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Application of neuro-augmentation technology based on dry-wireless EEG may be
considerably beneficial for aviation and space operations because of the inherent dangers
involved. In this study we evaluate classification performance of perceptual events using
a dry-wireless EEG system during motion platform based flight simulation and actual
flight in an open cockpit biplane to determine if the system can be used in the presence
of considerable environmental and physiological artifacts. A passive task involving 200
random auditory presentations of a chirp sound was used for evaluation. The advantage
of this auditory task is that it does not interfere with the perceptual motor processes
involved with piloting the plane. Classification was based on identifying the presentation
of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA)
and Kalman filtering to enhance classification performance by extracting brain activity
related to the auditory event from other non-task related brain activity and artifacts
was assessed. The results of permutation testing revealed that single trial classification
of presence or absence of an auditory event was significantly above chance for all
conditions on a novel test set. The best performance could be achieved with both ICA
and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform
On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On
(79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used
in environments with considerable vibration, wind, acoustic noise, and physiological
artifacts and achieve good single trial classification performance that is necessary for
future successful application of neuro-augmentation technology based on brain-machine
interfaces.

Keywords: EEG, dry EEG, brain machine interface, independent component analysis, Kalman filter, auditory evoked
response, single trial, classification

INTRODUCTION
Technology capable of augmenting human performance by
means of feedback of decoded neural states has potential for
many types of neuroergonimic applications. Neuroergonomics
is the study of the human brain in relation to performance
at work, at home, in transportation, and in everyday settings
with the goal of using this knowledge to design technologies
and work environments to augment human behavior to
enhance safety, usability, efficiency and enjoyment (Parasuraman,
2003; Parasuraman and Rizzo, 2008). Because of the inherent
dangers in aviation and space operations these fields may
be particularly well suited for neuroergonomic applications to
increase performance and safety. There are many challenges for
effective implementation of neuroergonomic technology in real-
world situations. Unlike the laboratory where brain recordings
can be made under controlled conditions, in real world situations
there is considerable additional physiological and environmental
noise that must be dealt with. In addition it is likely the case

that brain dynamics differ in real-world environments compared
to those of the laboratory (McDowell et al., 2013; Lin et al.,
2014).

Pilots’ often face periods of excessive workload, stress, fatigue,
attentional deficits, etc... during flight operations that may affect
performance. The ability to decode the mental state of the
pilot and augment these states by neuro- adaptive feedback
and/or automation has great potential in improving training,
performance, and safety. In this article we are particularly
interested in investigating brain potentials that occur as a result
of passive presentation of an auditory stimulus during flight.
This research has relevance to the phenomenon of inattentional
deafness in which pilots’ sometimes miss audio alarms. Missed
audio alarms are responsible for a significant number of aviation
accidents (Bliss, 2003; Scannella et al., 2013; Dehais et al., 2014).

There have been a number of studies in which brain activity
has been measured with electroencephalography EEG during
aviation (Sem-Jacobsen et al., 1959; Blanc et al., 1966; Caldwell

Frontiers in Systems Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 11 | 1

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnsys.2015.00011/abstract
http://www.frontiersin.org/Journal/10.3389/fnsys.2015.00011/abstract
http://community.frontiersin.org/people/u/114099
http://community.frontiersin.org/people/u/194575
mailto:dcallan@nict.go.jp
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Callan et al. Classification of auditory events during flight

and Lewis, 1995) and space operations (Maulsby, 1966; Cheron
et al., 2009). EEG has been successfully collected in flight since
the late 1950’s (Sem-Jacobsen et al., 1959). These studies showed
that although the in flight environment is subject to noise caused
by vibration and greater physical movement of the pilot that
are not present during laboratory based experiments, the EEG
signals recorded are able to show changes in various frequency
bands and additional specific features that are associated with
flight performance (Sterman et al., 1987) as well as workload
(Howitt et al., 1978; Hankins and Wilson, 1998; Dussault
et al., 2005) and fatigue (Howitt et al., 1978; Sauvet et al.,
2014). Experiments conducted aboard the International Space
Station have shown changes in the rhythmic brain activity of
astronauts as a result of microgravity (Cheron et al., 2009). In
an experiment conducted during parabolic flight it was found
that a mental imagery (Thinking of moving arm vs. thinking of
words) based brain machine interface (BMI) task could achieve
between 72%–79% single trial classification performance across
the various g-force conditions ranging from 0 to 2 g (Millàn Jdel
et al., 2009).

