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The cholinergic system is a potent neuromodulatory system that plays critical roles in
cortical plasticity, attention and learning. In this review, we propose that the cellular effects
of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs
might induce perceptual learning; i.e., long-term changes in visual perception. Specifically,
the pairing of cholinergic activation with visual stimulation increases the signal-to-noise
ratio, cue detection ability and long-term facilitation in the primary visual cortex. This
cholinergic enhancement would increase the strength of thalamocortical afferents to
facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling
to reduce recurrent or top-down modulation. This balance would be mediated by different
cholinergic receptor subtypes that are located on both glutamatergic and GABAergic
neurons of the different cortical layers. The mechanisms of cholinergic enhancement
are closely linked to attentional processes, long-term potentiation (LTP) and modulation
of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic
system during visual training robustly enhances sensory perception in a long-term manner.
Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a
long period of time induces long-term changes in the processing of trained stimuli that
might improve perceptual ability. Various non-invasive approaches to the activation of the
cholinergic neurons have strong potential to improve visual perception.
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INTRODUCTION

Boosting the brain’s functioning during rehabilitation paradigms
might help individuals with cognitive or sensory deficits to bet-
ter recover their abilities. In this review, we will examine how
the cholinergic system might help in this regard by specifically
focusing on visual function. Recent knowledge about the cellular
and functional organization of the primary visual cortex (V1) is
particularly interesting for the deciphering of the neurobiological
mechanisms of perceptual learning and its modulation by the
cholinergic system. V1 is the first cortical step of the integra-
tion of complex visual stimuli and is decisive in the selection
of specific stimuli from the visual field. This process further
orients processing in higher cognitive cortical areas involved in
elaboration of fine visual conscious perception. Thus, cholinergic
modulation of visual processing in V1 would have strong effects
on the fine-tuning of perception and the acquisition of memory
traces.

Perceptual learning is the long-term improvement of the abil-
ity to detect or discriminate specific sensory stimuli without
interfering with or diminishing other skills that results from
training over a sustained period of time (Fahle and Poggio,
2002; Fahle, 2009; Roelfsema et al., 2010). In vision, improve-
ments in the discrimination of specific attributes of a stimulus,

such as its orientation (Ramachandran and Braddick, 1973;
Fiorentini and Berardi, 1980; Mayer, 1983), contrast (Hua et al.,
2010) or vernier acuity (McKee and Westheimer, 1978), have
been demonstrated using such paradigms. Increases in visual
capacity should go together with increases in the numbers
of neurons that encode the trained stimulus in the V1 and
the expansions of the cortical maps that represent the stim-
ulus (Kilgard and Merzenich, 1998). The signal-to-noise ratio
is usually increased. The connectivity between neurons and
efficiency of the neuronal transmission, i.e., the strength of
the input they transmit as well as the short processing time,
should also be increased. Changes in dendritic spines number,
morphology and synaptic plasticity (i.e., long-lasting modifi-
cations of the strength of the post-synaptic electrical signal)
have also been demonstrated during perceptual learning (Gilbert
and Li, 2012). However, it should be assumed that the neurons
involved in perceptual learning increase the amount of infor-
mation that they carry while preserving their primary selective
response properties (Gilbert et al., 2001). Perceptual learning
is also facilitated either by attention (Ahissar and Hochstein,
1993) or reinforcement by reward expectation (Seitz et al.,
2009); both of these process enhance neuronal transmission
efficiency.

Frontiers in Systems Neuroscience

www.frontiersin.org

September 2014 | Volume 8 | Article 172 | 1


http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnsys.2014.00172/abstract
http://www.frontiersin.org/Journal/10.3389/fnsys.2014.00172/abstract
http://community.frontiersin.org/people/u/182758
http://community.frontiersin.org/people/u/13135
mailto:elvire.vaucher@umontreal.ca
mailto:elvire.vaucher@umontreal.ca
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive

Kang et al.

Boosting visual perception with acetylcholine

Perceptual learning or increased cortical processing of specific
stimuli is generally achieved with repetitive training. It has been
recently suggested that it can also be boosted by neuromodulation
and extrinsic control of the cerebral neuromodulatory systems
by electrical or pharmacological means. The cholinergic system,
which uses acetylcholine (ACh) as a neurotransmitter, is par-
ticularly relevant because it widely innervates V1 and alters the
efficiency of neurons. The injection of ACh or its analogs into
V1 has been shown to increase neuronal responses and trigger
synaptic plasticity (Gu, 2003) and cortical plasticity (Bear and
Singer, 1986). More specifically, the administration of ACh during
visual processing increases thalamocortical input while reducing
intracortical recurrence (Gil et al., 1997; Disney et al., 2007; Soma
et al., 2013a) and thus enhances specific stimulus processing and
output. This diversity of the actions of ACh is due to the ubiqui-
tous localization of both ionotropic nicotinic receptors (nAChRs)
and metabotropic muscarinic receptors (mAChRs) in V1 (Levey
et al., 1991; Disney et al., 2006; Amar et al., 2010), which are
involved in the facilitation of cortical activity and synchronized
cortical activity. In addition to the direct and acute effects of
ACh, an increasing number of studies have recently shown that
repetitive cholinergic activation of the visual cortex has also the
ability to enhance visual perception. The repetitive pairing of
ACh release with exposure to a visual stimulus improves several
visual capacities, such as contrast sensitivity (Mayer, 1983; Hua
etal., 2010), motion detection (Rokem and Silver, 2010), working
memory (Furey et al., 2000; Bentley et al., 2004), texture discrim-
ination (Beer et al., 2013) and visual acuity (Kang et al., 2014) in
both humans and animals. Many animal studies have also demon-
strated the involvement of the cholinergic system in percep-
tual learning in different sensory modalities, including olfaction
(Wilson et al., 2004) and audition (Bakin and Weinberger, 1996).
These improvements suggest that paired visual and cholinergic
stimulation induces perceptual learning possibly via synaptic and
cortical modifications linked to attention mechanisms (Herrero
et al., 2008) or reward expectation (Chubykin et al., 2013) and
cortical plasticity. The repetition of such pairings would result in
a more efficient processing and increased automaticity of visual
stimuli. This could be related to reduced strength of connectivity
between attention regions and V1 (Ricciardi et al., 2013) and a
role of ACh in perceptual inference and repetition suppression
(Moran et al., 2013).

