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Acoustic communication plays a key role for mate attraction in grasshoppers. Males use
songs to advertise themselves to females. Females evaluate the song pattern, a repetitive
structure of sound syllables separated by short pauses, to recognize a conspecific male
and as proxy to its fitness. In their natural habitat females often receive songs with
degraded temporal structure. Perturbations may, for example, result from the overlap with
other songs. We studied the response behavior of females to songs that show different
signal degradations. A perturbation of an otherwise attractive song at later positions in
the syllable diminished the behavioral response, whereas the same perturbation at the
onset of a syllable did not affect song attractiveness. We applied naïve Bayes classifiers
to the spike trains of identified neurons in the auditory pathway to explore how sensory
evidence about the acoustic stimulus and its attractiveness is represented in the neuronal
responses. We find that populations of three or more neurons were sufficient to reliably
decode the acoustic stimulus and to predict its behavioral relevance from the single-trial
integrated firing rate. A simple model of decision making simulates the female response
behavior. It computes for each syllable the likelihood for the presence of an attractive song
pattern as evidenced by the population firing rate. Integration across syllables allows the
likelihood to reach a decision threshold and to elicit the behavioral response. The close
match between model performance and animal behavior shows that a spike rate code is
sufficient to enable song pattern recognition.

Keywords: acoustic communication, decision making, naïve Bayes classifier, neural information processing,

pattern recognition, population coding

INTRODUCTION
Acoustic communication of grasshoppers has become a promi-
nent model system to investigate principles of neuronal pro-
cessing of acoustic stimuli. It provides the opportunity to study
perceptual decision making in a comparatively simple nervous
system. Grasshoppers produce acoustic signals, termed “songs,”
to attract a mating partner. Natural songs consist of a repetition
of stereotyped subunits with species-specific amplitude modu-
lations of a broad carrier frequency band that are produced by
moving the hind legs against the forewings (Von Helversen and
von Helversen, 1997). Due to characteristic differences between
grasshopper species the songs constitute an important barrier
against hybridization. Both the song production and the song
recognition are innate behaviors, and therefore we can be con-
fident that the corresponding neuronal circuits are “hard-wired.”
In behavioral tests one can use artificial song models that mimic
and vary certain song features, and thereby explore which cues are
crucial for song recognition (Von Helversen, 1972; Von Helversen
and von Helversen, 1997, 1998). These experiments demonstrated
that the decisive cues for song recognition reside in the tempo-
ral pattern of amplitude modulations, i.e., in a song’s envelope.
In the grasshopper Chorthippus biguttulus, the subject of this

investigation, a very simple but highly attractive song model con-
sists of a series of sound “syllables” separated by pauses (see
Figure 1A). Using song models we can reduce the signal’s com-
plexity and compare the behavioral responses directly with the
processing capacities of neurons at different stages of the auditory
pathway.

The nervous system of grasshoppers offers an important
advantage: it contains identifiable neurons that can be discrim-
inated on the basis of their characteristic morphology (Römer
and Marquart, 1984; Stumpner and Ronacher, 1991). Thus, spe-
cific processing properties can be assigned to groups of identified
neurons in the auditory pathway. The first stage of auditory
processing comprises three neuron classes: auditory receptor neu-
rons, local neurons (LNs) and ascending neurons (ANs). The ears
of grasshoppers are located on the sides of the first abdominal
segment. A total of approximately 60 receptor neurons transduce
the vibrations of the tympanum into series of action potentials
that travel via the axons into the metathoracic ganglion complex,
which houses the first auditory processing stage. There, axons
make contact to various types of LNs—about 10–15 different
types of LNs have been identified so far. The LNs then con-
tact a set of about 20 types of ANs, the axons of which ascend
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FIGURE 1 | Perturbation of the standard song affects attractiveness

when placed at later syllable positions. (A) Envelopes of song models
used for behavioral and neurophysiological tests. An attractive standard
song consisted of 72 ms syllables and 12 ms pauses. The other stimuli had
the same syllable and pause durations but exhibited perturbations at
different positions within a syllable (onset, middle, end). (B) The median
response rate of 33 C. biguttulus female responses for the stimulus with
onset perturbation was 83%, thus very similar to the response to the
standard stimulus. In contrast, stimuli with perturbation in the middle and
end were mostly rejected (median response rate 6%). The median is
displayed as the central mark in the box plot. The edges of the box are the
25 and 75th percentiles. (C) Note the high variance in female responses,
especially when perturbation is at syllable onset.

to the animal’s head, and constitute the sole auditory input to
higher processing circuits and decision centers located in the
brain (Ronacher et al., 1986; Bauer and von Helversen, 1987).
Since the population of ANs constitutes a bottleneck for the infor-
mation that is available to the brain, they will be in the focus
of the present study. Remarkably, the auditory pathway includ-
ing the ANs is highly conserved between different grasshopper
species (Ronacher and Stumpner, 1988; Neuhofer et al., 2008).
Not only are the neurons’ morphologies extremely similar in two
not related species (C. biguttulus and the locust Locusta migrato-
ria), but homologous neurons also exhibit the same physiological
properties and processing capacities—for a detailed description

of the response types see (Römer and Marquart, 1984; Stumpner
and Ronacher, 1991; Stumpner et al., 1991; Wohlgemuth and
Ronacher, 2007). Neuhofer et al. (2008) have shown that audi-
tory neurons of the locust respond in the very same manner to
a song signal of C. biguttulus as do the homologous neurons
of C. biguttulus; the similarity of responses has been quantified
by the van Rossum metric. Only at the next processing stages,
located in the brain, we expect to find neuronal networks that
respond selectively to the species-specific song patterns. Due to
the high interspecific similarity of the local and ascending neu-
rons we can compare neuronal properties of the locust’s neurons
with behavioral data obtained with C. biguttulus.

