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INTRODUCTION

The issue of brain augmentation has received considerable scien-
tific attention over the last two decades. Much of this focus has
been prompted by the increase in human aging population and
the concomitant rise in dementiae and neuro-degenerative dis-
ease. Moreover, brain augmentation has become a central theme
for transhumanists who argue for the creation of various bio-
technologies in order to transcend the limitations of the biological
body (Drexler, 1992; Roco and Bainbridge, 2002; Bostrom, 2003;
Ramez, 2005). Kurzweil (2000) has suggested that development
of brain-machine interfaces will be necessary to cope with the
informational demands of future high tech societies. He even
proposes the supplanting of a “cognitively superior” nanotech
brain to supplement the biological human brain (Kurzweil, 2000).
Transhumanists have overlooked the complex and plural selective
pressures which have led to the human brain’s current func-
tioning. Like other bodily organs, the human brain has been
subject to the forces of biological adaptation (Hawks et al., 2007;
Henneberg and Saniotis, 2009), thus it is continuously changing.
The challenges that humans are faced with are the continuously
changing living environment and to a very much lesser extent the
“technological advancement”. Being a result of the trial-and-error
processes of biological adaptation the structure and function of
the human brain are very complex and only now we are beginning
to understand some of the basic concepts of cognition (i.e., in
relation to memory, memory consolidation and retrieval). There-
fore, this article proposes that brain-machine interfacing is not
going to produce “augmented” brains because we do not under-
stand enough about how evolutionary pressures have informed
the neural networks which support human cognitive faculties.
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EVOLUTION OF HUMAN BRAIN SIZE AND INTELLIGENCE

There is no doubt that humans display behavioral complexity
greater than other mammals, and there is ample archeological
evidence for the historical development of human mind that is
a system of informational processes manifesting itself in sym-
bolic communication transmissible from one individual to oth-
ers (Bednarik, 1997; Butler, 2005; Bar-Yosef, 2007; Burke, 2010;
Lycett and Chauhan, 2010). However, it is still difficult to pinpoint
and identify what is special about a biological substrate that led to
the evolution of human complex behaviors.

Human brain is a mammalian organ that in no single particu-
lar way is exceptional. Its anatomy is very similar to that of other
primate brains (Radinsky, 1979). For the long time it has been
widely accepted that during several million years of hominin evo-
lution the human brain became especially large, thus indicating
anatomical basis for our unusual abilities. This, however, turns
out not to be true at closer scrutiny of the fossil record of hominin
evolution. True enough, the volume of hominin braincase tripled
in the last, approximately, 3 million years (from about 450 ml
to current 1350 ml, De Miguel and Henneberg, 2001). During
that time, however, hominin body size increased, too. Body size
is measured either as the linear height, or weight, that in humans
scales approximately to the second power of height (Henneberg
etal., 1989), a fact generally recognized by the construction of the
Body Mass index as a ratio of weight to height squared. When
the size of human brain is expressed as a linear dimension (a cube
root of volume), its increases over the last 3 million years are com-
parable to those of height (Henneberg and Saniotis, 2009) and
weight (Figure 1). The size of the human brain is proportional to
the size of musculoskeletal system mass (Rogers, 1992); scaling of
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FIGURE 1 | Average brain diameters (a cubic root of endocranial Miguel and Henneberg (2001) and Mathers and Henneberg supplemented
capacity) and estimated body weights of hominids expressed as with newer finds. Numbers in brackets are numbers of individual estimates
percentages of anatomically modern human averages. Data from De taken into account.

human brain size to body size, in contrast to other vertebrates and
mammals, where brain size increases allometrically at a fraction
of body size (Jerison, 1973; Martin, 1990) is isometric, due to
changes of body structure related to erect bipedalism, high quality
diet and extraoral food processing together reducing body size
(Henneberg, 1998). Physiological regulation of the human brain
by endocrine exchanges follows the same principles as that of all
other mammals, but the quantities of specific active substances
may differ (Previc, 1999, 2009).