A BMI is a device that provides for the ability to transfer and
use information from distinct brain states for communicating
with a machine (Blankertz et al., 2010). BMI based on
electroencephalography EEG have been used in many applications
including, but not limited to, modulating brain rhythms to
control movement of a cursor on a screen (Wolpaw et al., 2002)
as well as a quadrocopter in the real world (LaFleur et al.,
2013), decoding brain states such as attention, performance
capability, workload, etc. . . (Dornhege et al., 2007; Müller et al.,
2008; Blankertz et al., 2010), decoding various perceptual events
(Birbaumer et al., 1999; Wang et al., 2006; Bin et al., 2009). A
primary goal of BMI research is to augment human behavior to
allow for enhanced performance. Notably, there are considerable
improvements in performance for some medical applications
of BMI when the user’s motor system is severely incapacitated.
For example patients with locked-in syndrome who are not
able to communicate through standard pathways or assistive
technology can learn to spell and initiate dialogs using P300
based BMI (Sellers et al., 2014). Non-medical application of the
BMI P300 speller in normal healthy individuals is not practical
since normal channels of communication are considerably
better.

There are several limitations for the practical neuroergonomic
application of many of these BMIs in real-world situations
(Blankertz et al., 2010). Many of these BMIs take a considerable
amount of time for operator training, on the order of months.
This is true especially for implementations when the user needs
to learn how to modulate various brain rhythms (Wolpaw et al.,
2002; LaFleur et al., 2013). For practical application there should
be very little if any operator training in control of the BMI. Many
BMIs require considerable mental workload to operate, such
as those requiring mental imagery and those utilizing focused
attention away from the primary task environment. The amount
of cognitive resources required to operate such BMI can be so
high, that the operator’s usual channels of perceptual, motor,
and cognitive processing are greatly impaired. For example, it is
obvious that if one is actively involved with mentally imaging

movement of their left hand to move a vehicle left, mentally
imaging movement of both arms to move a vehicle right, mentally
imaging walking to move forward, and mental word association
to move back, that this will drastically compromise the operators
ability to speak, walk, and move their hands while engaged in
operating the BMI. However, if one uses a joystick to move a
vehicle the operator will still be able to speak, walk, and move their
hands around without drastically compromising performance
depending on the difficulty of the task at hand. While P300
based BMI have advantages in that they do not require extensive
subject training, they often require directed attention away from
the environment in which they are suppose to operate in. For
example subjects using a P300 based BMI to control various items
in a virtual apartment reported a far lower sense of presence,
which they attributed to increased workload, in interacting
in the environment than did control subjects not using BMI
(Groenegress et al., 2010). In order for a BMI to be effective it
is necessary to utilize naturally occurring brain states for control.
Another limitation of many of these BMI implementations is that
they utilize rather bulky EEG systems that are not portable and
use gel that takes a considerable amount of time and assistance
to apply.

Practical application of EEG in real-world situations requires
the use of technology that is easy to wear without the use of
gel and one that is wireless to transmit data to a computer for
real-time processing. There are many dry-wireless EEG systems
available that have been used for many different applications
including drowsiness detection (Park et al., 2011), gaming (Liao
et al., 2012; Zao et al., 2014), and detection of perceptual events
(Lin et al., 2014). Of particular interest in relation to real-
world application of BMI is the study conducted by Lin et al.
(2014) investigating the impact of walking locomotion on the
ability to detect steady state visual evoked potentials (SSVEP)
using a dry-wireless EEG system. The SSVEP is a frequency
coded neural response that is modulated by the presentation
frequency of the visual stimuli (Lin et al., 2014). The classification
performance was good but decreased as a result of walking
speed from 84.87% for standing to 83.03% for 1 MPH walking,
79.47% for 2 MPH walking, and 75.26% for 3 MPH walking
(Lin et al., 2014). The decrease in performance as a function
of walking speed may result from increasingly larger artifacts in
the EEG as well as to greater difficulty in fixated attention to
the visual stimuli as one moves more. Dry electrodes are more
susceptible to movement related artifacts than gel based EEG
recording (Guger et al., 2012; Lin et al., 2014). One limitation for
utilization of the SSVEP for many BMI applications is that the task
requires the subject to attend to the visual stimuli presented on
the computer screen. This requirement is not practical in many
real-world situations where perceptual motor control requires
the use of the visual system such as in aviation and space
operations.