The decision centers located in the female brain must eval-
uate whether a heard song follows the con-specific pattern and
whether it is attractive enough to trigger a response song as
the appropriate behavior. This task appears simple under ideal
conditions, since the song patterns of different species differ con-
siderably (Stumpner and von Helversen, 1994; Gottsberger and
Mayer, 2007). However, in nature there are many factors that may
degrade the acoustic signal on its way from sender to receiver.
This aggravates the classification problem. Here we introduced
perturbations of the signal envelope that strongly influenced
behavioral decisions. Applying perturbations to the pattern of
an attractive song model affected the signal’s attractiveness as
measured by the female response rates differently, depending
on the specific position of a perturbation within a song sylla-
ble (Figure 1A). Presenting the same stimuli while performing
intracellular recordings from identified neurons allowed to inves-
tigate the neural representation of the stimulus identity and of its
behavioral relevance.

Using naïve Bayes classifiers (for review see Pouget et al.,
2000; Quiroga and Panzeri, 2009) we specifically asked to what
degree the acoustic stimulus can be decoded and whether the
behavioral stimulus category can be predicted from the single-
trial responses of single neurons and neuron populations. We
introduce an abstract model of decision-making for trigger-
ing a behavior based on the sensory information encoded in
the AN population firing rate during a single trial. This model
accounts for the observed behavioral scores to different stimulus
types.

MATERIALS AND METHODS
ANIMALS
The behavioral tests were performed with females of C. biguttulus.
The animals were reared as the filial generation (F1) from eggs
of individuals collected as adults near Göttingen, Germany. After
adult molt females and males were held separately in plastic cages
to ensure virginity. In this species the females respond to a male’s
song with a song of their own, thereby indicating their readiness
to mate. This response song is an ideal criterion showing that a
female has identified a song as belonging to a potential conspecific
mating partner.

Electrophysiological experiments were performed on locusts,
L. migratoria, that were bought from a commercial supplier
(for details of the breeding and keeping procedures see Schmidt
et al., 2008; Stange and Ronacher, 2012). We can homolo-
gize identified neurons between the two species on the basis
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of their characteristic morphology (Römer and Marquart, 1984;
Stumpner and Ronacher, 1991). The homologous auditory neu-
rons of the thoracic ganglia show quantitatively similar response
patterns in both species (Neuhofer et al., 2008). In these exper-
iments songs or song models of C. biguttulus were presented
to both species, and neurons of the locust showed the same
responses as neurons of C. biguttulus although these songs have,
of course, no relevance for the locust (see also Ronacher and
Stumpner, 1988; Sokoliuk et al., 1989). On the basis of this strong
homology we can use recordings from L. migratoria neurons
and compare their spike patterns with behavioral responses of
C. biguttulus.

ACOUSTIC STIMULI
A digitally generated song envelope consisting of rectangular syl-
lables of 72 ms duration separated by 12 ms pauses served as an
attractive standard stimulus (Figure 1A). In order to systemat-
ically screen the detrimental effect of degradation at different
syllable positions, we inserted perturbations of 24 ms either in
the first, or in the middle, or in the last part of each syllable
(Figure 1A). A perturbation consisted of 2 alternating accents
and gaps, each of 6 ms duration and 12 dB higher or lower
sound pressure relative to the syllable plateau. Earlier experiments
had revealed that gaps within a syllable do markedly reduce the
stimulus attractiveness; accentuations that occur at the end of
a syllable have similar detrimental effects (Von Helversen, 1972,
1979; Ronacher and Stumpner, 1988; Von Helversen and von
Helversen, 1997; for reviews see Ronacher et al., 2004; Ronacher
and Stange, 2013).

The envelopes of all song models were convolved with the same
carrier frequency (a broad band noise spectrum of 5–40 kHz).
Sound intensity was calibrated with a half inch microphone (type
4133; Brüel and Kjær, Nærum, Denmark) and a measuring ampli-
fier (type 2209, Brüel and Kjær) at the position of the animal.
All four test patterns were presented with the same effective
intensity (RMS) of 70 dB SPL; therefore, the peak and plateau
intensities differed between stimuli (syllable plateau 70 dB for the
standard stimulus and 65 dB for perturbed stimuli, Figure 1A).
Yet, these intensities fall into the intensity range well accepted by
C. biguttulus females (Von Helversen and von Helversen, 1994,
1997). The songs presented in the behavioral and electrophysiol-
ogy tests comprised the same envelope structure but differed in
length: 2772 ms (33 subunits; behavior) and 756 ms (9 subunits
for electrophysiology), respectively.

BEHAVIORAL EXPERIMENTS
Virgin C. biguttulus females were tested in a sound proof cham-
ber at a constant temperature of 30 ± 2◦C. The experiments were
automatically conducted by a custom made program (written
by M. Hennig in Labview 7.1, National Instruments) present-
ing songs in a pseudo-randomized order while recording the
females’ responses (for details of the apparatus and testing pro-
cedures see Schmidt et al., 2008). Each song was iterated 18
times. As a measure of stimulus attractiveness we used the per-
centage of responses normalized to the 18 presentations for each
female. Out of these individual responses median response rates
were calculated. Additionally, a negative control was presented,

comprising the same carrier frequency and length as the standard
signal, but lacking any syllable pause structure. In applying this
negative control stimulus those females indicating a not discrimi-
native behavior for song patterns could be detected. We therefore
excluded from further analysis 11 of 44 females as they responded
more than twice to the negative control. Applied statistic software
was GraphPad Instat Version 3.06.