Our research hypothesis proposes that cholinergic effects in
V1 contribute to perceptual learning and can thus be used to
voluntarily develop one’s brain capacity and aid the restoration
of visual function. In the present review, we will discuss how
ACh might improve perceptual capacities, particularly during
repetitive stimulation paired with visual stimulation, which are
related to its roles in the long-term enhancement of cortical
responsiveness and cortical plasticity (Figure 1). Specifically, we
will first discuss the diverse effects of ACh on V1 neuron function
and connectivity and relate these effects to the background theory
of the cholinergic modulation of neural mechanisms and brain
function. To assess these neuronal mechanisms, we will primarily
discuss studies that have been performed in rodents and non-
human primates (for more information about cholinergic effects
on human cognition, see Drevets et al., 2008; Bentley et al., 2011).
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FIGURE 1 | Hypothesis of the effect of the cholinergic system on visual
perception. Increase of perceptual capacity (perceptual learning) can be
obtained by naturally or artificially activating the cholinergic system during
sensory training. This perceptual learning might be achieved by long-term
facilitation of cortical responses and/or change of the excitatory/inhibitory
balance. (A) Representation of the improvement of visual perception in the
rat by pairing the presentation of a specific sinusoidal grating coupled to
cholinergic system activation (represented by injection of acetylcholine,
ACh). (B) Long-term enhancement (LTE) of the cortical responses by ACh
(upper path) share common features with classical long-term potentiation
(LTR lower path): visual stimulation of presynaptic input evokes small
responses (represented by a resulting small visual evoked potential (VEP)
signal waveform) in post-synaptic neurons. If paired to cholinergic
activation, the presynaptic stimulation induces a long-term enhancement of
neuronal responses (upper path, represented by an increased VEP signal
waveform). This mechanism is similar to LTP where theta-burst stimulation
(100 Hz) in lateral geniculate nucleus (LGN) induces an increase of
postsynaptic potentiation in the cortex (lower path). VEP signals are
imaginary waveform to compare neuronal response magnitude, as recorded
in our previous experiments. (C) Cortical plasticity induced by ACh could
also result from a change in excitatory and inhibitory balance by changing
the strength of the excitatory synapse over inhibitory synapses, resulting in
long-term modification of cortical responses.

ORGANIZATION OF THE CHOLINERGIC SYSTEM IN V1
Cholinergic fibers are distributed throughout the cortical layers
of V1 (Lysakowski et al., 1989; Avendafio et al., 1996; Mechawar
et al., 2000), which suggests that ACh might affect every step of
visual processing (Figure 2A).

LOCAL EFFECT OF THE CHOLINERGIC FIBERS

The cholinergic system influences the local network by diffuse
transmission rather than by synaptic transmission (Descarries
et al., 1997; Yamasaki et al., 2010). This property is related to the
fact that ACh is released from the varicosities that are distributed
along the cholinergic axons and that these varicosities show only
rare synaptic organizations at the ultrastructural level (Umbriaco
et al., 1994; Vaucher and Hamel, 1995; Mechawar et al., 2000).
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FIGURE 2 | Schematic representation of the primary visual cortex (V1)
and its cholinergic modulation on cortical processing. (A) Thalamocortical
afferent (light blue fibers) from LGN conveying stimulus information reach
spiny stellate neuron in the layer IV. The input is transferred to the layer II/IlI,
then layer V and to higher visual area. The cholinergic activation modulates
the visual processing in virtually all the levels of V1 connectivity by nicotinic
(green cylinder) and muscarinic (seven transmembrane domains molecules)
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receptors. (B) Cortical processing after VS/HDB training. The cortical
processing for the trained stimulus is significantly enhanced after VS/HDB
training but un-trained stimulus processing is not affected. Note that the input
from the thalamus is similar but the feedforward propagation is increased.
Excitatory influences are shown in blue arrows. The strength of the response
enhancement is represented by the contrast of the arrow. Layer VI and
horizontal connections are omitted for clarity.

However, the modulation of the cortex by ACh is not widespread
and is primarily selective and adapted to the local microfunction
due to the differential distribution of varicosities along the cholin-
ergic axons (Zhang et al., 2011) and the differential distribution of
the cholinergic receptor subtypes on different neuronal targets.
Moreover, ACh release might be triggered by local neuronal
activity to induce locally restricted rather than generalized action
of the cholinergic system (Laplante et al., 2005). The variety of
the cholinergic receptors and their distributions convey subtype-
specific functions (Thiele, 2013; Groleau et al., 2014). In VI,
AChRs exhibit differential subtype densities across the cortical
layers (I-VI) on both excitatory (Gulledge et al., 2009; Thiele,

2013) and inhibitory neurons (Hashimoto et al., 1994). The
distinct actions of cholinergic receptors can be related to differ-
ences in the conductances of the ionotropic receptor nAChRs for
Nat, K* (04B,) and Ca®* (a7) (Rang, 2003) and in the intracel-
lular pathways of the different subtypes of the G-protein coupled
mAChRs. Amongst the five mAChR subtypes identified, the M1,
M3 and M5 mAChRs are coupled with Gq/11 proteins, which
activate phospholipase C and lead to increases in intracellular
Ca’* and the M2 and M4 mAChRs are bound with Gi protein
that inhibits adenylyl cyclase, which leads to a decrease in cAMP,
the inhibition of voltage-gated Ca?" channels and an increased
KT efflux (Caulfield and Birdsall, 1998; Wess, 2003). In addition,
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M1 promotes the opening of NMDARs and induces LTP in the
hippocampus (Buchanan et al., 2010; Giessel and Sabatini, 2010).

