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Criticality has emerged as a leading dynamical candidate for healthy and pathological
neuronal activity. At the heart of criticality in neural systems is the need for parameters
to be tuned to specific values or for the existence of self-organizing mechanisms. Existing
models lack precise physiological descriptions for how the brain maintains its tuning near
a critical point. In this paper we argue that a key ingredient missing from the field is a
formulation of reciprocal coupling between neural activity and metabolic resources. We
propose that the constraint of optimizing the balance between energy use and activity
plays a major role in tuning brain states to lie near criticality. Important recent findings
aligned with our viewpoint have emerged from analyses of disorders that involve severe
metabolic disturbances and alter scale-free properties of brain dynamics, including burst
suppression. Moreover, we argue that average shapes of neuronal avalanches are a
signature of scale-free activity that offers sharper insights into underlying mechanisms
than afforded by traditional analyses of avalanche statistics.
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INTRODUCTION
A substantial body of evidence now suggests that the brain oper-
ates near criticality. That is, analyses of healthy (Meisel et al.,
2013) and pathological (Roberts et al., 2014) brain activity yield
parameters lying near the cusp between stability and instability.
Such a state confers benefits of increased flexibility (Kinouchi and
Copelli, 2006; Shew et al., 2009), optimized information trans-
fer (Beggs and Plenz, 2003; Shew et al., 2011), and increased
storage capacity (Haldeman and Beggs, 2005; Shew et al., 2011).
However, the question of how the brain maintains criticality is
not clear. Prevailing theories posit various mechanisms but lit-
tle attention has been paid to unifying these. In this Perspective
Article, we argue that since existing mechanisms ultimately rely
on various forms of activity-dependent modulation, models that
integrate neuronal activity with metabolic resources present an
opportunity for unifying existing theories of neuronal criticality.
Moreover, we suggest that disambiguation of competing mod-
els would benefit from complementing traditional approaches of
calculating scaling exponents with analyses of the deeper scal-
ing properties encoded in average event shapes. This has been
employed successfully in physics, but has only recently found
traction in neuroscience.

COMPETING MECHANISMS IN MODELS OF CRITICAL BRAIN
DYNAMICS
Much of the attention on critical brain dynamics has centered
on neuronal avalanches in fluctuating local field potentials mea-
sured using small grids of electrodes (Beggs and Plenz, 2003;
Petermann et al., 2009; Priesemann et al., 2013), though signa-
tures of criticality have been detected in many other large-scale

measurements including MEG (Palva et al., 2013; Shriki et al.,
2013), EEG (Linkenkaer-Hansen et al., 2001; Palva et al., 2013;
Roberts et al., 2014), and fMRI (Haimovici et al., 2013). Modeling
efforts have tended to focus on spatial avalanches in networks
of spiking neurons, with relatively few analyses of criticality
in large-scale models relevant to EEG (Steyn-Ross et al., 1999;
Robinson et al., 2010; Aburn et al., 2012). Such models will be
crucial for describing the macroscopic scale accessible in human
studies.

Models of critical brain dynamics typically fall into two classes:
those with a tuning parameter and those that self-organize.
Models with a tuning parameter only exhibit critical dynamics
when the model parameters are set precisely at the critical state,
such as in branching processes (Beggs and Plenz, 2003; Haldeman
and Beggs, 2005) and in typical mean-field models (Steyn-Ross
et al., 1999). Parameter-setting mechanisms are outside the scope
of these models by design—presumably slow parameter mod-
ulations exist to set the parameters but these are not explicitly
modeled. In self-organizing models, the parameters evolve “nat-
urally” to the critical point, usually involving synaptic plasticity
based on either the strength of activity (De Arcangelis et al.,
2006; Levina et al., 2007) or spike timing (Meisel and Gross,
2009; Rubinov et al., 2011). Another means of self-organizing to
a critical point is to grow a network from scratch, with activity-
dependent plasticity governing the growth rules (Tetzlaff et al.,
2010). A common feature of self-organization in physics is a sep-
aration of time scales between the slow build-up of energy and
fast relaxation or dissipation—earthquakes are a classic example
(Sethna et al., 2001). While similar time-scale separations exist
in many neural models, an explicit link to energy (or at least a
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proxy for energy) is rarely made. We argue that such links will be
important for unifying various tuning mechanisms.