The size of the human brain does not correlate meaningfully
with the mental abilities (Henneberg et al., 1985; McDaniel,
2005); the size explains at best about 10% of the variation in
“intelligence” and even this number is debatable. Higher intellec-
tual functions are difficult to localize precisely to specific regions
of the brain compared to processing of sensory inputs and motor
outputs (Power et al., 2011), while many tasks controlled by brains
are processed in complex networks widely distributed across the
cortex (Bullmore and Sporns, 2009). Researchers have tried to
justify human uniqueness, since the rise of modern scientism by
quoting various “exceptional” human brain characteristics. These
were mostly associated with anatomical character due to the slow
progress in physiological research on the human brain (because of
ethical constraints), especially those related to neurotransmitter
and hormone regulation of the central nervous system functions
(i.e., primarily, synaptic function). The most common among
the indices defining the uniqueness of the human brain are
variously constructed “encephalization” indices. They combine

in various forms information on brain size and body size, with
the assumption that mammalian brains need to have a certain
number of neurons to receive sensory information and process
it to control functions of the body. The prevailing hypothesis
states that the larger the brain in relation to body size, the greater
the ability to process information. Averages of encephalization
indices calculated in various ways (Table 1) place humans clearly
above other mammals and human ancestors. However, when the
range of variability in human brain size and the body size is
taken into account differences between individual humans may be
greater than those between Australopithecines and modern Homo
sapiens. South African Australopithecus robustus had 4.3 x 10°
extraneurons, while modern Homo sapiens have 8.2 x 10° extra-
neurons (McHenry, 1976, extra-neuron numbers were calculated
using Jerison, 1973 formula). The large difference of 3.9 x 10°,
however, is smaller than the differences between some modern
humans (see range in Table 1). When normal intraspecies vari-
ation is taken into account, it follows that individual members of
our species, H. sapiens, do not differ from some individuals of
H. erectus since the ranges of encephalization indices of these two
species overlap widely.

Brains of different species have different neuronal den-
sities and different levels of myelination in various regions
(Haug, 1987; Glasser et al, 2014), which means that big-
ger brain does not necessarily contain more neurons. Usually
neuronal density decreases with increasing brain size (Haug,
1987).
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Table 1 | Ranges of various indices of encephalization in modern humans expressed as the lower and upper limits of 99% confidence intervals
and their midpoints compared with Homo erectus midpoints (data from Henneberg, 1990) supplemented by H. erectus ranges calculated in a

similar way using data from Henneberg and Thackeray, 1995.

Index (Author) H. erectus H. erectus H. erectus H. sapiens H. sapiens H. sapiens
lower limit midpoint upper limit lower limit midpoint upper limit
Extraneurons (Jerison, 1973) 5.96 x 10° 702 x 10° 8.38 x 10° 6.94 x 10° 9.17 x 10° 11.39 x 10°
Encephalization Quotient (Jerison, 1973) 3.70 5.51 8.1 5.64 8.51 11.38
Index of Progression (Stephan, 1972) 18.69 23.0 32.33 23.6 35.0 46.4

Note that H. erctus midpoints are close to H. sapiens lower limits while H. sapiens midpoints are close to H. erectus upper limits. There is an obvious overlap

between ranges of the two taxa.

BRAIN-MACHINE INTERFACES: EVOLUTIONARY
CHALLENGES

Animal research in brain-machine interfaces has led to an
improved understanding of memory and sensory processes and
neural firing patterns, leading to possible prosthetic therapies
for the restoration of motor function (Nicolelis, 2003; Nicolelis
and Srinivasan, 2003; Sanchez et al., 2003; Lebedev and Nicolelis,
2006; Moritz et al., 2008; Ethier et al., 2012). These developments
have prompted some thinkers to suggest that humans are on
the verge of a “technological cognitive revolution” (Nicolelis and
Srinivasan, 2003). Current research is focusing on the use of
computers to ascertain information on a user’s cognitive state
by observing their physiology (Tan and Nijholt, 2010), thus
therapeutically directed brain-machine interfaces appear to be
promising (Collinger et al., 2012; Shih et al., 2012; Borton et al.,
2013; Ifft et al., 2013; Thakor, 2013; Raspopovic et al., 2014).
Recent developments have focussed on stimulation of ulner and
median nerve fascicles using transversal multichannel intrafascic-
ular electrodes, which enables an amputee to adapt their grasp-
ing force (Raspopovic et al., 2014). In another recent study a
bimanual BMI has been developed that enables rhesus monkeys
to simultaneously control two avatar arms. The bimanual BMI is
based on extracellular activity of 374 to 497 neurons monitored
from various parietal and cortical areas (Ifft et al., 2013). These
developments should assist in the design of BMIs which enable
human patients better manual control.

While neuroscience research is advancing BMI therapeutic
capabilities, there is yet no existing brain-machine interface based
on exchange of electrical (electromagnetic) signals that would
improve human cognitive abilities above and beyond what a
natural brain can do. We do not have yet a theory correctly
approximating physical substrate of higher cognitive processes.
Brain did not evolve by adding defined units for more complex
functions, it improved its performance by physiological modula-
tion enabled by biochemical alterations of neuroactive substances.

