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INTRODUCTION

Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification.
It relies on the highly specialized membrane motor protein prestin, and its interactions
with the cytoskeleton. It is believed that the expression of prestin and related molecules
involved in OHC electromotility may be dynamically regulated by signals from the acoustic
environment. However little is known about the nature of such signals and how they affect
the expression of molecules involved in electromotility in OHCs. We show evidence that
prestin oligomerization is regulated, both at short and relatively long term, by acoustic
input and descending efferent activity originating in the cortex, likely acting in concert.
Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin,
particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric
forms are maintained or even increased in particular in the contralateral side, as shown
in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an
imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and
tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral
side prestin remains unaffected, or even increased in the case of trimeric and tetrameric
forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates
the expression of a10 nicotinic Ach receptor (NAChR) transcripts in the cochlea, as
shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic
scaling mechanisms may be involved in dynamically regulating OHC electromotility by
medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC
removal, also affects prestin and B-actin mMRNA levels. These findings support that the
concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the
expression of major molecules involved in OHC electromotility, both at the transcriptional
and posttranscriptional levels.

Keywords: prestin oligomerization, acetylcholine «10 receptors, auditory cortex ablation, conductive hearing loss,
descending control

et al., 2009). Up regulation of Prestin also has been reported

Electromotility of outer hair cells (OHCs) in the organ of Corti
is essential for active mechanical amplification of sound sig-
nals (Elgoyhen and Franchini, 2011). Somatic electromotility,
i.e., the ability of OHCs to shorten or elongate in response to
membrane voltage changes, depends on the unique properties of
the membrane motor protein Prestin, whose voltage-dependent
conformational changes are transferred to the actin cytoskele-
ton, a final effector of OHC micromechanical activation. The
molecular structure of Prestin, its mechanisms and role in OHC
electromotility, have been extensively studied (He et al., 2014).
However, the complexity and extremely fast speed rates of oper-
ation of Prestin in particular and electromotility mechanisms
in general, raise questions about regulation by incoming signals
and possible adaptations to altered auditory input. There is
some evidence that conductive hearing loss induces up-regulation
of prestin mRNA (Mazurek et al., 2007; Yu et al., 2008; Yang

after noise-induced hearing loss in preserved regions of the
organ of Corti, consistent with compensatory mechanisms to
stabilize thresholds and frequency discrimination (Xia et al.,
2013).

Descending central feedback channeled through the efferent
olivocochlear system is a major dynamic modulator of OHC
electromotility and hence cochlear amplification (Elgoyhen and
Franchini, 2011). Activity of medial olivocochlear cell (MOC)
fibers acting on OHCs contributes to adapt cochlear gain by
adjusting cochlear amplification. This effect is mediated by acetyl-
choline (Ach) released by MOC endings at the base of OHCs. Ach
binds to a postsynaptic nicotinic Ach receptor (nAchR) assembled
from a9 and a10 subunits whose activation hyperpolarizes OHCs.
Ach-mediated hyperpolarization of OHCs has been linked to
changes in axial electromotility amplitude and OHC compliance
(He and Dallos, 1999, 2000).
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Convergence of acoustic input and efferent connections on
OHGCs, raises the possibility that the expression of proteins
involved in somatic electromotility is dynamically balanced by the
interaction of signals from the acoustic environment and ongoing
feedback from descending efferent inputs, primarily from MOC.
To test this hypothesis, we compared the effects of a conduc-
tive unilateral hearing loss induced by removal of the ossicular
chain (Sumner et al., 2005) with that of a partial deactivation of
MOC activity by restricted ablation of the auditory cortex (AC).
Previous work from our laboratory supports that in the rat AC
restricted ablations induce a reversible deafness likely through
descending, corticofugal control of MOC fibers (Lamas et al.,
2013).

We tested changes in Prestin protein expression by Western
blot after unilateral conductive hearing loss as a measure of
regulation by acoustic input imbalance, and compared this
with changes in Prestin protein expression after unilateral AC
ablation. In parallel, because OHC electromotility regulation
by MOC involves specialized cholinergic neurotransmission,
we tested by qRT-PCR whether the expression of the alphal0
nAChR gene mRNA, a staple of cholinergic neurotransmis-
sion at the MOC-OHC synapse (Dallos et al., 1997; Maison
et al., 2002, 2007; Batta et al., 2004; Vetter et al., 2007),
changes along with the expression of Prestin and B-actin genes,
as cell markers of the effects of MOC inactivation on OHC
electromotility.