ELECTROPHYSIOLOGICAL EXPERIMENTS
Auditory interneurons were recorded intracellularly in the frontal
auditory neuropil of the metathoracic ganglion in both sexes of
L. migratoria. During the experiments the torso of the animal
was filled with a locust Ringer solution (Pearson and Robertson,
1981), to prevent the ganglia from drying. The temperature was
kept constant at 30 ± 2◦C. For the recordings we used glass micro-
electrodes (borosilicate, OØ = 1 mm, IØ = 0.58 mm, GC100F-10;
Harvard Apparatus, LTD, USA), with capacities varying between
20 and 100 M�. They were filled with a fluorescent dye, a
3–5 % solution of Lucifer yellow (Sigma–Aldrich, Taufkirchen,
Germany) in 0.5 M LiCl. Neural responses were amplified (10-
fold, BRAMP-01 R, npi, USA) and recorded by a data-acquisition
board (PCI-MIO-16E-4, 16 bit, National Instruments, USA)
with a sampling rate of 20 kHz. The dye was injected into the
recorded cell by applying hyperpolarizing current of 0.5–1 nA.
Subsequently the thoracic ganglia were incubated in a fixa-
tion solution (4% paraformaldehyde), dehydrated and cleared
in methyl salicylate. This procedure allowed an identification
of the stained cells under a fluorescent microscope according
to their characteristic morphology (Römer and Marquart, 1984;
Stumpner and Ronacher, 1991).

Experiments were performed in a Faraday cage lined with
reflection absorbing prisms. One of two speakers (frequency
response 2–40 kHz, D21, Dynaudio, Denmark), which were
placed laterally, at a distance of 30 cm from the animal’s tym-
panal organ, emitted the sound signal. The acoustic stim-
uli were attenuated (PA5, Tucker-Davis Technologies, USA)
and amplified (Raveland-XA600, Conrad Electronics, Germany).
They were stored digitally and delivered by custom-made soft-
ware (LabVIEW, National Instruments) using a 100-kHz D/A-
conversion (PCI-MIO-16E-1, National Instruments). For this
study ANs were analyzed which represent the third processing
stage in the metathoracic ganglion and transmit the auditory
information to the grasshopper’s brain. We recorded four dif-
ferent types of ANs (AN1, AN4, AN3, AN12) from 25 animals
(details of the response properties of these neurons can be found
in Ronacher and Stumpner, 1988; Stumpner and Ronacher, 1991;
Wohlgemuth and Ronacher, 2007). The direction from which the
sound stimuli were presented depended on the side where the
neurons were more sensitive to. With the exception of AN1 the
ANs AN4, AN3, and AN 12 do not exhibit strong direction sen-
sitivity. The AN1 was mostly recorded from the contralateral side
(respective to the soma), the other neurons from both sides. Each
song was presented within a looped order: standard stimulus,
onset-perturbation, perturbation in the middle, then perturba-
tion in the end, and starting again with the standard stimulus.
Stimulus iteration was 8 times, each iteration comprised the full
stimulus length (9 subunits).
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DATA ANALYSIS
Estimation of firing rates and trial-by-trial variability
We estimated time-resolved firing rate profiles from single spike
trains by convolution with a Gaussian kernel with width � ranging
from 1 to 30 ms and support [−4·�,4·�] (Nawrot et al., 1999). The
kernel was normalized to unit area such that the time integral of
the estimated rates equals the number of spikes.

To quantify the trial-by-trial variability of the single neuron
spike count we employed the commonly used measure of the
Fano factor (Nawrot et al., 2008; Nawrot, 2010), which com-
putes the variance of the spike count across repeated trials divided
by the trial-averaged spike count within in a fixed observation
interval.

Naïve Bayes classification
Naïve Bayes classifiers are statistical classifiers that are based on
Bayes’ theorem together with naïve independence assumptions.
We applied Bayesian classifiers to decode which stimulus class
evoked a particular neural response. Naïve Bayes classifiers have
frequently been used to quantify encoded information in neu-
ral spike trains (for reviews see Pouget et al., 2000; Quiroga
and Panzeri, 2009), for instance in olfactory sensory neurons
in Drosophila larvae (Hoare et al., 2011), in visual interneu-
rons of the blowfly (Karmeier et al., 2005), or in motor cortical
neurons of behaving monkeys (Rickert et al., 2009). Let P(s)
denote the probability of presentation of stimulus class s and
P (x1, . . . , xn| s) the conditional probability of observing spike
train features x1, . . . , xn given s. The posterior probability that
stimulus class s was presented given x1, . . . , xn is according to
Bayes’ theorem

P(s|x1, . . . , xn) = P(x1, . . . , xn|s)
P(x1, . . . , xn)

P(s), with

P(x1, . . . , xn) =
∑
s ∈ S

P(x1, . . . , xn|s)P(s).

The naïve independence assumption that each feature xi is condi-
tionally independent of feature xj given s simplifies to

P(s|x1, . . . , xn) =
∏n

i = 1 P(xi|s)
P(x1, . . . , xn)

P(s).

From this posterior probability distribution the stimulus class ŝ
that maximizes the probability that x1, . . . , xn was observed is
chosen:

ŝ = argmaxs ∈ S{P(s|x1, . . . , xn)}.

Since P(x1, . . . , xn) is constant for any choice of the stimulus class
s, the classification rule can be written as

ŝ = argmaxs ∈ S

{
n∏

i = 1

P(xi|s)P(s)

}
.