Therefore, the belief that brain-machine interfaces offer a
viable method for augmenting cognitive processes lacks scientific
credibility (Kurzweil, 2000). The mainstay of this rhetoric has
come via futurists who have generally ignored evolutionary pro-
cesses, which have produced the current structure and functions
of the human brain. What we have to remember is that our
advanced technology that is in use in society is not the product
of the brain of one person, who generated it in a short time.
Rather it is the combined effect of multitudinous brains over

a long historical period (i.e., learning, processing of learned
information, researching and planning) together or separately
over a long period of time. The brain is a unique organ that
“changes” with learning and processing of the learned material
to generate novel ideas that could be researched or tested. In
short, the brain is continuously changing to generate the complex
technological advances of the modern world. Therefore, a normal
brain does not need a brain-machine interface to cope with
the ever increasing technology or new information; what the
brain needs is continuous input of the new information (i.e.,
learning). Furthermore, when an individual executes an action
(mental or physical), it results from the complex interactions of
information inputs and outputs from many regions of the brain
(e.g., a muscular action—sensory cortex, motor cortex, basal
nuclei, cerebellum, etc.) and the level and type of interaction from
each region vary (Blumenfeld, 2010; Michael-Titus et al., 2010).
Therefore, proper understanding of all these process is critical,
before manufacturing “brain-machine” interfaces to augment
brain functions. If this path is not taken, brain-machine interfaces
could cause more harm than benefits.

We may infer from this that any attempts to augment human
intelligence via brain-machine interfaces will be problematic due
to evolutionary dynamics underpinning the human brain. Fur-
thermore, the incredibly complex nature of neural networks,
chemical complexity of nerve signals conduction and individual
anatomical and physiological variation pose enormous challenges
for interaction of engineered devices with association networks in
the human brain. However, in the current environment, brain-
machine interfaces may have some therapeutic benefits in indi-
viduals developing dementiae, neuro-degenerative diseases and
sensory input inadequacies (blindness, deafness). For example,
neuromodulation using deep brain stimulation (DBS) is currently
being used to reduce Parkinsonian symptoms in selected patients.
A goal of DBS is not merely to slow down cognitive decline, but
also to lead to a restoration of function, thereby increasing life
quality (Zibly et al., 2014). Advantages of DBS surgery are its low
complication rates and comparatively higher safety levels when
performed by expert neurosurgeons (Zibly et al., 2014).

Since complex cognitive tasks rely on widely dispersed inter-
secting neural networks involving various parts of the brain, it
is thought to be difficult to connect to the brain an engineered
device that would assist or augment complex thoughts. Since
transmission of signal from one neuron to other neurons is medi-
ated chemically, it may be more feasible to introduce into brains
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substances that alter the efficiency of neurotransmission. Chemi-
cal engineering may be more efficient than electronic engineering.

NOOTROPIC AGENTS AND EVOLUTION

There are a number of chemically based methods of augmenting
the human brain, forming an important element of cosmetic neu-
rology (Dees, 2004). The field of cosmetic neurology is increas-
ingly dependent on the development and application of nootropic
agents (Cakic, 2009). A nootropic agent is a substance that may
alter, nourish or augment cognitive performance, predominantly
through the stimulation or inhibition of certain neurotransmit-
ters (Nishizaki et al., 1999). These agents may occur in nature
or be synthetically derived (Dielenberg, 2013). These substances
have been proven to increase concentration, harness memory
potential and expedite cognitive functioning (Turner et al., 2003,
2004). Many of these agents act under the premise of manipulat-
ing neurochemistry in a targeted fashion and are predominantly
stimulatory in nature (Copani et al., 1992). Most traditional and
modern nootropics activate an excitatory neurotransmitter or
suppress the action of its inhibitory counterpart (Ito et al., 1990;
Nicoletti et al., 1991; Staubli et al., 1994; Lynch and Gall, 2006;
Huff, 2012).

Many authors support the co-evolution of early hominins with
the use of nootropic substances and the attainment of altered
states of consciousness (Winkelman, 2000, 2001; Sullivan and
Hagen, 2002; Saniotis, 2010). Indeed, the desire to augment
cognitive performance through the consumption of particular
substances predates antiquity.

There is evidence to support the long-standing and widespread
use of nootropic agents on every inhabited continent. For exam-
ple Aboriginal Australians have used the stimulatory effects of
Nicotiani gossei for millennia (Watson, 1983; Sullivan and Hagen,
2002). The use of tobacco throughout North and Central America
has been well established and coca, the pre-cursor of cocaine,
was cultivated along the western coast of South America as
long as 7,000 years ago (Balick and Cox, 1996; Sullivan and
Hagen, 2002). This cultivation ran contemporaneously with the
use of cannabis in Europe (Schultes and Hofmann, 1979). The
modest potency of organically derived substances and the long-
standing, stable use of the aforementioned products in these
ancient cultures proved to be beneficial (Saniotis and Henneberg,
2011). The strongest evidence to support this development is the
presence of encoding DNA specific for the metabolization of these
substances, such as the cytochrome P450 2D6 (CYP2D6) gene
(Saniotis and Henneberg, 2011). These examples illustrate the
inextricable involvement of environmental substances in altering
or augmenting cognitive performance.