METHODS

This study was carried out in accordance with Spanish (Royal
Decree 53/2013-Law 32/2007) and European Union (Directive
2010/63/EU) regulations on the care and use of animals in
biomedical research.

Sixty eight young male Wistar rats weighing between
250-300 g were used in this study. One set of 12 animals was
used in experiments of middle ear ossicle removal. Eight animals
underwent surgical removal of the ossicular chain as described
below, and were randomly assigned to one of two post-surgery
day (PSD) survival groups, 7 PSD (n = 4) or 15 PSD (n = 4).
The remaining animals were assigned to the normal control group
(n=4). For the cortical ablation experiments, a total of 49 animals
were used. Forty-two underwent AC surgical removal, and were
randomly assigned to one of three survival time groups: 1, 7 or 15
PSD (n = 14 for each PSD). The remaining 14 animals were used
as normal controls.

SURGICAL PROCEDURES

The AC ablations were performed under deep anesthesia using
a mixture of ketamine chlorhydrate (30 mg/kg Imalgene 1000,
Rhone Méreuse, Lyon, France) and xylazine chlorhydrate (5
mg/Kg, Rompun, Bayer, Leverkusen, Germany), as previously
described in Lamas et al. (2013). The animals were returned
to their cages after the ablations, carefully monitoring post-
surgery recovery. Once the corresponding lesion survival time
was completed, animals were anesthetized with 0.1 ml of sodium
Pentobarbitol injected intraperitoneally (ip), and decapitated in
order to collect the brain and the cochleae. After this, brains
were immersed in 4% p-formaldehyde whereas the cochleae were

immediately frozen in liquid nitrogen for qRT-PCR or Western
blotting, as described below in detail.

The middle ear ossicular chain removal was performed under
the same anesthetic cocktail and conditions. The left external
acoustic meatus was exposed under microscopy control. The
eardrum was punctured with the aid of a needle and the ossicular
chain removed by extraction with tweezers. After surgery, the
presence of an intact footplate attached to the oval window
was confirmed under the microscope. Animals were returned
to their cages after the ablations, carefully monitoring the post-
surgery recovery. Once the corresponding post lesional survival
times were completed, animals were anesthetized with 0.1 ml
sodium Pentobarbitol, ip, and decapitated in order to collect the
cochleae.

Once collected the cochleae were immediately frozen in liquid
nitrogen for Western blotting.

RNA EXTRACTION

To study expression of target mRNAs with qRT-PCR, total
RNA was purified from the collected and homogenized cochleae
using TRIZOL® (Gibco BRL, Gaithersburg, MD, USA) follow-
ing the manufacturer’s protocol and a column from an RNeasy
mini kit (Qiagen, Valencia, CA, USA) according to manufac-
turer’s instructions. RNA concentrations were determined using
a NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-
gies Inc., Wilmington, USA). Each RNA sample was assayed
three times and an average value was determined. RNA quality
was assessed on an RNA 6000 NanoLabChip (Agilent Technolo-
gies, Palo Alto, CA, USA), using an Agilent 2100 Bioanalyzer
to assess the integrity of the 18S and 28S rRNA bands, and an
RNA integrity number (RIN) was assigned, with 0 corresponding
to fully degraded RNA and 10 corresponding to intact RNA.
For all Quantitative real-time PCR (qPCR), only RNA samples
with RIN of at least 7.5 were used, with the vast majority
of samples having a RIN of at least 8.0. These values meet
requirements for reproductible qPCR experiments (Fleige et al.,
2006).