Different decoding approaches. First, we decoded stimulus
classes based on the spike count of single neurons which can be

considered as a very simple descriptor of a neural spike response
pattern. For each stimulus of 756 ms duration we counted the
number of spikes for each of the eight trials, which is proportional
to the time-averaged firing rate over the total stimulus length. In
a leave-one-out cross-validation every count c was used once as
validation data to decoded the stimulus class as:

ŝ = argmaxs ∈ S{P(c|s)P(s)},

while the remaining counts were used as training data to
compute the probability density functions P(c|s) with ker-
nel density estimation. The estimation was implemented with
scipy.stats.gaussian_kde (Oliphant, 2007). As the procedure
includes automatic bandwidth determination, the probability
density functions were estimated with different bandwidths. To
account for the non-negativity of the counts, we restricted the
support to positive values and normalized the probability den-
sity function to unit area. For the very rare case that not more
than two counts had different values we assumed a Poisson
distribution with mean of the counts.

Second, for decoding from a pseudo-population of neurons,
we used the counts c1, . . . , cn of n neurons of different type
recorded in different females and calculated

ŝ = argmaxs ∈ S

{
n∏

i = 1

P(ci|s)P(s)

}

to decode which stimulus class triggered the counts c1, . . . , cn.

Grouping of stimuli into classes. We followed the decoding
approaches to first decode the four stimuli. In this case the set S of
stimulus class consists of the standard stimulus, onset perturba-
tion, middle-perturbed song, and end-perturbed song, i.e., each
song forming a single class. As all four songs were equally often
presented we applied the classification rules with P(s) = 1/4 for
all s ∈ S. However, we may also define stimulus classes that consist
of grouped stimuli. For example, decoding whether or not a song
shows degradation yields two classes, one consisting of the stan-
dard stimulus, and the other one of the three perturbed songs.
The prior of these two classes is:

P(s) =
{

1/4, for s = standard stimulus
3/4, for s = perturbed stimulus

Performance of the Classifier. To validate the performance of the
classifier we performed a leave-one-out cross validation in which
each single trial response was used once for decoding based on
the distribution of the remaining trials. The results were stored
in a confusion matrix (Jurman et al., 2012) whose entry (i, j)
represents the number of times that a presentation of stimulus
class i was predicted to be stimulus class j. Based on the con-
fusion matrix we quantified the decoding performance with the
Matthews correlation coefficient (MCC) as it is defined in Jurman
et al. (2012). The MCC assumes values between −1 and 1, where
0 indicates chance level classification and 1 perfect prediction. In
case of binary classification (e.g., decoding the standard stimulus
against the three perturbed stimuli) the formula reads
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MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively. The MCC has two
advantages over the more common measure of accuracy = (TP +
TN)/(TP + TN + FP + FN), commonly referred to as “fraction
correct.” First, the MCC can be applied in multiclass problems
even if the classes are of different sizes (Gorodkin, 2004; Jurman
et al., 2012) whereas the measure of accuracy is biased in the case
of uneven sample sizes. In our case the sample size is uneven
when we group stimuli into classes. Second, the chance level of
the MCC is 0 independent of the number m of classes whereas
the chance level of accuracy (1/m) depends on the class num-
ber. In our case the MCC thus allows for a direct comparison of
decoding performance for stimulus classification (3 or 4 different
stimuli) and prediction of the behavioral state (2 classes: attractive
or unattractive).

To test whether a classifier decodes significantly better than
chance we performed a leave-one-out cross-validation based on
spike train features that were randomly reassigned to the stimuli,
followed by a calculation of the MCC. We repeated this procedure
1000 times and calculated the p-value as the percentage of MCCs
that are larger than or equal to the actual MCC. A significance
level of 0.05 was chosen.

We implemented all data analysis algorithms in the Python
programming language.

MODEL OF DECISION MAKING
Following Gold and Shadlen (2007) we use the experimental
realizations of the count pattern in n = 8 ANs to fit a simple
probabilistic model for the female’s decision to respond to a call-
ing song. This model is based on the log likelihood ratio (LR) of
the song attractiveness given the AN population spike count. We
computed for each syllable j separately the log LR as

log LR±(j) = log
P(c1(j), . . . , c8(j)|h+)

P(c1(j), . . . , c8(j)|h−)

where the denominator accounts for the probability that the a
given count vector c1(j), . . . , c8(j) (test trial) across 8 neurons
stems from the hypothesis h+, which is represented by the proba-
bility distribution of counts estimated from the remaining trials
given an attractive stimulus s+. We then defined the decision
variable as:

DV(k) =
k∑

j = 1

log LR±.

The decision variable is updated after each syllable k by tak-
ing the cumulative sum over the past log LR values up to the kth
syllable. It represents a cumulative sum over the evidence for the
presence of an attractive song. The larger DV the more likely is
the presence of an attractive song over an unattractive song.

For any combination of n = 8 selected ANs, two of each type,
we compute for each single song presentation (test trial) the
LR and the DV based on the remaining trials (leave-one-out).

We repeat this for all possible combinations of 8 neurons that
comprise 2 neurons of each type of AN representing input from
both ears. We next introduced a decision threshold θ on DV. For
a single trial, i.e., a particular song presentation, a behavioral
response is elicited if DV(k) > θ in any k. This approach allows
us to simulate the female single trial response behavior based on
the experimentally recorded AN population activity.

We compared the performance of the simulated animal deci-
sions to the actual animal performance in the behavioral experi-
ments. For a given value of θ the true positive (TP) rate is defined
as the fraction of correct detections, i.e., threshold crossings in
the presence of an attractive song over all presentations of an
attractive song. The false positive (FP) rate quantifies the frac-
tion of false alarms, i.e., the threshold crossings in the presence
of an unattractive song over all presentations of an unattrac-
tive song. TP and FP rates depend on the choice of θ . We
thus computed the receiver operating characteristic (ROC) that
represents the TP rate as a function of the FP rate for vary-
ing θ (Wiley, 2006). We measure the area under the ROC to
quantify the model performance independent of the behavioral
threshold θ .