The goal of this study is to determine the extent to which
perceptually evoked brain related EEG signals, recorded with
a dry-wireless system in noisy real-world environments can
be decoded for potential use in BMIs to augment human
performance. With a focus on aviation related applications we
conducted our experiment in two environmental conditions.
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One environmental condition was the use of a motion platform
based flight simulator the other was an open cockpit biplane.
In order to avoid practical problems in controlling the airplane
by using a visual based perceptual presentation task, an auditory
stimulus presentation task was used to assess single trial
classification performance. The advantage of using an audio
stimulus presentation task (100 ms chirp sound) is that it can
be played passively in the background while the pilot attends to
flying the plane. The goal for the classifier was to determine from
the EEG data the presentation of the audio stimulus (chirp) from
periods of no audio stimulus (silence) presentation.

A control condition was used for both environmental
conditions. In the motion platform condition the experiment was
conducted with the platform and flight simulator off (a relatively
noise free condition) and with the motion platform on while
flying aerobatic maneuvers in the flight simulator (Platform Off
and Platform On conditions). In the platform on condition there
is considerable movement of the individuals arms, legs, eyes, neck,
and entire body as well as potential electrical noise from the
motion platform motors. In the biplane condition the experiment
was conducted with the engine and avionics off while sitting on
the tarmac (a relatively noise free condition) and with the engine
and avionics on while piloting the plane in cruise flight. The
open cockpit biplane may constitute one of the most challenging
environments for EEG recording in which there is an incredible
amount of vibration, wind, acoustic noise, as well as considerable
movement of the individual’s arms, legs, eyes, neck, and entire
body.

There are considerable sources of noise that make recording
of EEG in real-world environments challenging including non-
neurological electrophysiological signals (e.g., muscle activity),
electronic noise, and mechanical vibrations. In order to be able
to clean the data of the artifacts and extract brain activity
related to the auditory evoked responses several procedures
within EEGLAB (Swartz Center for Computational Neuroscience,
Delorme and Makeig, 2004) are used including independent
component analysis (ICA). In addition to these artifact-cleaning
procedures a Kalman (1960) filter implementing a dynamical
model of the single-trial auditory evoked responses was also
used to help extract brain activity related to presentation of
the audio stimuli. Based on the results of Lin et al. (2014)
using a similar dry-wireless EEG system it is predicted that
above chance classification performance in detecting single
trial audio stimulus presentation will be achieved in all
conditions. Furthermore, it is predicted that both ICA and
Kalman filtering will improve classification performance across all
conditions.

METHODS
SUBJECTS
The same subject was used for all studies. The subject was male,
right handed, 45 years old, with normal hearing. One of the
authors served as the subject in this experiment. He has 5 years
of flying experience with more than 250 h total time and 200 h
in biplanes of the same make and model. The subject gave
informed consent for experimental procedures approved by the
ethics committee of the National Institute of Information and

FIGURE 1 | Motion Platform Flight Simulator composed of the CKAS
V7 6 degree of freedom Motion System (CKAS Mechatronics, Melborn,
Australia) with a custom built cockpit utilizing dome projection for
video. The flight controls consist of 1. A control stick to manipulate the
elevator (pitch) and ailerons (roll), 2. Rudder pedals to manipulate the rudder
(yaw), and 3. A Throttle to manipulate thrust. Single-trial auditory events
using dry-wireless EEG were evaluated while the subject was flying
through a simulated Redbull Air Race course.

Communications Technology in accordance with the principles
expressed in the Declaration of Helsinki.

PROCEDURE
The experimental task consisted of passively listening to a
chirp sound (0.1 s duration) in different environmental settings
while recording brain activity using the Cognionics 64 channel
dry wireless EEG system. The chirp sound was presented 200
times spaced randomly by at least 0.6–2.5 s of silence. Within
these periods of silence 200 independent 0.5 s segments were
randomly extracted. The different environmental settings and
conditions are as follows: Electric Motion Platform (Platform
Off, Platform On) and open cockpit Biplane (Engine Off,
Engine On).

The CKAS V7 6 degree of freedom Motion System (CKAS
Mechatronics, Melborn, Australia) with a custom built cockpit
utilizing dome projection for video was used (see Figure 1).
In the motors off condition the subject was sitting still in the
chair mounted on the platform. In the motors on condition
the subject was engaging in aerobatic flight simulation (X-Plane
Laminar Research) through the same Redbull Air Race course as
used in a previous fMRI study (Callan et al., 2012). See Callan
et al. (2012, 2013) for details on the implementation of the flight
simulator system for brain imaging experiments. Just as in a
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FIGURE 2 | Open Cockpit Starduster SA300 Biplane used for in flight and
ground testing of single-trial auditory events using dry-wireless EEG.
(A) View off the biplane on the ground. (B) View of the biplane in the air.