CHOLINERGIC FIBERS ACTIVATION IN V1

Stimulation of the cholinergic system in V1 can be achieved via
the administration of ACh analogs (e.g., carbachol), cholinergic
receptor agonists (e.g., nicotine and selective mAChR drugs)
or cholinesterase inhibitors or through electrical or optoge-
netic stimulation of the cholinergic neurons that project to V1.
The cholinergic neurons that project to V1 are located in the
basal forebrain (BF), particularly the ventral pallidum, substantia
innominata and the horizontal limb of the diagonal band of Broca
(HDB; Gaykema et al., 1990; Laplante et al., 2005). Although the
nucleus basalis magnocellularis is the main cholinergic nucleus
of the BF which innervates the cortical mantle, it projects only
weakly to V1 (Luiten et al., 1987; Vaucher and Hamel, 1995);
nevertheless, some studies report that the stimulation of this
nucleus might induce functional changes in the visual cortex
(Goard and Dan, 2009; Pinto et al., 2013). Moreover, although
there are GABAergic neurons in the BF, many studies have con-
firmed that the effects of BF stimulation are identical to those
of intracerebral injections of ACh agonists and are primarily
mediated by the cholinergic fibers (Dauphin et al., 1991; Ma and
Suga, 2005; Dringenberg et al., 2007; Kocharyan et al., 2008; Kang
and Vaucher, 2009). There are also intrinsic cholinergic neurons
that represent only 10-15% of the total cortical innervation (Eck-
enstein et al., 1988; Chédotal et al., 1994), and the involvement of
these neurons in cortical processing remains unclear.

ACETYLCHOLINE MODULATES THE FLOW OF VISUAL
INFORMATION IN V1

The efficiencies of the cortical inputs and outputs are altered
by the different cholinergic receptors in both the glutamatergic

Feedback Higher visual
cortical area
Feedforward
V1
Thalamo-
cortical Horizontal A )
afferent 1= Local inhibition Subcortical

Recurrent area

FIGURE 3 | Neuronal connectivity within the primary visual cortex
(V1). Neurons from V1 receive thalamocortical (in blue) and corticocortical
inputs originating from upper cortical areas (feedback control, in brown).
The thalamocortical information is integrated within V1 and further
transmitted to upper cortical areas (feedforward transmission). The
activation of neurons might enhance activation or inhibition of neighboring
neuron by the horizontal connections or through the local inhibitory
interneurons. Recurrent connections auto-regulates neuronal activity (see
text for more details). Excitatory effect is expressed as green color and
inhibitory effect as red.

and GABAergic systems according to the cortical layer, neuron
and receptor subtype reached by ACh (Figure 2). V1 integrates
visual information via different pathways that include the follow-
ing: the feedforward thalamocortical pathways, V1 intracortical
connectivities, and the feedback influence from higher cortical
areas (Figure 3). The visual information arriving to layer IV of
V1 from the lateral geniculate nucleus (LGN) is considered to
be the dominant thalamocortical visual pathway. In contrast, the
intracortical pathway might arise from neighboring neurons, local
recurrent axons or more broadly from horizontal networks. The
cholinergic system induces facilitation, suppression or does not
affect the visual cells. Direct local effects of ACh might be opposed
to the indirect effects of ACh due to neuronal interactions across
layers. The general picture of the cholinergic influence on V1
is that the response to a stimulus is increased by cholinergic
modulation in the thalamocortical pathway while the intracortical
influence is suppressed. The cholinergic influence described in
the following paragraph represents the acute effects in V1 that
can participate in attention and trigger perceptual learning. The
effects of the cholinergic system on long-range corticocortical
relationships are also of interest but are beyond the scope of this
review.

CHOLINERGIC MODULATION OF THALAMOCORTICAL INPUTS

Cortical responses to sensory stimuli transmitted by the LGN are
amplified during learning and experience-dependent plasticity
to emphasize relevant information (Sarter et al., 2005; Wang
et al., 2013). These thalamic afferents are of prime relevance
because they define the receptive fields and other properties of
V1 neurons. Complex information is extracted according to its
properties (e.g., orientation) via projections to different columns
(in primates) or specific cells (in rodents). Cholinergic activation
in this layer induces a general increase in responsiveness regardless
of the features of the visual stimuli (e.g., orientation; Disney
et al., 2012), which allows the cortex to respond reliably to weak
stimulation (Disney et al., 2007). ACh increases the thalamocor-
tical input through presynaptic nAChRs on the thalamocortical
fibers (Gil et al., 1997; Disney et al., 2007; Figures 2A, 4). The
M1 mAChR also amplifies the spiny stellate cell/pyramidal cell
response through a postsynaptic intracellular pathway (Gu, 2003),
but inhibition through the M4 mAChR has also been observed
on spiny neurons in the somatosensory cortex (Eggermann and
Feldmeyer, 2009). Interestingly, the cholinergic facilitation of tha-
lamocortical inputs in sensory cortex slices is ACh-concentration
dependent. High doses of ACh enhance the thalamocortical affer-
ents both in vitro and in computational models (Hasselmo, 2006;
Deco and Thiele, 2011). Together, these results indicate that,
under conditions of high levels of ACh release, the enhancement
of the thalamocortical inputs in layer IV facilitates the transmis-
sion of sensory information and induces experience-dependent
plasticity (e.g., learning).