RESULTS
BEHAVIORAL DECISIONS REVEAL TWO BEHAVIORALLY RELEVANT
STIMULUS CLASSES
In behavioral tests we investigated how degradation at spe-
cific positions within the signal does affect signal recognition.
We compared the responses of C. biguttulus females to four
stimulus types (Figure 1A): (i) standard stimulus without per-
turbation, (ii) with perturbation during the first third of the
syllable (“onset”), (iii) during the second third (“middle”), and
(iv) during the last third (“end”). Figure 1B shows the distribu-
tion of response rates across individual females to all four stimuli
(see Materials and Methods). The standard stimulus was highly
attractive (median: 83%), although individual females differed
considerably in their response rate (compare quartile ranges and
see variance in Figure 1C). Females showed similar high response
rates toward the stimulus with onset perturbation, whereas the
same perturbation in the middle or the end of a syllable led to
a behavioral rejection (median response levels of <10%). Only
3 out of 33 females responded to the latter stimuli in more than
50% of the stimulus presentations.

In order to further analyze differences in attractiveness we
pairwise compared stimulus responses in individual females. For
each female, the response rates for any two stimuli (see left col-
umn in Figure 2) were subtracted. Thus, it could be shown that
the responses to the onset stimulus did not differ significantly
from the responses to the standard (top row, Figure 2); the same
is true for the comparison of the stimuli perturbed in the second
and third part of the syllable (lowest row, Figure 2). In con-
trast, the responses to the unperturbed song and the song with
middle and end perturbations differed significantly (p < 0.001;
Friedman and Dunn’s Multiple Comparison Test), and in both
cases the median difference was about 60%. Similar results were
found for the comparison between the onset perturbed stimulus
and the other two perturbed stimuli (median differences >50%,
p < 0.001).
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FIGURE 2 | Pairwise comparison of individual female responses

allows distinction in attractive and unattractive stimulus classes.

Box plots show medians of response differences in individual
females for stimulus comparisons shown in the left. Whereas there

is no difference in response between stimuli with onset perturbation
and the standard song, they are both significantly more attractive
than stimuli with perturbation at middle and end (∗∗∗p < 0.001,
Dunn’s post-hoc test after Friedman).

DECODING STIMULUS IDENTITY AND BEHAVIORAL CLASS FROM THE
NEURONAL SPIKE COUNT
Grasshoppers have to make their decisions based on the infor-
mation about the environment provided by the sensory and
higher order neurons of the auditory pathway. The clear separa-
tion into two behavioral stimulus classes raises the question of
how the different stimuli and the different behavioral classes are
represented and discriminated within the grasshopper’s nervous
system. We address this question in intracellular in vivo record-
ings of identified ANs during repeated presentations of all four
songs. To quantify the encoded information we apply a single-
trial decoding approach to the neural spiking activity using a
Bayesian classifier. We first decode the identity of the auditory
stimulus before we predict the behavioral class (attractive vs.
non-attractive).

Stimulus classification based on single neuron and population
activity
How is information about a stimulus, such as the stimulus type or
its attractiveness, represented in the spike responses of the ANs?
We obtained intracellular recordings from AN1 (n = 9), AN3
(n = 10), AN4 (n = 4), and AN12 (n = 2); for the terminology
see Römer and Marquart, 1984; Stumpner and Ronacher, 1991).
Figure 3 shows example voltage traces of in vivo intracellular
recordings from two individual ANs, and the corresponding spike
raster plots. The example AN3-neuron responded with a burst of
spikes to the stimulus onset and with smaller bursts at syllable
onsets. In the two unattractive stimuli, however, additional spike
bursts occurred in the middle or at the end of the syllables. The
AN1-neuron marked the syllable onsets of the standard stimulus,

whereas the perturbations evoked additional spikes within the
syllables. The trial-averaged firing rates (Figure 3, color coded)
of all recorded neurons indicate that neuronal response patterns
vary for the four different song patterns. Also, neurons that are
of the same morphological type (AN1, AN3, AN4, AN12) show
variations in their response patterns across individual animals.

We use a Bayesian approach to classify the acoustic stimulus
based on the neural activity (see Materials and Methods). To this
end we counted the number of spikes in each single trial and for
each of the four stimuli during the complete stimulus duration
of 756 ms, comprising 9 syllables and the respective pauses. Based
on the spike count we decoded the stimulus identity according
to the classification rules in Different Decoding Approaches. We
measured the classification performance by the MCC.

Figure 4 shows the results for decoding the four stimuli from
single neuron activity. The MCC was higher than chance level for
all but two neurons (see Figure 4) and 11 out of 25 decoded the
stimuli significantly better than on basis of randomized counts
(black dots in Figure 4, p < 0.05). Averaging across all 25 neu-
rons yielded a mean MCC of 0.32. The decoding results were best
for the standard song (not shown). As shown in Figure 1A the
standard song had a higher syllable plateau than the perturbed
songs which is a consequence of our constraint that all stimuli
have the same effective intensity (see Materials and Methods).
A closer look showed that the trial-averaged spike count elicited
by the standard syllables differed from the spike counts evoked
by the perturbed syllables. However, this is not consistent across
neurons. For some neurons the spike count evoked by the stan-
dard stimulus is considerably larger than the spike count evoked
by any of the perturbed stimuli, for other neurons this relation is
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FIGURE 3 | Neuronal responses to all four songs categorized by their

behavioral relevance. Voltage traces and spike raster plots (8 trials) in the
second and third columns show responses to the first four syllable–pause
subunits for two example neurons AN3 and AN1. The fourth column shows
trial-averaged firing rates estimated with a Gaussian kernel of width = 4 ms

during the whole stimulus presentation. Each row within a block of a neuron
type represents the response of a single neuron [from top to bottom AN12
(n = 2), AN4 (n = 4), AN3 (n = 10), AN1 (n = 9)]. Color denotes the amplitude
of the estimated firing rates normalized to the maximum rate within each
neuron class. Arrows point out the firing rates of the shown examples.