(C) Picture of the subject wearing the Cognionics 64 channel dry-wireless
EEG under the leather flight helmet. This is the same EEG system pictured in
Figure 3.

real airplane, the subject controlled the ailerons and elevator by
stick with the right hand, the throttle lever with the left hand,
and the rudders with foot pedals. The motors of the motion
platform moved in relation to the accelerations of the aircraft
in the flight simulator. No sound was presented from the flight
simulator. In both the platform off and platform on conditions
the audio stimuli were presented using the Clarity Aloft Pro
aviation headset using the same sound level. The experiment
took approximately 10 min for each condition. The platform
on condition was conducted first followed by the platform off
condition.

The biplane used in the experiment was an open cockpit two
passenger Starduster SA300 (see Figure 2). In the engine off
condition the subject was sitting in the front seat of the biplane
on the tarmac with avionics off. In the engine on condition
the subject was piloting the plane during cruise flight from
the front seat with avionics on. In the engine on condition
there was extreme vibration, acoustic noise, and wind. In both
the engine off and engine on conditions the Cognionics EEG
system was worn underneath a leather flight cap. The audio

stimuli were presented using the Bose A20 active noise canceling
aviation headset using the same sound level. The experiment
took approximately 10 min for each condition. The engine
off condition was conducted first followed by the engine on
condition.

EEG RECORDING AND ANALYSIS
EEG was recorded using the Cognionics HD-72 dry wireless EEG
headset (Cognionics, Inc., San Diego1). The same 64-channel
EEG system was used by Mullen et al. (2013) and shares the same
underlying technology as the 32-channel system reported in Chi
et al. (2013) and Lin et al. (2014).

The EEG headset consists of a mechanically flexible spine to
provide structure and ease of handling. Each segment of the spine
contains a row of electrodes. The 64 electrodes provide full scalp
coverage. An internal active shield, covering all sensor positions,
spans the entire headset to minimize external noise pickup and

1http://www.cognionics.com/
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FIGURE 3 | Cognionics 64 Channel Dry-Wireless EEG Headset. Two
types of dry sensors are used: The flex sensors are placed over hair and
the Drypad sensors are laced over bearskin, such as the forehead. In our
setup, we utilized 7 Drypad sensors on the forehead (first band) and 54
flex sensors across the rest of the array. Each band of the headset is user
adjustable to enable proper fit and sensor pressure over different head

sizes and shapes. An internal flexible conductive layer forms an active
shield, which spans the entire headset, to minimize external noise pickup
even with high-impedance dry electrodes. Ground (Grnd) and reference
(Ref) electrodes are placed under the ear as shown in the figure. The same
cap pictured here is in Figure 2 underneath the leather flight helmet. See
the text in the Methods section for further details.

FIGURE 4 | Kalman filter functional model. Kalman filter is designed from
an Event Related Potential (ERP) dynamical model (on the right), and uses
both preprocessed EEG data and trial onsets to estimate the instantaneous
event-related response.

artifacts. Reference and ground are placed on the mastoids with
by two standard ECG adhesive electrodes (see Figure 3).

Two sensor options are compatible with the headset and
connect via a miniature snap receptacle. In the setup, seven
Drypad sensors were placed on the forehead (Figure 3). The
Drypad electrode is a cushioned membrane that is optimized
for bare skin contact. For the remaining 57 positions, we used
the Flex sensors designed for thru-hair measurements. The Flex
sensor is specifically designed to brush aside hair and make
direct scalp contact with legs that gently bend and deform
under modest pressure. Compared to previous metal pin sensors
(e.g., Liao et al., 2011), the Flex sensors offer improved comfort

and safety since the sensors can completely flatten under hard
impacts. Contact impedances with both sensors typically range
from 100 k to 1 MOhm (Mullen et al., 2013) on unprepared
skin.

To adequately acquire EEG signals with high electrode
impedances, the Cognionics system utilizes a combination of
active shielding, high input impedance amplifiers and active
grounding to cancel and minimize environmental noise. Data is
sampled at 300 Hz (DC-80 Hz bandwidth) with 24-bit ADCs
to maximize dynamic range and quickly recover from overload
artifacts. Total noise within the EEG band (1–50 Hz) is 0.7
microVolts RMS. The signal quality of the sensors, electrodes, and
the data acquisition circuitry has been shown to be comparable
to wet electrode based EEG systems with a correlation between
simultaneously recorded evoked potentials of r > 0.9 (Chi et al.,
2013; Mullen et al., 2013).