CHOLINERGIC MODULATION OF INTRACORTICAL INTERACTIONS

In addition to the enhancement of thalamocortical inputs, ACh
might modulate intracortical connectivity either by suppressing
lateral inhibition (Kimura and Baughman, 1997; Metherate et al.,
2005; Metherate, 2011) or suppressing the spread of the excitation
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of thalamic inputs (Kimura et al., 1999; Silver et al., 2008). The
presynaptic mAChRs that are located on the glutamatergic fibers
induce a suppression of the intracortical neurons (Gil et al.,
1997), although the inhibition of GABAergic terminals induces a
disinhibition of the pyramidal cells (Ji and Dani, 2000; Christophe
et al., 2002; Seeger et al., 2004; Salgado et al., 2007). Intracortical
connectivity modulates the response intensity and the output of
V1 neurons (Figure 3). The lateral connections also synchronize
the firing of similar neuronal populations (Gilbert and Wiesel,
1989; Lien and Scanziani, 2013), which allows for lateral correla-
tion between neurons with similar orientation preferences during
typical perceptual learning tasks (e.g., the Vernier acuity test)
(Ramalingam et al., 2013). The differential action of ACh on
lateral connections might simultaneously enhance specific mod-
ules of the same orientation (lateral correlation) while depressing
adjacent irrelevant modules (McGuire et al., 1991; Stettler et al.,
2002). A recent study using optogenetics showed that inhibition
of the intracortical excitatory neurons leads to a receptive field
reduction (Li et al., 2013), and this finding is consistent with the
effect of ACh release in V1 (Roberts et al., 2005; Zinke et al., 2006)
and the increases in the population receptive fields of M1/M3
mAChR knock-out mice (Groleau et al., 2014). Furthermore, an
ACh esterase inhibitor reduces surround suppression in a percep-
tual study in humans (Kosovicheva et al., 2012), which could be
indicative of a weakening of lateral connections. Hasselmo (2006)
proposed that high ACh levels suppress the magnitude of feedback
excitation, whereas low ACh levels result in weaker afferent input
to the cortex. Similarly, Deco and Thiele (2011) also proposed
that high ACh levels decrease the intracortical interactions and
that low ACh increase these interactions. The hypothesis of these
authors was confirmed in an in vitro study that showed that the
enhancement of the recurrent cortical activity in low-dose ACh
conditions was independent of the thalamocortical input (Wester
and Contreras, 2013). Together, these results suggest that during
intense ACh release, the intracortical connections are inhibited,
which relieves the sensory cortices from recurrent connections.
However, in low concentration of ACh situations, the lateral
connections might amplify the thalamocortical activity amongst
similarly tuned neurons.

These effects have primarily been recorded within layer II/III;
however, in layers I, V and VI, which are primarily involved
in feedback mechanisms, ACh might also influence feedforward
processing by interacting with neurons in layers IV and II/III (De
Pasquale and Sherman, 2012). Layer I neurons are densely inner-
vated by the cholinergic projections (Vaucher and Hamel, 1995;
Mechawar et al., 2000). It has been shown that inhibitory actions
mediated by AChRs can suppress layer II/III (Zinke et al., 20065
Alitto and Dan, 2012; Soma et al., 2013b) and layer V pyramidal
neuron activity (Lucas-Meunier et al., 2009; Amar et al., 2010)
and can also inhibit the cortical GABAergic network and thus
result in the disinhibition of the majority of the cortical layers
(Christophe et al., 2002). It has been observed that local ACh
application primarily suppresses the activity of layer VI neurons
(Disney et al., 2012), which can alter the activation of all of the lay-
ers of V1 in a linear manner via the intracortical pathway (Olsen
et al., 2012) and alter the activation of the thalamocortical fibers
(Cudeiro and Sillito, 2006; Sillito et al., 2006). Cholinergic action

might thus disinhibit the activities of other layers by suppressing
layer VI. Topical injections of ACh into layer V produce the
predominant effect of facilitation of the regular and fast-spiking
cells (Soma et al., 2013b), although local ACh activation seems
to decrease excitatory drive through presynaptic M1 mAChRs
(Kimura and Baughman, 1997) and to increase inhibitory drive
through M3 mAChRs (Amar et al., 2010). Similarly, an increase
in the activation of GABAergic neurons activation in layer V has
been observed following repetitive BF/visual pairing (Kang et al.,
2014). Layer V pyramidal neurons send dense projections to the
superior colliculus and diverse thalamic nuclei that are involved
in focused attention.

Finally, ACh can promote the co-activation of different cortical
areas and layers which might be an efficient method for the
selection of visual information via a summation of the temporally
coincident presynaptic spikes (Fries et al., 2007). It has been
shown that visually driven gamma power is differentially dis-
tributed across the layers of V1 (Xing et al., 2012) and that gamma
oscillations can be induced by cholinergic stimulation (Rodriguez
et al., 2004; Bhattacharyya et al., 2013).

In conclusion, BF stimulation that facilitates the release of ACh
in multiple layers of V1 might act in diverse manners and results
in the enhancement of visual stimulus-driven responses. The pre-
amplified responses of layer IV are filtered out by GABAergic neu-
rons of layer II/III to transfer task-relevant information to higher
visual cortical areas. The activated synaptic connections can be
modulated by layers V and VI or by the feedback mechanism of
layer 1. Differential responses across layers might be integrated
by the synchronization of their activities in the gamma-band to
facilitate visual processes.

CELLULAR EFFECTS OF ACETYLCHOLINE IN V1-RELATED
ATTENTION

Most of these cellular mechanisms contribute to attentional
mechanisms in V1. Attention increases the cortical response to
stimuli (i.e., the signal) while lowering interference from the
background (i.e., the noise). Several animal studies have described
deficits of attention following cholinergic lesions or injections
of cholinergic antagonists (Voytko et al., 1994; McGaughy and
Sarter, 1998, 1999) and ACh has been shown to be involved
in attention in V1 (Herrero et al., 2008). However, ACh release
promotes rather than initiates attention. Because ACh-mediated
attention and perceptual learning have crucial effects on each
other, the role of ACh during visual attention is delineated in the
following section to better understand how ACh enhances cortical
functioning.

