS statistic D was computed using

D = max
s ≥ N/100

|F(s) − Ffit(s)| (14)

where F(s) and Ffit(s) are the cumulative distribution functions
(CDFs) of P(s) and Pfit(s), respectively.

We defined the transition region where the network dynam-
ics switch from sub-critical to super-critical statistics using the
binary variable indicator function γ .

γ =
{

1 if F(N) − F(0.6N − 1) > F′
fit(N) − F′

fit(0.6N − 1)

0 else
(15)

In Equation 15, F′
fit(s) = Ffit(s) F(N/100)

Ffit (N/100) . γ assumes a value of

1, signifying super-critical statistics, if the tail of the empirical
avalanche size distributions P(s > 0.6N) is heavier than that of
the fit. Additionally, we visually verified that the indicator γ works
well for describing the behavior of the distributions in coupling
space. The region in which its mean 〈γ 〉 over Na different stimuli
lies between 0 and 1 was termed the transition region.

4.4. COMPUTATION OF INFORMATION ENTROPY
We quantified information entropy H(X) using a state variable
X which represents the spiking patterns of V4 neurons at a given
time point t (Figure 1B). We construct the probability P(X = xi)
of observing a spike pattern xi using the Ttotal
t spike patterns
observed in one trial.

H(X) = −
∑

i

P(xi) log2 P(xi) (16)

Considering different read-out strategies of the information
encoded by V4 neurons in the higher visual areas, we computed
information entropy in different scales of observation K. These
scales were defined as follows (Figure 1B):

For the finest observation scale, K = 1, the state variable X
consists of N channels, representing N V4 neurons. Each channel
assumes a value of 1 if the corresponding neuron generated an
action potential at time t, and 0 otherwise. We randomly picked
the order in which different neurons were represented in X.

As we increase the observation scale K, X comprises N/K
channels, and each channel represents the sum of spikes from K
different neurons. For K > 1, we constructed X by adding up the
spiking activity of K consecutive neurons, while conserving the
aforementioned random order of neurons over the channels. At
the coarsest scale of observation, we sum over the activity of the
whole network (i.e., for K = 1000, X is a scalar in the interval
[0, 1000]).
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