QUANTITAVE REAL-TIME PCR
RNA (2 ng), primed with oligo-dT, was reverse-transcribed into
c¢DNA at 37°C for 2 h using the first-strand cDNA synthesis kit
(Promega Corporation, Madison, WI, USA) in a 20 ul volume,
and stored at —20°C until use, according to manufacturer’s
instructions. In all cases, a reverse transcriptase negative control
was used for testing genomic DNA contamination.

qPCR was performed using the SYBR-Green method with a
2 x Master Mix (Applied Biosystems). Each reaction contained
10 pl of Master Mix, 0.4 wl of each pair of primers (Table 1),
3 wl of each cDNA sample in a different serial cDNA quantity
for each gene, and MilliQ-grade water up to 20 pl. The amplifi-
cation reaction took place in an ABI Prism 7000 detection system
(Applied Biosystems), with the following conditions: 10 min at
95°C followed by 40 cycles of 15 s at 95°C and 1 min at 60°C
depending on each pair of primers. Three PCR reactions were
performed for each sample per plate, and each experiment was
repeated twice. The ribosomal protein L-19 endogenous gene was
used as reference gene.
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Table 1 | Primers used in the RT-qPCR study.

Gen GenBank Primer cDNA Primer cDNA Product Slope E** R2
number forward forward* reverse reverse* size

b-act NM_031144  AGCCATGTACGTAGCCATCC 468-488  ACCCTCATAGATGGGCACAG  563-582 115 —-3.15 1074 0.996

Chrna1l0 NM_022639  CCTCACCTATGGCTGCTGCT 702-721  GCCAGCAGGGAGATGAACAC 805-824 123 -3.03 113.8 0.993

Prestin NM_030840 GATTGGAGGTGTGGCCTGTCC  429-448  ACGGACATGGCGACTTTGAC 526-545 17 —-3.11 109.6 0.995

*Location of the primers for the rat sequency in the Gene Bank. **Amplification efficiency.

The comparative threshold cycle (Ct) method was used to
collect quantitative data (Schmittgen and Livak, 2008). Follow-
ing the removal of outliers, raw fluorescence data were used
to determine the PCR amplification efficiency (E) according to
the formula E = [10(1/5lope) _1]*100. All amplifications had an
E value of 100 & 10%, the E value close to 100% being an
indicator of efficient amplification. The relative gene expression
value (“fold change”) for each transcript was calculated according
to the equation E—(ACt “condition 1”—ACt “condition 2”), where “con-
dition 1” corresponds to experimental samples (PSD1, 7 and
15), “condition 2” to samples of control animals and ACt of
each “condition” is Ct“experimental gene”_Ct“endogenous gene” (Livak
and Schmittgen, 2001; Schmittgen and Livak, 2008). A standard
error for each relative gene expression value was calculated as a
measure of data variation.

WESTERN-BLOT

Western blot analyses were performed according to Yu et al.
(2011) with slight modifications. The cochleae were lysed in
a lysis buffer (5 mM Tris pH 6.8, 2% SDS, 2 mM EDTA,
2 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 1 pg/mL
aprotinin, 2 pg/mL leueptine, 1 mM vanadate, 10 mM sodium
fluoride and 20 mM B-glycerophosphate) for 1 h at 4°C with
gentle shaking and then centrifuged at 13000 x g for 15 min
to eliminate debris. Protein concentration was quantified using
Qubit Fluorometric quantification (Life Technologies). Lysates
were added 5x SDS buffer and boiled for 6 min to denature the
proteins. Proteins (20 pg/sample) were resolved by 7.5% SDS—
PAGE and Western blots were performed with antibodies against
the different proteins. Blots were developed in WesternBrigth ECL
detection kit (Advansta). Films were digitized using an Epson
V750 scanner.

Antibodies used were anti-Prestin (1:500) made in rab-
bit, a kind gift from Dr. Bechara Kachar (Laboratory of
Cell Structure and Dynamics, National Institute on Deafness
and Other Communication Disorders, NIH, Bethesda, Mary-
land), anti-beta tubulin (1:4000) and anti-actin (1:4000) from
Sigma.

ABR RECORDINGS
ABRs were recorded immediately before and after removal of
the ossicular chain, and 7 days post injury. Recordings were
performed using a close-field real-time signal processing system
(Tucker-Davis Technologies (TDT), System 3, Alachua, Fl, USA),
as previously described in Lamas et al. (2013).

On the side of the ossicle chain removal, the four characteristic
waves of the rat ABR disappeared, thresholds were increased up to

90 dB SPL and did not show any recovery 7 days after the surgery
(Figure 1). Fifteen days after the injury, waves were visible at 80
dB SPL. The side contralateral to the experimental lesion showed
ABR thresholds similar to those of pre-lesion condition at all post
lesional times (Figure 1). The amplitude of the four waves for this
side was increased by 50-100% relative to pre-lesion condition at
15 PSD.