CHOLINERGIC INVOLVEMENT IN BOTTOM-UP AND TOP-DOWN
ATTENTION

ACh has been suggested to control the balance between bottom-
up and top-down processing through attentional mechanisms (Yu
and Dayan, 2002, 2005; Sarter et al., 2005). This influence is medi-
ated by pre-synaptic thalamocortical nAChRs (Gil et al., 1997;
Disney et al., 2007). Attention that is prompted by the properties
of a stimulus, i.e., the saliency of the stimulus relative to the
background, is said to be bottom-up attention, whereas attention
that is prompted by the voluntary direction of focus toward a
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specific stimulus is defined as top-down attention. Although it
can be difficult to separate bottom-up and top-down attentional
control (Ansorge et al., 2010; Egeth et al., 2010; Eimer and Kiss,
2010; Theeuwes, 2010), some studies have shown that cholinergic
activity influences bottom-up attention. The effect of ACh on
bottom-up attention might occur not only in V1 but also in early
processing areas such as the thalamus. For example, the direct
injection of 192-1gG saporin into the BF causes a complete loss of
cholinergic projections to the neocortex but causes restricted fiber
lesions when injected into V1. The injection of 192-IgG saporin
into the BF but not V1 affects performance in the sustained
attention task (McGaughy and Sarter, 1998, 1999). In addition,
compared to controls and ex-smokers, human smokers have been
shown to exhibit increased subcortical activity during an atten-
tional task (Nestor et al., 2011). These data indicate that atten-
tional dysfunction following cholinergic lesions might be due to
the disruption of detection processes that are independent of V1.
However, there is no direct evidence of cholinergic enhancement
effect in bottom-up attention in human studies (Rokem et al.,
2010). In contrast, there is a growing body of evidence showing
that ACh is involved in top-down attention. Direct effects of ACh
on attention in the visual cortex have been measured (Herrero
etal., 2008; Bauer et al., 2012). Specifically, Herrero et al. provided
direct evidence that ACh in V1 enhances the cortical response to
an attentional demand (Herrero et al., 2008). It has also been
shown that lesions to the cholinergic system impair attention
performance and increase neuronal activity in the PFC upon the
presentation of distractors (which trigger top-down attention)
(Gill et al., 2000). Taken together, these results indicate that
ACh can facilitate task-relevant learning in V1 by promoting
attentional states in both top-down and bottom-up manners.

CHOLINERGIC MODULATION OF RESPONSE GAIN

Response gain modulation by ACh has frequently been observed
(Disney et al., 2007; Aggelopoulos et al., 2011; Bhattacharyya
etal.,, 2013; Soma et al., 2013a) and follows the gain control model
at least in terms of the contrast-response function. Increasing
thalamocortical pathway input in a context-independent manner
while context-dependent intracortical suppression occurs might
facilitate the transmission of information related to novel stimuli.
In V1, context-dependent (i.e., increases in the maximal response)
and independent (i.e., increases in the baseline response) gain
control due to cholinergic effects have both been observed (80%
and 20%, respectively) without any laminar bias (Soma et al.,
2013b). These findings could be related to the optimization of the
gain of supragranular pyramidal cells controlled by ACh which
could result in the detection of novel stimuli and hence perceptual
learning (Moran et al., 2013). Interestingly, gain modulation was
proposed as function that underlies of attentional control (Keitel
et al., 2013) and network connectivity (Haider and McCormick,
2009). The high gain that results from the amplification of the
responses of excited neurons is similar to attention processes
(Servan-Schreiber et al., 1990; Eldar et al., 2013) and hence
facilitates learning. Taken together, these results suggest that ACh
might assist in visual perceptual learning via modulation of cor-
tical responses through gain control in both stimulus-dependent
and -independent manners.

CELLULAR EFFECTS OF ACETYLCHOLINE IN V1 IN RELATION
TO CORTICAL PLASTICITY

Learning and perceptual learning are sustained by cortical plastic-
ity which triggers anatomical reorganization of the cortical con-
nectivity. The cholinergic system plays also a key role in cortical
plasticity. For example, the blockade of cholinergic activation
via cholinergic antagonists or cholinergic fiber lesions results
in robust impairment of learning in rats (Conner et al., 2003;
Dotigny et al., 2008) and ocular dominance plasticity in kittens
(Bear and Singer, 1986). In acute preparations, cholinergic pairing
is also involved in plasticity as observed in the cat auditory
cortex; the application of ACh during acoustic processing alters
the receptive fields of single neurons in a tone-specific manner
(Metherate and Weinberger, 1990). The pairing of cholinergic
and auditory stimulation also leads to the reorganization of the
cortical map (Kilgard and Merzenich, 1998); i.e., an enlarge-
ment of the representation of the specifically trained frequency.
Cholinergic pairing with sensory stimulation also induces long-
lasting effects on cortical responsiveness observed in both the
visual cortex (Dringenberg et al., 2007; Kang et al., 2014) and
the somatosensory cortex (Verdier and Dykes, 2001). Cortical
plasticity is essential for the occurrence of perceptual learning
(for review see Fahle, 2009), although not systematic, cholinergic-
sensory paired activation would thus facilitate the induction of
perceptual learning in the sensory cortices (Reed et al., 2011).