All electronics are housed in a miniature box at the base
of the headset, which weighs a total of only 350 g making
the entire system lightweight, portable and wearable. Data
transmission is accomplished by a custom 5 GHz WiFi module.
The headset radio communicates directly to an embedded WiFi
host, in a point-to-point network, running on a USB dongle to
minimize the overhead associated with a typical access point and
PC-based software protocol stack, thereby minimizing latency
and jitter. The receiving computer was a Panasonic CF-AX2
running Ubuntu Linux operating system. The average delay in
receiving the signal was less than 1 ms. Audio stimuli were
presented from the same computer as used to record the EEG
by means of the auxiliary input to the aviation headset. The
presentation of the audio signals was given time stamps in
correspondence with the time stamps given for each of the
recorded EEG samples. The high temporal precision of the
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wireless link and the presentation software allows for accurate
time registration between stimulus and EEG without the use of
wire-line markers.

The EEG data was preprocessed using artifact-cleaning
procedures available in EEGLAB (Delorme and Makeig, 2004).
The data was first filtered using a FIR band pass filter between
2 and 30 Hz with a filter order of 496. The data was separated
into a training set of 75% of the stimuli (150 chirp stimuli and
150 silent stimuli) and a testing set of 25% of the stimuli (50
chirp stimuli and 50 silent stimuli) for the platform off and on
conditions and the biplane engine off and on conditions. The
rational for choosing 75% of the trials for training and 25% for
testing is that we believed this division would provide enough
training data to generalize to a novel testing set while maintaining
enough trials in the testing set to be a reasonable representation
of the population. Although we did not attempt to train and
test on a 50% split of the data we believed that the amount of
training data may not have been sufficient for generalization to
the novel test set. The artifact cleaning procedures were applied
only to the training sets. The results of which were then applied to
the corresponding test sets. The exact same cleaning procedures
were then applied to the corresponding testing sets, with the same
parameters.

Channels were considered to be bad and were removed
from the training data based on the following: Maximum
amplitude in the channel is greater than 100 microvolts; Channel
flatline duration is greater than 5 s; Channel is correlated at
less than 0.8 to its robust estimate based on other channels;
Channel has more line noise relative to its signal than 4
standard deviations from the channel population mean. These
same channels were then removed from the corresponding test
sets.

The next step was to clean the multi-channel training data with
the artifact subspace reconstruction (ASR) method using the
defaults given in the clean_artifacts software within EEGLAB.
ASR allows for the removal of non-stationary high-variance
signals from EEG and reconstructs missing data using a spatial
mixing matrix (See EEGLAB software by Christian Kothe and the
following for details2). Calibration data from clean segments of
the training data were used to determine the ASR filters separately
for each of the four conditions. The ASR filter was then applied to
the corresponding test data.

Following cleaning of the data by ASR, ICA using the
extended infomax algorithm (Bell and Sejnowski, 1995) in
EEGLAB was applied in order to separate brain activity related
to the auditory evoked potentials from other brain and artifact
related components. The weights of the ICA were determined
only from the training data separately for each of the four
conditions (platform off, platform on, engine off, engine on).
These weights were then applied to the corresponding test data
to determine the ICA activation waveforms. See Figure 5 for an
example of the continuous data before ASR, after ASR, and after
ICA.

Kalman filtering (Kalman, 1960) was applied to the ASR
filtered data both before and after ICA, to produce an estimate

2http://sccn.ucsd.edu/eeglab/plugins/ASR.pdf

of the single-trial auditory evoked response. Kalman filtering
is a linear quadratic estimation method, which relies on both
the measurements and a modelization of the Event-Related
Potential (ERP) dynamics to product an estimate in real-time.
This method has been successfully applied to single-trial event
related potentials estimation (Georgiadis et al., 2005). In our
case, the parameters used as a model for the Kalman filter design
were the N100 and P300 waves, generic features of the auditory
evoked potential (see Figure 4). Both waves were modeled by
a third-order impulse response with peaks respectively at 100
ms and 300 ms. The state noise was considered as white noise
(Georgiadis et al., 2005), and the measurement noise covariance
to state noise covariance ratio was fixed to 0.001, so that the
Kalman estimate would put confidence in the measurements
(Grewal and Andrews, 2008).