Changes in the ABR from animals with unilateral ablations of
the AC have been previously described in Lamas et al. (2013).
Briefly, on the side of the lesion the amplitude of the waves was
decreased by 25-40% relative to pre-lesion condition at 1 PSD,
and recovered at 7 PSD. The side contralateral to the ablation
showed ABR amplitudes similar to those of pre-lesion condition
at all post-lesion times.

STATISTICAL ANALYSIS

Real-time PCR results are shown as mean £ SD and were tested
for significance using one-way ANOVA with Scheffe and Bonfer-
roni post hoc tests. Ipsi- vs. contralateral statistical comparisons
were carried out with Student’s ¢-test. Differences were considered
significant at the p < 0.05 level. Statistical analysis was performed
using the SPSS-IBM software, version 20 (SPSS Inc., Chicago, IL,
USA).

LOCALIZATION OF THE LESIONS IN AC

The localization of the lesions in AC was performed as described
in Lamas et al. (2013). Briefly, after perfusion fixation and
brain removal, the lateral surface of the brain was photographed
using a Nikon camera located 21 ¢cm above the cortex surface,
and the photograph was superimposed to a purposely built
coordinates map (Lamas et al., 2013). The extension of the
lesion expressed in percent area of AC was calculated using the
“area dimensioning tool” of Canvas X software (Lamas et al.,
2013).

All ablations specifically encroached the major subdivisions
of the AC (primary, dorsal and ventral cortices), and affected
all AC layers but not the underlaying white matter. Lesions
included a region ranging from 70 to 100% of the total AC area
(Table 2).

RESULTS

PRESTIN PROTEIN OLIGOMERIZATION AFTER SOUND ATTENUATION
BY UNILATERAL MIDDLE EAR OSSICLE REMOVAL

Western blotting was performed to assess oligomerization and
relative amount of Prestin protein in the cochlea at two survival
times (7 or 15 PSD) after unilateral removal of the middle ear
ossicles. Protein levels in the sides ipsi- and contralateral to
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FIGURE 1 | Average ABR waveform obtained before and after the
unilateral removal of the ossicular chain at different post surgery days
(PSD), 1, 7 and 15. The stimulus onset starts at 1.7 ms and all waves were

visible at 50 dB SPL in both ears before the lesion. Note that only waves from
the contralateral ear to the surgery remain visible at 50 dB SPL after the
lesion.

Table 2 | Extent of lesions in the rat brain AC.

Post surgery Percentage of AC Percentage of AC

days ablated (WB study) ablated (RT-qPCR study)
1 73.33 £20.12 71.79 +£8.33
7 75.73 £ 6.89 76.81 +£9.24

15 81.79 £+ 11.09 72.99 + 5.27

This table shows the percentage of AC affected by lesions in the experimental
groups. Data are presented by Mean + standard deviation. WB = Western Blott.
RT-qPCR = Reverse Transcription quantitative polymerase chain reaction.

the lesion were compared. After blotting cochlear samples with
antiprestin antibodies, Prestin was displayed in Western blots
from control animals in bands corresponding mostly to 80, 160
and 240 kDa (Figure 2—7 PSD, control animals on the two left
tracks), in accordance with the reported molecular weights of
the monomers, dimers and trimers of this protein, respectively
(Matsuda et al., 2004).

There were no major differences in the pattern of immunoblot
staining between both survival groups after middle ear ossicle
removal. Figure 2 shows Western blots from three represen-
tative cases at 7 PSD. Western blots from animals at 15 PSD
are not shown. Bands corresponding to Prestin monomers in
animals after ossicle removal were comparable to those seen
in control animals, regardless of survival time (Figure 2, lower
arrow). However, the bands corresponding to prestin dimers
(160 kDa) stood out more strongly labeled in animals with
unilateral conductive deafness. This 160 kDa band was more
marked in the side contralateral to the lesioned ear (Figure 2,
second arrow from bottom). In general, bands corresponding
to trimers were attenuated or absent at 7 and 15 PSD both
in the cochleae ipsi- and contralateral to the lesion. Inter-
estingly, however, in one case at 7 PSD after unilateral ossi-
cle chain removal, the band corresponding to prestin trimers
in the cochlea contralateral to the lesion, was comparable in
intensity to that of controls (Figure 2, third arrow from the
bottom).
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FIGURE 2 | Changes in prestin protein expression after unilateral
removal of the ossicular chain. Results from the ipsilateral (Ipsi.) and
contralateral (Cont.) cochleae from three animals at 7 days after surgery
(PSD7). The two tracks on the left are from two normal control animals.