CHOLINERGIC MODULATION OF LONG-TERM CORTICAL
RESPONSIVENESS

At the neuronal level, ACh has been shown to contribute to
cortical plasticity through both the acute and long-term mod-
ulation of synaptic responses (Sato et al., 1987; Soma et al.,
2012). The impairment of learning by cholinergic antagonists is
similar to the effect of blocking cortical plasticity mechanisms and
LTP with NMDA receptor (NMDAR) antagonists (Morris et al.,
1986; Artola and Singer, 1987; Cooke and Bear, 2010). In most
situations, LTP in the visual cortex induced by high theta-burst
stimulation (100 Hz) (Heynen and Bear, 2001; Dringenberg et al.,
2007) has been found to be NMDAR-dependent. Interestingly,
cholinergic system-induced cortical plasticity has also been found
to be NMDAR-dependent (Verdier and Dykes, 2001; Dringenberg
et al., 2007; Kang and Vaucher, 2009) but independent of theta-
burst stimulation (Kirkwood et al., 1999; Figure 1B). Previous
studies in hippocampal slices have shown that NMDAR open-
ing during LTP induction is facilitated by mAChR activation
(Buchanan et al., 2010) and administration of ACh to pyramidal
neurons (Shinoe et al., 2005). Additionally, NMDAR-dependent
long-term facilitation of synaptic responses is associated with ACh
release in V1, and LTP is impaired in the visual cortices of mAChR
knock-out mice (Origlia et al., 2006).

CHOLINERGIC MODULATION OF THE EXCITATION-INHIBITION
BALANCE

Another contribution of the cholinergic system to cortical plas-
ticity mechanisms in V1 is the alteration of the excitatory
and inhibitory (E-I) balance (Figure 1C). The excitatory and
inhibitory synaptic inputs tend to equilibrate during maturation
to optimally tune the neurons according to sensory experiences
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(Hensch et al., 1998; Sun et al., 2010) during the critical period;
i.e., the post-natal time window during which mammals visual
cortices are highly plastic that terminates with the maturation
of the neurons. It has been proposed that disrupting the E-I
balance can re-open the critical period after maturation (Hensch,
2004). Neuromodulation can also disrupt the E-I balance and
contribute to cortical plasticity. Recent studies have also demon-
strated numerous examples of cortical plasticity that are modified
by the inhibitory system (Hensch, 2005). The onset of the critical
period is accelerated by GABAA inhibitory receptor activation
(Fagiolini and Hensch, 2000; Iwai et al., 2003). Conversely, it
is also possible to re-induce plasticity after the critical period
by reducing the inhibitory drive via the injection of GABAA
receptor antagonists (Harauzov et al., 2010). As the inhibitory
system is strongly modulated by the cholinergic system through
the protein Lynx1 (Takesian and Hensch, 2013), which acts as
a brake on nAChR-dependent plasticity (Morishita et al., 2010),
by nAChRs (Christophe et al., 2002; Arroyo et al., 2012), or
by mAChRs (Salgado et al., 2007), cholinergic activation might
modulate the E-I balance and facilitate cortical plasticity in
adults that would promote perceptual learning. An interaction
between the cholinergic and GABAergic systems has been shown
to occur following BF stimulation that increases the activation of
Parvalbumin-positive (PV+) neurons through mAChRs (Dotigny
et al,, 2008; Alitto and Dan, 2012). Interestingly, Alitto and
Dan used an optogenetic method to show that the nAChRs on
vasoactive intestinal peptide-positive (VIP+) neurons and layer
I neurons can inhibit excitatory and PV+ neurons (Christophe
et al., 2002).

The cholinergic modulation of V1 thus promotes cortical
plasticity through LTP-like long-term enhancement of synaptic
responses to subsequent presentations of a visual stimulus and
through control of the excitatory-inhibitory balance that regulate
the strength of cortical output and internal connectivity. The cor-
tical plasticity induced by cholinergic stimulation could transfer
the acute cholinergic effect into long-term scale to produce visual
precision.

REPETITIVE CHOLINERGIC STIMULATION TRIGGERS
PERCEPTUAL LEARNING

In summary, acute effects of cholinergic activation might amplify
the thalamocortical response that promotes the transmission of
sensory inputs. Intensive release of ACh might also inhibit intra-
cortical interactions and relieve the internal brake on processing
in the sensory cortices. Simultaneously, neurons with similar
tuning characteristics (e.g., orientation) are co-activated via lat-
eral connections to enhance the transfer of visual information.
This cholinergic alternation might contribute to gain control
modulation in both stimulus-dependent or and -independent
manners and prioritize the processing of selected visual stimuli;
this process might be linked to attention and is the first step
of perceptual learning. The cholinergic activation also induces
the NMDAR-dependent LTP-like long-term enhancement (i.e.,
cortical plasticity) and relief of the brakes on plasticity by altering
the E-I balance. The repetitive coupling of visual and cholinergic
stimulation results in reinforcement of all of these acute mech-
anisms and generate gamma-band synchronization. This would

result in the consolidation of the synaptic strengths of new and
existing neuronal connections, facilitation of the processing of
certain thalamocortical inputs while suppressing others. It has
been shown that increases in the cortical responses by expanding
the number of neurons to a stimulation (via increases in the
strength of the connections) would improve perceptual capacity
(Anton-Erxleben and Carrasco, 2013). The repetitive cholinergic-
visual stimulation would also increase the efficiency and auto-
maticity of these selected pathways. These processes contribute to
perceptual learning.