reversed. This difference between the spike count triggered by the
standard and the perturbed stimuli is reflected in a higher per-
formance in decoding the standard stimulus against the class of
perturbed stimuli (Figure S1: averaged MCC is 0.78; 22 neurons
decode significantly better than by chance). To avoid a bias of the
decoding performance due to the higher syllable plateau of the
unperturbed standard stimulus, we restrict our analyses to the
stimulus set of the three perturbed songs throughout the rest of
the manuscript. This reduced stimulus set yielded only 5 neurons
that allowed for a successful decoding of the three stimuli, and the
average MCC dropped sharply to 0.08 (Figure 5A).

So far, the spike count was measured during the complete stim-
ulus presentation which consists of nine periods (syllable plus
pause). Next, we asked how good we can decode the stimuli based
on the spike count extracted over shorter time windows. To this
end, we investigated the MCC as a function of the number of
periods starting at stimulus onset (Figure 5B). Interestingly, the
MCC, averaged across neurons within one class, stayed constant
over stimulus time (see thick lines in Figure 5B). For single neu-
rons the MCC fluctuated without apparent increase or decrease
(thin lines in Figure 5B).

The performance of the Bayesian classifier generally depends
on the encoding rate signal and on the noise that is evident in
the trial-by-trial variability of the spike train responses. High
variability increases the uncertainty of the decoder model. We

FIGURE 4 | Count based decoding of stimuli in single neurons. A
classification of the four stimuli is in 11 (filled circles) out of 25 neurons
significantly better than a classification based on randomized counts. The
distribution of MCC values of all 25 neurons differs significantly from the
MCC distribution of the classifiers that are based on randomized counts
(p < 0.05, one-sided Wilcoxon rank-sum test). Dashed line represents
chance level based on randomized counts.

estimated the trial-by-trial spike count variability in our AN
recordings using the Fano factor (see Materials and Methods).
As shown in Figure S2 the variability remained constant with
increasing the stimulus time in almost all neurons. This fits
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FIGURE 5 | Count based decoding of the three perturbed stimuli in

single neurons and populations. (A) Only in 5 neurons the three
perturbed stimuli are decoded significantly better than a classification
based on randomized counts. The distribution of MCC values of all 25
classifiers does not differ significantly from the MCC distribution of the
classifiers that are based on randomized counts (p = 0.23, one-sided
Wilcoxon rank-sum test). Dashed line represents chance level.

(B) Averaged time course of the MCC is not increasing with stimulus
duration (thick black line). (C) Decoding performance increases with
population size. Classification is based on the spike count measured over
all nine stimulus periods. MCCs are averaged across neurons and vertical
error bars depict standard deviation. The mean performance increases
significantly from single neurons to populations of size three, four, and
eight (*p < 0.05, one-sided Wilcoxon rank-sum test).

the result of the constant decoding performance independent of
stimulus duration in Figure 5B.

As the grasshopper brain receives input from several ANs
(up to 20 at each side Stumpner and Ronacher, 1991) we next
decoded the three perturbed songs from neuronal populations
(see Materials and Methods). We constructed neuronal popula-
tions up to size four with each neuron from a different type, repre-
senting a subpopulation of ANs in one hemisphere. Additionally,
we decoded on a basis of populations of size eight, consisting of
two different neurons of each available type reflecting the input
from both ears. As to be expected the averaged decoding perfor-
mance is increasing with population size up to an average MCC
= 0.41 for 8 neurons if counts were extracted over the complete
stimulus duration (Figure 5C). This improvement was signifi-
cant between populations of size 3 or larger and single neurons
(p < 0.05, one-sided Wilcoxon rank-sum test).

Decoding of the behavioral relevance
In our behavioral experiments stimuli fell into two behaviorally
relevant classes: the standard song and the onset-perturbed song
were attractive whereas songs with middle- and end-perturbed
syllables were rejected (Figure 1B). Here we asked: is it possible
to predict whether a song belongs to the accepted or rejected class
based on the neuronal spike count? We again used a Bayesian
decoder and evaluated the success of correct predictions in sin-
gle trials with the MCC. We first considered the total spike count
over all nine periods in single neurons. Only half of all MCC

values were larger than zero and the number of neurons that
decoded significantly better than by chance was reduced to 3
(Figure 6A). The MCC averaged across all 25 neurons was 0.19
and the distribution of the MCC did not differ significantly
from the distribution of the performance values based on ran-
domized counts (p = 0.45, one-sided Wilcoxon rank-sum test).
Investigating the MCC as a function of the number of periods
starting at stimulus onset again showed a constant representation
across syllables (cf. Figure 6B).

If information was used from AN populations, the perfor-
mance improved remarkably up to an average MCC of 0.69
(counts over all nine periods; Figure 6C) for populations of size
eight. This increase differed significantly between single neurons
and populations of size three or larger for counts measured over
the complete stimulus duration (Figure 6C). Our results show
that information about the behavioral relevance is encoded in the
time-averaged AN population rate.