Bands corresponding to the potential localization of tetramers
(320 kDa) were faint or undetectable either in controls or in the
conductive deafness experimental group at any survival time.

PRESTIN PROTEIN OLIGOMERIZATION AFTER ATTENUATION OF
DESCENDING INPUT TO THE COCHLEA BY UNILATERAL AC ABLATION
The effects of unilateral AC ablation on the oligomerization and
relative amount of prestin protein in the cochlea, were also tested
by Western blot. In the cochleae ipsilateral to the AC lesion,
there were no immunolabeled bands above 160 KDa, indicating
disappearance of trimeric Prestin forms relative to controls, with
tetrameric forms being absent, like in control animals. Bands
corresponding to monomers and dimers were unchanged relative
to controls (Figure 3).

Western blot analysis of the cochleae contralateral to the AC
lesion showed a banding pattern for monomers and dimers sim-
ilar to that found in the ipsilateral side and therefore comparable
to control cochleae. However, different to the ipsilateral side,
dense bands at the 240 kDa location, corresponding to an intense
expression of Prestin trimers were detected in most animals
(Figure 3) at all survival times. A band at 320 kDa corresponding
to Prestin tetramers was also visible in the side contralateral to the
lesion.

No major differences were seen in the patterns of Prestin
expression detected by Western blot at any of the three tested
survival times, 1, 7 or 15 PSD (Figure 3).

nAchR o10-SUBUNIT, PRESTIN AND BETA-ACTIN mRNA LEVELS AFTER
PARTIAL INACTIVATION OF DESCENDING INPUT TO THE COCHLEA BY
AC ABLATION

We carried out qRT-PCR to assess changes in the expression
of the al0-subunit of the OHC nAChR, Prestin and B-actin

50_--

—— < Tubulin

FIGURE 3 | Changes in the protein expression of prestin after unilateral
ablation of AC at different post surgery days (PSD). Data represent the
western blott results from both ipsilateral and contralateral ears to the
surgery obtained at PSD1, 7 and 15. Ipsi = ipsilateral ear to the surgery.
Contr. = contralateral ear to the surgery.

mRNA in the cochlea ipsi and contralateral to the lesion at
different times after AC ablations. Collectively, these three mark-
ers should give an indication of how partial inactivation of
MOC affects the molecular machinery of the OHC involved in
electromotility.

The a10-subunit transcripts of the nAChR showed a signifi-
cant decrease in the cochleae ipsilateral to the lesion at 1 PSD after
the AC ablation (Figure 4A). However, both at 7 and 15 PSD, a10
mRNA levels were significantly increased (Figure 4A gray bars).
The increase in the a10-subunit transcripts was above two fold
relative to control values at 7 PSD and above four fold at 15 PSD
(Figure 4A).

The cochleae contralateral to the lesion did not show statisti-
cally significant changes in the expression of the a10 subunit at
1 PSD. However, both at 7 PSD and 15 PSD a10 mRNA levels
were increased. These increases were four fold relative to control
values at 7 PSD, and two fold at 15 PSD, respectively (Figure 4A
white bars).

Prestin transcripts showed a significant threefold increase rel-
ative to control values in the cochlea ipsilateral to the lesion, at
1 PSD (Figure 4B gray bar). Increased transcript levels were even
larger at 7 PSD, reaching six fold relative to controls, and returned
to values similar to those of controls at 15 PSD (Figure 4B gray
bars).

The cochlea contralateral to the lesion did not show any
significant change in the expression of prestin at 1 PSD. An eight
fold increase relative to control values was found at 7 PSD whereas
at 15 PSD there was a significant decrease below control values
(Figure 4B white bars).