AVERAGE BURST SHAPES ARE SENSITIVE TO UNDERLYING
MECHANISMS
The proliferation of models exhibiting criticality has centered
on reproducing scale-free distributions of event sizes and dura-
tions seen empirically, with varying degrees of biological realism
versus abstraction. While criticality likely arises in more than
one context in the brain, it is also likely that there is room
to unify theories where they describe the same phenomenon.
Conversely, it is important to find ways of distinguishing between
competing mechanisms that do not necessarily perform equally
well in all settings. Disambiguating competing models is likely
hampered by the limited set of measures typically used when
benchmarking candidate models against empirical data. Power-
law exponents are the most widely used means of testing model
validity. However, multiple models can exhibit the same expo-
nents while having different mechanisms and avalanche shapes
(Sethna et al., 2001). Thus, average shapes are a sharper test
of competing theories—this has been particularly successful in
studies of ferromagnetism, where existing theories that repro-
duced correct exponents were shown to not reproduce the
correct shapes (Mehta et al., 2002). By moving beyond tradi-
tional analyses, average shapes reveal deeper mechanistic insights
(Zapperi et al., 2005; Papanikolaou et al., 2011). This approach
has recently been applied in neuroscience revealing a variety
of shapes in both data and models (Friedman et al., 2012;
Priesemann et al., 2013; Roberts et al., 2014). In particular,
invariance of average shapes across time scales is a strong indi-
cator of scale-free dynamics, while a scale-dependent change in
shape (such as asymmetry at long time scales, quantified with
skewness), hints at deviations from perfect scale-free behavior
that may not be visible in typical event statistics such as size
distributions.

Recently it was shown that burst suppression following
hypoxia exhibits a striking example of scale-free dynamics
(Roberts et al., 2014). Burst suppression occurs in various abnor-
mal brain states such as recovery from hypoxia and during
anesthesia, and is characterized by near-quiescent “suppressed”
periods punctuated erratically by large-amplitude “bursts” of
electrical activity. In post-hypoxic burst suppression, scale-
free properties vary across the recovery period, with scale-
free burst distributions prominent during the burst-suppression
phase, exhibiting stronger truncation upon the resumption of
healthy activity (Figure 1A). These statistical features appear
to relate closely to the pathophysiology, as they co-vary sig-
nificantly with later clinical outcome (Iyer et al., 2014). Since
criticality is usually associated with healthy states, existence in
neonatal burst suppression thus broadens criticality’s applica-
bility to at least one pathology, and suggests that the devel-
oping brain may provide a new window into critical brain
states.

Power-law scaling is also seen in duration distributions and
in the scaling relationship between sizes and durations, with
the exponents related in line with theories of crackling noise
(Roberts et al., 2014). But scaling exponents do not tell the

FIGURE 1 | Signatures of criticality in burst suppression EEG. (A)

Distributions of burst area (BA) for burst suppression (red) and later in
recovery (blue), with corresponding power-law fits (green and orange,
respectively). (B) Asymmetric average burst shapes for burst suppression
EEG over a range of durations (red to blue, shortest to longest). Inset: burst
skewness (�) as a function of duration T for burst suppression with linear
fit (red). (C) Symmetric average burst shapes from EEG recorded later
during recovery. Inset: burst skewness later in recovery. (D) Asymmetric
average burst shapes from the simple model showing resource depletion.
For more details see Roberts et al. (2014).

whole story. Scale-invariance of burst shapes is disrupted in
the burst-suppression phase, showing increasing leftward asym-
metry at long time scales (Figure 1B). Again, this feature of
metabolically-compromised cortex diminishes upon resumption
of healthy activity (Figure 1C, and cf. insets of panels B and C).
This scale-free signature is thus acutely sensitive to the patho-
physiology. In light of their success in explaining Barkhausen
noise in ferromagnetism (Sethna et al., 2001; Mehta et al.,
2002; Zapperi et al., 2005), where analysis of average shapes
led to the development of new models, we argue that average
shapes are under-utilized as a signature of scale-free dynam-
ics in neural systems. We hope that rigorous testing of models
against data will enable similar progress to that seen in the
study of ferromagnetism. Moreover, analysis of events themselves,
rather than coarse summary statistics, is underused in clinical
settings.

UNIFYING MECHANISMS OF SELF-ORGANIZATION VIA
BIOPHYSICAL MODELING OF RESOURCE CONSTRAINTS
Asymmetry of the average shape arises from history-dependent
effects (Zapperi et al., 2005; Roberts et al., 2014). A well-
established example in physics is the response of a ferromagnet
in a slowly changing external field (a classic, controllable exam-
ple of criticality). There, the external field aligns microscopic
domains in the magnet, but instead of gradually aligning
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in unison the individual domains flip suddenly and errati-
cally, triggering similar flips in their neighbors. This yields
a bursty signal termed Barkhausen noise, a striking exam-
ple of crackling noise (Sethna et al., 2001) with characteristic
asymmetric burst shapes that lean to the left. These shapes
were explained using a model with history dependence derived
from the dynamics of domain wall pinning (Zapperi et al.,
2005; Papanikolaou et al., 2011). For burst suppression in
post-hypoxic neonates, it was found that left-leaning bursts
(Figure 1D) arise from a simple model with activity-dependent
damping:

ẋ = −λx + ξ (t) , (1)

λ = α2

∫ t

−∞
e−α1(t−τ)x(τ )2dτ . (2)