The affiliation with biological neuro-stimulants has continued
through to recent history. The industrial revolution permitted
the production of mind-altering substances on an unprecedented
scale. Throughout the 20th century, there was a proliferation of
synthetically derived substances applicable to cosmetic neurol-
ogy. Today, nootropic agents are used to intentionally augment
cognitive performance. University students appear to be amongst
major perpetrators as they complete assignments and prepare for
examinations (Greely et al., 2008). Prescription medications such
as methylphenidate (Ritalin) and dextroamphetamine (Adderall)

are being increasingly used and modafinil, an analeptic pre-
scription medication has been used as a study aid by one-fifth
of UK university students (Ghahremani et al., 2011; Fitzsimons
and McDonald, 2014). Modafinil is believed to increase con-
centrations of glutamate and decrease GABA within the poste-
rior hypothalamus, producing an overall neuro-excitatory effect
(Ferraro et al,, 1999). The drug has been shown to improve
attention and working memory in medical practitioners and
aviators and may be used in other challenging professions (Turner
etal., 2003; Chatterjee, 2004; Miiller et al., 2004; Walsh et al., 2004;
Czeisler et al., 2005; Warren et al., 2009; Garcia et al., 2013).

However, the over-application of modern cosmetic neurol-
ogy is fraught with danger and has been proven deleterious
in many instances. In the short term, modafinil is known to
produce nausea, vomiting, diarrhea, dyspepsia, headache, insom-
nia and anxiety with its long-term complications remaining
largely unknown (Ballon and Feifel, 2006; Sahakian and Morein-
Zamir, 2007). More alarmingly, the consumption of commonly
used psycho-stimulants, including Ritalin and Adderall, has
been linked to the precipitation or exacerbation of underlying
mental illness, sleep disturbances and cerebrovascular disease
(Cakic, 2009). This is likely due to the modern human brain
being maladaptive to the exaggerated pharmacological alteration
of neurochemistry (Sullivan and Hagen, 2002). Increased drug
potency associated with synthetic production has outpaced the
brain’s capacity to metabolize and clear toxic substances, leading
to prolonged exposure to these potentially harmful products
(Sullivan and Hagen, 2002). This may be an example of evo-
lutionary mismatch (Sullivan and Hagen, 2002). Whatever the
mechanism, it appears these ill-adapted responses to modern
nootropic agents may account for the bulk of the observed neg-
ative outcomes.

The potential scope of application for nootropic agents is vast.
Mind-altering substances have the capacity to optimize cognitive
performance and maximize human achievement. However, the
limits of pharmacologically aided human cognition should not
exceed the capacities of the brain. The human brain is a complex
organ, thus pushing its performance beyond its adaptive capacity
using pharmacological products could lead to failure. Therefore,
caution must be taken when approaching the inherent risks
of exacerbating the existing evolutionary mismatch in order to
avoid deleterious outcomes. The majority of these outcomes are
likely to relate to unbalancing salubrious and delicate neuro-
chemical concentrations. Many psychiatric conditions, including
schizophrenia, bipolar disorder and major depression, have illus-
trated neurochemical etiologies (Knable and Weinberger, 1997;
Hirschfeld, 2000; Lépez-Figueroa et al., 2004; Berk et al., 2007).
Evolutionary challenges aside, there are also unresolved ethical
and practical issues related to the intentional consumption of
nootropic agents, not the least of which being whether it is fair,
ethical and sensible to do so.

CONCLUSION

Many believe it to be evident that the human brain has a tremen-
dous propensity for technologically driven augmentation. Several
authors have discussed the potential for anatomical and physio-
logical enhancement via brain-machine interfaces and cosmetic
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neurology. Despite the hypothetical applications of cognitive
improvement, this article has argued that human brain augmenta-
tion possesses a number of inherent challenges, many of which are
informed during prehistory. The daunting complexity of neuro-
logical processes which inform cognitive abilities, combined with
a current lack of understanding will likely confound any attempts
in creating “smarter” minds. In fact, any attempt to circumvent
the archaic substructures of the human brain may only serve to
exacerbate the already existing maladaptive responses. For this
reason, great caution must be adopted in approaching further
attempts to go “messing with the mind”
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