The analysis of B-actin transcripts showed a significant
decrease relative to control values in the cochlea ipsilateral
to the lesion at 1 PSD following AC ablation. p-actin tran-
script levels returned to values comparable to those of con-
trols at 7 PSD and decreased again at 15 PSD (p < 0.001)
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FIGURE 4 | Changes in the mRNA levels of «-10 subunit, prestin and
B-actin after unilateral AC ablations at different post surgery days, 1, 7
and 15. (A) Data of the a-70 subunit from the outer hair cell cholinergic
receptor. (B) Data of prestin. (C) Data of B-actin. Results are presented by
the mean = stdev of the fold change. The statistical significance of the
comparison between the fold changes of the post-surgery days and control
condition is shown at the top of the bars. Bars from the same survival time
that present differences between the ipsi- and contralateral ears are framed
in a box, and their statistical significance is shown at the bottom. *p < 0.05;
**p < 0.01; ***p < 0.001.

(Figure 4C gray bars). No statistically significant changes were
found in the expression of the P-actin gene in the contralat-
eral cochlea at any PSD after AC ablation (Figure 4C white
bars).

DISCUSSION

The first key finding reported in this paper is that oligomerization
of the OHC membrane motor protein Prestin is regulated by the
interaction of acoustic input and centrifugal efferent cholinergic
neurotransmission on OHCs.

In the normally functioning auditory receptor, monomeric
and oligomeric forms of Prestin coexist, as shown in Western
blots from control animals (see Figures 2, 3). Prestin oligomers
include mostly dimers and trimers, whereas tetrameric forms
are barely detectable in cochlear homogenates from control ani-
mals. The absence of tetrameric forms in our control Western
blots is compatible with current views of Prestin oligomerization.
Whereas tetramers may actually be present but not detectable
in our control cochleae, the view that prestin functions strictly
as a tetramer (Hallworth and Nichols, 2012) has been seriously
challenged. Correlative electrophysiological and dynamic fluores-
cence measurements suggest that sub-tetrameric oligomers, or
even monomers, are functional (Bian et al., 2013) and not mere
precursors for the assembly of tetramers.

Dampened acoustic input subsequent to unilateral middle
ear ossicle removal, diminishes prestin trimers, often below
detection levels, in Western blots from cochleae in the side
of the lesion. Dimeric forms, however, are preserved or even
increased. These findings suggest that Prestin oligomerization
beyond dimers requires normal acoustic input. Actually, Xia et al.
(2013) have reported global increases in Prestin protein levels in
the cochlea after noise-induced hearing loss, but these authors
did not provide evidence as to whether such an increase was
attributable to monomers or one or several oligomeric forms.
The mechanism and role of this activity-dependent oligomer-
ization will have to be elucidated. Shutting off oligomerization
of larger Prestin forms while simultaneously increasing dimeric
forms, might represent a mechanism to adapt cochlear microme-
chanics and amplification to diminished acoustic stimuli. On
the other hand, the finding of relatively more dense dimeric
bands in the cochlea contralateral to the lesion along with less
frequent loss of trimers, may be related to subtle compen-
satory changes in the unmanipulated cochlea, driven by acous-
tic input imbalance between both ears, as discussed further in
detail.

A second most relevant finding is that activity of the cochlear
efferent system is also required to regulate Prestin oligomeric
assembly. Evidence comes from results of ablation of the AC.
Descending projections are complex, and include direct corti-
copontine and indirect colliculopontine pathways. At least cor-
ticopontine projections, are bilateral and symmetric, although
more dense in the ipsilateral side (Doucet et al., 2002; Doucet
and Ryugo, 2003; Schofield and Coomes, 2005), and innervate
MOC in the ventral nucleus of the trapezoid body (Mulders and
Robertson, 2000). MOG, in turn, send efferent axons bilaterally
to OHCs, modulating its micro-mechanical properties (Guinan,
2006). Due to the excitatory nature of the corticofugal projection
(Feliciano and Potashner, 1995), its degeneration after unilateral
AC ablation induces loss of excitation on MOC, more marked in
the ipsilateral side and, therefore an imbalance of efferent input
between both ears (Ledn et al., 2012).