Here, x represents neuronal activity, ξ is a Gaussian white
noise drive, λ is a damping constant, and α1 and α2 are con-
stants. This form was motivated by the fast-out slow-return
nature of the leftward asymmetry: damping is low at the begin-
ning of bursts but increases with the increasing activity in its
recent history. This is consistent with the post-hypoxic brain
being acutely sensitive to its constrained metabolic resources.
Although this is a simple phenomenological model, the cen-
tral idea of activity-dependent modulations is widely applicable.
For example, metabolic constraints have recently been incorpo-
rated into a cellular model to explain a different (non-scale-
free) type of burst suppression induced in adult EEG during
propofol anesthesia (Ching et al., 2012). Moreover, advanc-
ing technologies for measuring metabolic variables will yield
rich data sets prompting model development. Oxygen availabil-
ity has recently been shown to be tightly coupled to levels of
excitability in slice preparations (Hajos et al., 2009; Ivanov and
Zilberter, 2011), prompting calls to study the feedback loop
between activity and energy availability (Zilberter et al., 2010).
Such approaches may yield new insights into activity that requires
high metabolic load, such as the high-frequency gamma activ-
ity associated with higher cognitive functions (Kann, 2011).
Furthermore, live O2 monitoring enables unprecedented insight
into metabolic dynamics (Ingram et al., 2014), motivating new
models of seizure dynamics (Wei et al., 2014), complement-
ing models of ion concentrations (Cressman et al., 2009). This
last application is notable because brain dynamics have been
shown to deviate from criticality during seizures (Meisel et al.,
2012).

Thus, we argue that since signatures of scale-free dynam-
ics appear to be sensitive to metabolic disturbances, proper
understanding of these dynamics should parsimoniously describe
the underlying metabolic system to which the dynamics are
closely coupled. This allows the metabolic states to tune
the neuronal states. More concretely, typical models of the
form

ẋ = f (x, M, t) + ξ(t), (3)

where M are parameters, can be extended to incorporate
dynamics for the slow evolution of M given by

Ṁ = εg(x, M, t), (4)

where ε is a small parameter determining the separation of time
scales. This formalism of slow parameter dynamics (not neces-
sarily metabolic) is widely used to model oscillatory systems such
as bursting in individual neurons (Izhikevich, 2000), EEG oscil-
lations in anesthesia (Liley and Walsh, 2013; Ching and Brown,
2014), and seizures (Jirsa et al., 2014). The bifurcations involved
in such oscillatory transitions are likely different from the critical
points responsible for scale-free dynamics, but the core approach
is valid for modeling all types of slow parameter changes, and
should be applied in studies of neuronal criticality. In our exam-
ple of post-hypoxic burst suppression, one could envisage three
time scales: fast neuronal dynamics on the order of tens of mil-
liseconds, slower dynamics governing activity-dependence within
bursts on the order of hundreds of milliseconds to seconds, and
very slow dynamics describing the recovery trajectory in and out
of burst suppression on the order of tens of minutes. Indeed
such a hierarchy of time scales in a phenomenological model suc-
cessfully explains many features of seizure dynamics (Jirsa et al.,
2014). On slower time scales still, we expect that another key tar-
get for such modeling will be the sleep-wake cycle, which is itself
fundamentally tied to slow homeostatic processes and known to
exhibit temporally-varying signatures of criticality (Meisel et al.,
2013; Priesemann et al., 2013).

More broadly, all mechanisms for slow parameter modulations
are tightly constrained by the need for the brain to optimize the
use of its resources. This view has been extraordinarily successful
in explaining the structure of brain networks in terms of mini-
mizing wiring costs (Bullmore and Sporns, 2012), yet has been
used only sparingly to study large-scale brain dynamics. The brain
evolved under the constraint of finite resources, so understanding
how this constraint shapes brain dynamics will likely tell us more
about the specific resource constraints, the resulting dynamics,
and how the brain may be organized to circumvent these restric-
tions. Most attention thus far has been devoted to overall activity
levels (Attwell and Laughlin, 2001), and even then most of the
brain’s energy expenditure remains unexplained (Raichle, 2006;
Buzsáki et al., 2007). We hypothesize that resource constraints not
only underpin activity-dependent modulations on micro- and
meso-scales, but collectively act to keep the brain near a critical
point on the macro-scale. That is, optimizing the balance between
the brain’s competing needs of being active while not squander-
ing its energy supplies seems consistent with self-organization to
a critical point. Failures of this balance lead to neurological dis-
orders (Meisel et al., 2012; Roberts et al., 2014), demonstrating
that studying pathological activity—particularly in metabolically-
demanding states—enables better understanding of healthy brain
states.

In sum, these considerations suggest new unifying principles
across the spectrum of criticality in neural systems as well as new
means of disambiguating between competing causal mechanisms.
Crucially, this approach also suggests a means of integrating data
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from emerging technologies that combine electrical, hemody-
namic, and metabolic imaging—a major upcoming challenge for
neuroscience.
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