REPETITIVE CHOLINERGIC STIMULATION PROMOTES LONG-TERM
POTENTIATION

As mentioned above, ACh can induce NMDAR-dependent long-
term modifications of postsynaptic glutamatergic neurons which
are related to memory formation. The opening of the NMDAR
launches a second messenger cascade and guides the expres-
sion of synaptic glutamate receptors (Regehr and Tank, 1990;
Zhong et al., 2006) but also activates autoregulated kinases
that confer a persistent improved response of the neuron to
the stimulus. Immunohistochemistry for the c-Fos, which is
an immediate early gene and also a transcription factor for
synaptogenesis genes, has revealed that c-Fos is increased in
layer II/IIT pyramidal neurons following a repetitive BF/visual
stimulation (Kang et al., 2014), which may be indicative of
the formation of new synapses and LTP mechanisms. Repet-
itive pairing of the cholinergic and visual stimulation also
induces morphological reorganization, i.e., increase in the num-
bers of cholinergic varicosities in the proximity of the neurons
that are sensitive to the orientation of the stimulus (Zhang
et al, 2011). This increased number of cholinergic inputs,
along with postsynaptic mechanisms, would increase and con-
solidate the response of the activated neurons to ameliorate
its long-term efficiency. Thus repetitive cholinergic stimulation
might enhance the encoding of the memory and morphological
modifications.

REPETITIVE CHOLINERGIC STIMULATION PROMOTES STIMULUS
SELECTION AND AMPLIFICATION

We suggest that selection of decisive inputs is controlled by
the cholinergic system and contributes to the specific enhance-
ment of a particular stimulus in perceptual learning. Modulation
of the orientation selectivity of the neurons provides a great
example of the possible improvement of perceptual sensitivity.
Training of the rat to a preferred or a non-preferred orientation
might increase the cortical response for this orientation (Cooke
and Bear, 2010; Figure 4). These mechanisms are facilitated
by repetitive cholinergic activation, which improve orientation
discrimination of human or rats (Rokem and Silver, 2010; Kang
et al., 2014). Repetitive cholinergic stimulation coupled with a
certain orientation stimulus might favor the discrimination of
this stimulus by two different cellular mechanisms (Figure 4).
First, ACh can harmonize the activation of the whole dendritic
tree of layer II/III neurons to preserve their orientation selectivity
and confer responsiveness to new orientation—the dendrites
of the layer II/III neurons receive inputs randomly over all of
their branches, some of which are selective for the neurons’
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FIGURE 4 | Summary of the effect of acetylcholine on neuronal
transmission of the visual inputs. The varicose cholinergic fiber (black
fiber with swellings) can act on excitatory input (blue axon), neighboring
GABAergic inhibitory input (red axon) and on V1 neurons (green dendrite).
Excitatory/inhibitory influences are represented by red and green dots,
respectively. Cholinergic activation (ACh+, right panel) is represented by
black dots. The cortical response to the stimulus is represented by a VEP
signal waveform which changes are elicited by increased numbers of
neurons responding to the trained stimulus or increased neurons efficiency.
(A) Response of the V1 neuron after a training with preferred stimulus
coupled to cholinergic activation (right panel, ACh+) or without (left panel,
control). The cortical response to this stimulus is increased (high VEP signal
waveform in right panel compared to small VEP signal waveform in left
panel). In presence of cholinergic activation the inhibitory influence is
reduced by M2 muscarinic receptors (MAChRs), the postsynaptic excitatory
influence is increased by M1 mAChRs located on the postsynaptic neuron
(Continued)

FIGURE 4 | Continued

and nAChRs located on the thalamocortical fiber and a long-term effect is
triggered by NMDA receptor activation, compared to normal condition
(control, left panel). In a normal visual process (control) local or recurrent
inhibition via GABAergic interneuron (in red) blocks the development to a
long-term modification. (B) Response of the V1 neuron after a training with
non-preferred stimulus coupled to cholinergic activation (right panel, ACh+)
or without (left panel, control). The neuronal response to this stimulus is
increased (small VEP signal waveform in right panel compared to flat VEP
signal waveform in left panel). In normal condition (control, left panel),
non-preferred orientation stimulus does not evoke activation in postsynaptic
neurons in V1. Weak thalamocortical innervation is suppressed by
GABAergic inhibition and hence fails to transmit to postsynaptic neuron.
Acetylcholine can amplify the weak presynaptic input (ACh+) by nicotinic
receptors and activates postsynaptic neuron through M1 muscarinic
receptor. GABAergic inhibition is suppressed by M2 muscarinic receptor
and NMDA receptor opening occurs leading to long-term modification.

un-preferred orientations (Jia et al., 2010). Second, the cholin-
ergic system can enhance orientation discrimination through
its interaction with the GABAergic system which assists in the
sharpening (Isaacson and Scanziani, 2011) of the convergent
input in the layer II/III neurons (Nassi and Callaway, 2009)
but also filters out task-relevant information during perceptual
learning (Roberts and Thiele, 2008). PV+ and somatostatin-
positive (SOM+) GABAergic neurons are particularly involved
in orientation tuning in V1 (Atallah et al., 2012; Wilson et al.,
2012). It has been shown that the specific activation of PV+
neurons in V1 improves orientation discrimination abilities in
awake rats during perceptual learning (Lee et al, 2012) and
repetitive coupling of ACh to visual stimulation activates the
V1 GABAergic neurons (Dotigny et al, 2008; Kang et al,
2014).

Thus repetitive cholinergic pairing to sensory training
enhances the cortical response to trained feature of the sensory
stimulus that increases the influence of the feedforward afferent.

REPETITIVE CHOLINERGIC STIMULATION PROMOTES PERCEPTUAL
LEARNING RELATED TO ATTENTION, REWARD EXPECTATION AND
CONNECTIVITY

Repetitive cholinergic stimulation first promotes attentional
mechanisms that are necessary to perceptual learning (Ahissar
and Hochstein, 1993; Schoups et al., 2001; Li et al., 2004; Mukai
et al., 2007). These attentional processes might be also related
to synchronization in the gamma band (30-90 Hz) (Fries et al.,
2008) induced by repetitive cholinergic stimulation which has
been proposed to facilitate the transfer of the visual information
to higher visual areas. ACh can also promote task-irrelevant
perceptual learning that occurs in the absence of conscious effort
(Skrandies and Fahle, 1994; Watanabe et al., 2002; Gutnisky et al.,
2009). Compared to task-relevant learning, which utilizes focused
attention as reinforcement, studies of task-irrelevant learning
have suggested that reward serves as the reinforcement signal
(Seitz et al., 2009; Chubykin et al., 2013). During task-irrelevant
learning, the response to a feature on which attention was not
directed can also be enhanced (Watanabe et al., 2001; Giordano
et al., 2009; Gutnisky et al., 2009). Interestingly, rewards can
affect the visual response in V1 (Shuler and Bear, 2006), and
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the cholinergic system can influence reward timing expectancy
(Chubykin et al., 2013). To reconcile studies showing a role of
attention in perceptual learning or not, Roelfsema proposed that
the attentional feedback signal related to the cholinergic system
that enhances the plasticity of task-relevant features in the visual
cortex also causes the inhibition of task-irrelevant features so that
their plasticity is switched off (Roelfsema et al., 2010).