After unilateral ablation of the AC, Prestin trimers were
barely detectable in the cochlea ipsilateral to the lesion, whereas
monomer and dimer bands were generally comparable to con-
trols. In contrast, dense trimer bands were visible in the cochlea
contralateral to the AC ablation. Prestin tetramers were also
clearly detectable in the cochlea contralateral to the lesion.
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These findings suggest that diminished efferent activity on
OHC:s in the side of the AC ablation, also limits the assembly
of higher forms of Prestin oligomers. Thus, monomeric and
dimeric forms of Prestin might represent stable pools, relatively
unaffected by changes in the acoustic or efferent input to the
cochlea, at least after manipulations like those reported here. It
is relevant that in the cochlea contralateral to the AC lesion,
less affected by loss of efferent activity, Prestin trimers and
tetramers are more intensely expressed. This may represent a
mechanism to adapt cochlear amplification to efferent imbal-
ance between both ears, whose intrinsic molecular nature is
unknown.

Taken together, these findings support that Prestin oligomer-
ization (Zheng et al., 2006; Mio et al., 2008) is regulated both
by acoustic input and efferent activity. This may be part of
mechanisms to adapt electromotility and cochlear amplification
to altered inputs, including input imbalance between both ears.
This prediction is worth pursuing through further experimental
work.

A third finding is that efferent activity also regulates the
expression of key genes involved in electromotility. The expres-
sion of the alphalO subunit of the nAchR, Prestin and beta-
actin genes are affected by diminished and unbalanced activity
in the MOC, probably also as part of adaptations to altered
input.

The main neurotransmitter in MOC is Ach (Warr, 1975;
Altschuler et al., 1985; Vetter et al., 1991) which binds to an
a9/a10 nAchR on OHGCs (Elgoyhen et al., 1994, 2001), mod-
ulating motility and axial stiffness (Sziklai and Dallos, 1993;
Sziklai et al., 1996, 2001; Dallos et al., 1997; Kalinec et al.,
2000). In our unilateral AC ablation model, an expected loss
of MOC cholinergic activity correlates with an acute (1 PSD)
decrease in the gene expression of the a-10 subunit. This is
followed by increased expression at 7 and 15 PSD, which is
comparatively greater in the side ipsilateral to the AC lesion,
where the activity of the descending corticopontine projection
likely is less affected (Doucet et al., 2002; Doucet and Ryugo,
2003; Schofield and Coomes, 2005). This changes in the expres-
sion of the nAChR alpha-10 subunit point to OHC adaptation
to loss of cholinergic input. The nature and function of such
adaptations are unknown and need to be investigated in the
future.

Likely as part of adaptive responses to limited MOC activity
on OHCs, Prestin gene up regulation is seen in the cochlea
ipsilateral to the AC ablation at short times (1 and 7 PSD) after
the lesion, with a return to control values at 15 PSD. In the
cochlea contralateral to the AC lesion, however, increased Prestin
mRNA levels are found just at 7 PSD, with levels at 15 PSD
slightly decreased relative to controls. Whereas these oscillations
in Prestin gene expression do not bear a linear relation with
changes in protein levels seen in Western blots, they probably
represent additional levels of regulation by efferent activity or an
indirect effect of GABA or CGRP release by the MOC terminals
(Maison et al., 2003).

It is also interesting that there is a significant drop in the
expression of the B-actin gene at 1 PSD in the cochlea ipsi-
lateral to the cortical lesion. Down-regulation of the B-actin

gene could be partly responsible of a greater motor deactivation
(Matsumoto et al., 2010) and may reflect the effect on one of
the final targets of efferent regulation on OHCs. This may be
related to decreased activity in the ipsilateral cochlea, with higher
thresholds and a decrease in the amplitude of ABR waves, after
unilateral AC lesions (Lamas et al., 2013). In this regard it is
interesting to note that at 15 days PSD, prestin gene expression
returns to levels similar to controls, while expression levels of
the nAChR «10 subunit are still increased. This change, which
coincides in time with the recovery of the ABRs previously
observed by us (Lamas et al., 2013), may reflect an OHC elec-
tromotile “resetting” induced by nAchr receptor adaptations at
the MOC-OHC synapse. Therefore, the activity-dependent reg-
ulation of the a10 subunit, prestin and B-actin genes reported
in this paper may reflect OHC adaptations to changes in MOC
activity to compensate for limited and/or unbalanced corticofugal
excitation.

In conclusion in this paper we suggest that at least two mecha-
nisms are at work in combination to balance the micromechanical
response of the OHC after a decrease in inner ear activity: changes
in oligomerization of Prestin and MOC cholinergic neurotrans-
mission along with regulation of the expression of Prestin and
B-actin genes.
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