MODELING THE BEHAVIORAL DECISION BASED ON SENSORY
EVIDENCE
Thus far we have shown that a population of ANs carries a sig-
nificant amount of information about the behavioral relevance of
the stimulus that allowed for a binary classification of the attrac-
tive vs. the unattractive stimulus class based on the neurons’ spike
count (Figure 6C). Here we introduce a simple model of deci-
sion making inspired by Gold and Shadlen (2007). In our model
we interpret the population spike count of the ANs as sensory
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FIGURE 6 | Count based decoding of behaviorally relevant classes

in single neurons and populations. (A) Decoding the class of
accepted versus the class of rejected stimuli is in only 3 neurons
successful. The distribution of the 25 MCC values does not differ
significantly from the MCC distribution of the classifiers that are
based on randomized counts (p = 0.45, one-sided Wilcoxon rank-sum

test). (B) Averaged time course of the MCC for each neuron class
is not increasing with stimulus duration (thick black line). Gray lines
indicate results for single neurons. (C) Decoding performance
increases with population size. The increase differs significantly
between single neurons and populations of size three and larger
(∗p < 0.05, one-sided Wilcoxon rank-sum test).

evidence about the behaviorally relevant cues that indicate an
attractive calling song (see Materials and Methods). Our results
in Figure 6B indicate that this information is encoded in a persis-
tent and stable manner across syllables. We thus hypothesize that
a decision circuit at a higher processing level makes use of this sta-
ble representation at the sensory level by accumulating evidence
across successive syllables.

Formally, our model (c.f. Materials and Methods, Model of
Decision Making) assumes that the AN population firing rate for
each syllable provides an independent piece of evidence about the
behaviorally relevant cues. For each single trial spike count pat-
tern in a population of 8 neurons and for each syllable separately
we computed the log LR for the presence of an attractive song
over the presence of an unattractive song. In a second step we
integrated the log LR across syllables. We then define the decision
variable (DV) as the time integral over the log LR. Positive values
of the DV indicate that the presence of an attractive stimulus is
more likely than the presence of an unattractive stimulus and vice
versa for negative values of the DV.

Figure 7A shows the DV as a function of time based on the
measured neuronal response patterns. In the case of attractive
calling songs (red) the average DV is positive already during the
first syllable and shows an overall increase over the 9 syllables.
For trials in which an unattractive song was presented the average
DV (black) steadily decreased across syllables. The individual sin-
gle trial curves of the DV show a variable behavior (Figure 7A).
In order to simulate the behavioral decision we introduced a
decision threshold on the DV. In each single trial a response is

simulated if the log LR value crosses this threshold during any of
the syllables.

In the cases of an attractive (unattractive) trial we count a
threshold crossing as TP or FP result, respectively. We then com-
puted the TP and FP rates in dependence on the threshold value.
The TP rate of the model relates to the female response rate
for attractive song presentations in animal experiments, the FP
rate relates to the female response rate to unattractive songs
(Figure 1B). As shown in Figure 7B the FP rate drops sharply
and much faster than the TP rate when increasing the decision
threshold.

How does the model performance compare quantitatively to
the behavioral experiments? The median female response rates
were 83% for attractive stimuli and 6% for unattractive stimuli
(Figure 1B). A variation of the decision boundary in our model
corresponding to a variation of the TP rate in the range of 80–85%
corresponds to FP rates in the range of 3–4% (Figure 7B). This
indicates that the behavioral decisions based on the neural record-
ings from a population of 8 ANs and the simple decision model
presented here are, on average, comparable to the average perfor-
mance in the behavioral experiments with female grasshoppers.

The ROC in Figure 7C quantifies the model performance
independent of the threshold. Integrating over the ROC (area
under ROC) yielded a high value of 0.97 indicating that this
decision model based on the neuronal population spike count
performs very well in making correct detections of attractive call-
ing songs and in avoiding false alarms in the case of unattractive
calling songs.
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FIGURE 7 | A model of decision making based on the experimental

spike trains. (A) The DV as a function of the song syllables for 100
presentations of an attractive song (perturbed at the beginning of each
syllable) are shown as light red lines. The average (red line) is computed
across all possible combinations of 8 neurons and all trials. It signifies an
overall increase over time. The single trial DV for 100 unattractive song

presentations are shown as gray lines. The average (black line) shows a
monotonic decrease over time. (B) TP rate (red) and FP rate (black) in
dependence on the decision threshold computed across 9720 different
combinations of 8 neurons and all single trial stimulus presentations.
(C) The ROC (black line) relates TP rate and FP rate for a varying
threshold. The area under the ROC (gray) amounts to 0.97.

DISCUSSION
POPULATION RATE CODE AT THE OUTPUT OF THE GRASSHOPPER
THORACIC PATHWAY
We evaluated the information about stimulus and behavioral con-
tingency using a simple measure of neuronal activity: the total
spike count during stimulus presentation. For single neurons
we obtained only poor decoding performances. The full time-
resolved firing rate estimate over the stimulus duration carries
much more stimulus information and naturally results in much
higher decoding performances (Figure S3). However, in the real-
istic scenario of decoding the spike counts from a population
of neurons the performance increased significantly as compared
to the single neuron case. For the maximum population size of
8 ANs we obtained on average MCC = 0.69 for predicting the
behavioral class (Figure 6C). We grouped maximally 8 neurons,
two of each of the morphological types that had been recorded
in our experiments. This represents a realistic subpopulation of
ANs from an individual animal. We can expect that the decod-
ing from an intact population of at least 20 morphologically
distinct ANs per hemisphere in the grasshopper would reach
considerably higher decoding performances, indicating that the
relevant stimulus features are represented by a combinatorial rate
code in the AN population. These results are particularly inter-
esting in view of recent papers investigating different aspects of
the grasshopper’s auditory pathway. Clemens et al. (2011) pro-
vided evidence that between the local and ascending neurons, i.e.,
between the second and third processing stage, the coding prin-
ciple changes from a summed population code to a labeled-line
population code where the population’s information is maxi-
mal if a decoder takes into account neuronal identity. At the
level of the AN population, the temporal sparseness as well as
the population sparseness increases (Clemens et al., 2012). At
the same time, integrated spike rate information gains in sig-
nificance compared to spike timing information (Clemens et al.,
2011, 2012; see also Wohlgemuth and Ronacher, 2007; Creutzig
et al., 2009; Ronacher, 2014) which fits our results. In addition,
the use of a spike count code would also explain why the remark-
able imprecise spike timing found in ANs (Vogel et al., 2005)