To a cognitive point of view, by modulating synaptic
transmission in V1 and modifying the cortical dynamics, ACh
can also participates in the perceptual inference to increase the
strength of the representation of trained stimuli and reduce
the sensory noise (Yu and Dayan, 2002) and induce sensory
precision (Moran et al., 2013). It might suppress the top-down
sources in the balance between top-down and bottom-up
information integration in V1 (Yu and Dayan, 2005). This is in
agreement with a recent study demonstrating that the cholinergic
enhancement reduces the connectivity strength between cortical
regions involved in attention and V1 (Ricciardi et al., 2013) and
reduce the activity in frontoparietal regions (Furey et al., 2008).
This suggests an increased neural efficiency in the processing of
the trained stimulus that leads to an improved perceptual task
performance (Ricciardi et al., 2013) linked to an automation of
the cortical processing and a reduction of the attentional load
required to process the trained stimulus (Furey, 2011).

Together, the findings from recent work using different tech-
niques suggests that cholinergic pairing induces perceptual learn-
ing via different mechanisms that include the following: (1) the
use of the layer IT/III GABAergic system to filter the pre-amplified
response from layer IV; (2) NMDAR-dependent modification
at the postsynaptic level to induce long-term augmentations of
individual neurons, and an increase in the numbers of cholinergic
varicosities to facilitate ACh release; and (3) changes in the
efficiency of the connectivity between cortical areas and bottom-
up and top-down control.

CLINICAL PERSPECTIVES OF CHOLINERGIC MODULATION OF
BRAIN'S FUNCTION

Similar with experimental data, some clinical studies have
demonstrated that enhancing cholinergic system improves per-
ception (Furey et al., 2000; Bentley et al., 2004; Wilson et al.,
2004; Rokem and Silver, 2010; Beer et al., 2013; Ricciardi et al.,
2013). Clinically, a method to enhance cholinergic function might
involve the use of ACh esterase inhibitors, such as physostig-
mine, galantamine, rivastigmine or donepezil. Nicotine is also
a well-known molecule that enhances cognitive function. These
drugs are currently used to the treatment of Alzheimer’s disease
or diverse dementia. Orally administered nicotine or smoking
improve attentional performance (Nestor et al., 2011; Newhouse
et al., 2011), learning (Riekkinen and Riekkinen, 1997; Olausson
et al., 2004), attention (Thiel et al., 2005; Nestor et al., 2011) and
memory consolidation (Beer et al., 2013) through the activation
of nAChRs. Increases in ACh action due to the administra-
tion of acetylcholinesterase inhibitors or direct mAChRs agonists
alleviate cognitive deficits in Alzheimer’s disease (Cummings,
2003), Parkinson’s disease (Fagerstrom et al., 1994; Holmes et al.,
2011) and schizophrenia patients (Shekhar et al., 2008). An a7
nAChR agonist is also used as a cognitive enhancer in patients

with schizophrenia (Freedman, 2013) and Alzheimer’s disease
(Hilt et al., 2009). As shown in an fMRI study, cholinergic
action potentiates communication efficiency between cortical
areas (Wylie et al., 2012). The use of these drugs in choliner-
gically healthy subjects might also be beneficial for enhancing
cognitive function (Buchanan et al., 2008; Demeter and Sarter,
2013).

Some pharmacological approaches have been developed to
increase the perceptual learning in healthy humans. Performance
improvements following the use of donepezil during a motion
direction discrimination task have confirmed that systemic
blockade of ACh esterase can induce perceptual learning (Rokem
and Silver, 2010, 2013). Cholinergic amplifications paired with
sensory stimulations might also be a promising approach to
accelerating visual recovery following lesions to the retina or
the optical nerve. If the neuronal mechanisms that occur during
perceptual learning and after retinal lesions are similar (Gilbert
and Li, 2012) (i.e., they both involve changes in the responsiveness
of cortical neurons to inputs from outside the neurons’ preferred
receptive fields (Darian-Smith and Gilbert, 1994)), then ACh
might also aid to boost structural and functional plasticity of the
visual cortex to recover from losses of retinal input.

CONCLUSION

In this review, we proposed that the neuromodulator ACh, which
is known for its involvement in attention and learning, might
participate in and promote perceptual learning. We proposed
that, via the inhibition of intracortical feedback, ACh can render
V1 more sensitive to incoming thalamocortical information and
enhance sensory performance. During visual processing, ACh
acts on different layers to amplify the encoding of weak stimuli
by strengthening synaptic connectivity, which leads to behavioral
improvements. Furthermore, ACh might not only facilitate
task-relevant perceptual learning via attention but also facilitate
task-irrelevant learning via reward reinforcement. However,
much remains to be uncovered regarding whether the cholinergic
system has the potential to be used as a key mechanism for
improving the function of the brain and speeding rehabilitation.
Specifically, because perceptual learning occurs easily under
conditions of attentional control, the development of a method
to improve one’s brain capacity through improved attention and
cholinergic stimulation is very attractive.
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