does not impair the precise evaluation of song features in the
millisecond range as observed in behavioral tests (Von Helversen,
1979; Ronacher and Stumpner, 1988; Ronacher and Stange, 2013;
Ronacher, 2014).

PERSISTENT AND RELIABLE SENSORY EVIDENCE AT THE LEVEL OF
ASCENDING NEURONS
We found that the across syllables information is encoded persis-
tently and reliably in the AN population rate and we hypothesize
that the role the grasshopper’s auditory system is to provide stable
sensory evidence that can be evaluated in the brain. The perfor-
mance of the Bayesian classifier depends on both, the encoding
rate signal and the noise. We found that the Fano factor of
ANs, which estimates the noise as trial-by-trial variability of the
spike number (Nawrot, 2010), is constant across time, indicat-
ing a constant level of noise in the peripheral auditory system
(Figure S2). The absolute values of the Fano factor match previ-
ous results showing that variability of spike trains increases from
receptor neurons to the ANs (Ronacher et al., 2004; Vogel et al.,
2005; Vogel and Ronacher, 2007; Neuhofer et al., 2011), which
on average showed a reduced performance in stimulus classi-
fication compared to LNs (Wohlgemuth and Ronacher, 2007).
Using song models that were progressively degraded, Neuhofer
et al. (2011) could estimate the respective contributions of exter-
nal signal degradation and the trial-to-trial variability of spike
trains caused by intrinsic neuronal noise. Intrinsic neuronal
noise had a very strong impact on the spike train variability,
in particular in ANs, thus likely affecting the representation of
acoustic signals along the auditory pathway, and thus also the
discrimination and recognition of grasshopper songs (Ronacher,
2014).

INTEGRATING SENSORY EVIDENCE FOR BEHAVIORAL DECISIONS—A
HYPOTHETICAL BRAIN ALGORITHM IN THE GRASSHOPPER
At the level of ANs that provide the sole auditory input to the
grasshopper’s brain we found a steady representation of infor-
mation about the stimulus and its behavioral relevance in the
population spike count. We devised a simple decision making
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model that integrates evidence over time generating a decision
variable, which eventually may reach a decision threshold to elicit
a behavioral response. Such models have previously been formu-
lated for alternative choices in sensory decision tasks (e.g., Gold
and Shadlen, 2007; Beck et al., 2008; Drugowitsch and Pouget,
2012). The model integrates the estimated Bayesian likelihood
across successive syllables and, by crossing a decision threshold
allows to form behavioral decisions. In the grasshopper, recogni-
tion, and evaluation of a conspecific calling song simplifies to the
female’s decision between showing or not showing her response
behavior depending on whether and when the evidence reaches a
threshold. In a neuroethological context as well as in controlled
behavioral experiments animals can modulate their behavioral
response level (Von Helversen and von Helversen, 1994, 1997;
Wirmer et al., 2010). In our model this could be realized by a
modulation of response threshold, e.g., through neuromodula-
tors in the relevant brain circuit (Heinrich et al., 2001; Wirmer
et al., 2010).

Our model presented here is based on neural recordings
in the auditory pathway and thus extends on approaches that
model female response behavior based on the auditory stimuli
alone. Clemens and Ronacher (2013) devised an abstract linear-
nonlinear cascade model: In a first step the model continuously
extracts characteristic stimulus features from the sound stimulus
by use of linear filters. In the second step the model transforms
each filter output with a non-linear function. The resulting signals
are then integrated across features and over the whole stimulus
period, neglecting the exact temporal position of specific song
features. Their model was able to predict behavioral responses
with high reliability (r2 = 0.87) with a set of only two distinct
song features. This serial structure of (i) extraction of sensory
evidence, and (ii) subsequent temporal integration over this evi-
dence is paralleled in our model and the model proposed by
Clemens and Ronacher (2013).

If we assume a time-integrating algorithm in the grasshopper’s
brain, what could be the underlying neuronal mechanism? The
relevant time span is indicated by the duration of the reported
response times in the range of typically several hundreds of mil-
liseconds. One cellular mechanism that could serve this task
is short-term synaptic plasticity. Fascilitation and depression at
synapses are governed by processes with typical time constants
in the right order of magnitude and they have repeatedly been
suggested to be involved in decision making processes (Mongillo
et al., 2008; Martínez-García et al., 2011) including a suggested
algorithm for auditory pattern recognition in the cricket’s central
brain (Rost et al., 2013).

In summary, our results support the hypothesis of a popula-
tion rate code in ANs that project the acoustic information to
the central brain (see Clemens et al., 2011, 2012). The infor-
mation about the behavioral relevance of a stimulus is well
represented in the population rate and this information is con-
stantly present throughout the stimulus presentation. The good
performance of our decision model suggests a computational
process located within the grasshopper brain that infers the
behaviorally relevant information and integrates this evidence
over time to reach a behavioral decision based on accumulated
evidence.
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