TRAINING AND TESTING THE CLASSIFIER
The Matlab Least Squares Probabilistic Classification (LSPC)
toolbox (Sugiyama, 2010) was used to determine how well
single trial audio presented stimuli could be identified in the
EEG signal from periods of audio silence. LSPC uses a linear
combination of kernel function to model the class-posterior
probability. Regularized least-squares fitting of the true class-
posterior probability is used to learn its parameters (Sugiyama,
2010). The use of least-squares fitting to determine a linear
model allows for a global solution to be made analytically
providing a considerable speedup in computational time. The
default parameters were used in training of the LSPC models (see
Matlab code: Sugiyama, 2010).

The features used to train the classifier consisted of the samples
from onset to 500 ms after stimulus onset (150 samples) for both
chirp and silent stimuli. In the case of ICA data the components
selected to be included in the LSPC model were determined by
visual inspection of the mean of the activation waveform of the
chirp training data stimuli that showed a characteristic auditory
evoked potential. For the pre-ICA data all of the channels were
included in the LSPC model. The large number of features relative
to the number of trials used to train the classifiers has the potential
for over-fitting, resulting in poor generalization to the novel test
data. We utilized inner cross-validation procedures for model
selection in part to assess and protect against potential over-
fitting.

The following inner cross-validation procedures were used for
model selection and testing: Randomized ten fold cross-validation
was used on the training data and the trained model with the
best performance was selected for evaluating performance on the
test data. One fold of the training data consisted of 135 chirp
and 135 silent stimuli and one fold upon which the model was
evaluated for selection consisted of 15 chirp and 15 silent stimuli.
The final test data consisted of 50 chirp and 50 silent stimuli. This
procedure was conducted 100 times to determine the distribution
of performance of the model given random aspects of training
(e.g., the trials selected for training and their order into the
model).

Several conditions were evaluated to assess the efficacy of
ICA and Kalman filtering in improving classification performance
on the data. These conditions included the four environmental
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FIGURE 5 | Example of Continuous EEG Data for the Biplane
Engine On Condition. (A) Five seconds of continuous data from the
test set that has been band pass filtered from 2–30 Hz for the 34
electrodes included. (B) Five seconds of continuous data from the
test set that has undergone artifact subspace reconstruction as well
as band pass filtered from 2–30 Hz for the 34 electrodes included.

Notice how ASR has cleaned up the artifact present in many of the
channels (compare with (A) above). (C) Five seconds of continuous
data from the test set for auditory evoked potential related
independent component number 2. The ICA was carried out over the
data in (B). Green lines denote the onset of audio stimuli and Red
lines denote the onset of silent trials.

conditions (Platform Off, Platform On, biplane Engine Off,
biplane Engine On) and four preprocessing conditions (pre-ICA
constituting the baseline no processing condition, ICA, pre-
ICA Kalman filtered, ICA Kalman filtered) for a total of
16 analyses.

The statistical significance between the various conditions was
determined by repeating the nested cross-validation process ten
times for each condition. The nested cross-validation procedure
is commonly used to estimate the stability of the model across
conditions (Shenoy et al., 2008). At each step, we computed the
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Table 1 | Classification performance for the platform condition on the test data.

Platform off Platform on

Accuracy False False d’ Accuracy False False d’
(%) positive negative (%) positive negative

rate (%) rate (%) rate (%) rate (%)

Pre-ICA 78.3 (0.33) 19.8 (0.20) 23.6 (0.65) 1.69 (0.01) 71.6 (0.56) 35.4 (1.52) 21.4 (0.60) 0.75 (0.08)

ICA 81.0 (0.49) 21.4 (0.99) 16.6 (0.73) 1.59 (0.07) 73.7 (0.52) 26.8 (1.91) 25.8 (1.75) 1.26 (0.12)

Pre-ICA + Kalman Filter 77.8 (0.55) 20.2 (1.05) 24.2 (1.94) 1.68 (0.07) 72.8 (0.53) 36.6 (1.58) 17.8 (1.94) 0.69 (0.08)

ICA + Kalman Filter 83.4 (0.27) 17.2 (0.53) 16.0 (0.60) 1.90 (0.04) 73.1 (0.8) 28.4 (2.61) 25.4 (1.79) 1.18 (0.16)

The standard error is given in parentheses below each mean value of the 10 nested cross-validation iterations.

Table 2 | Classification performance for the biplane condition on the test data.

Biplane engine off Biplane engine on

Accuracy False False d’ Accuracy False False d’
positive negative positive negative

rate rate rate rate

Pre-ICA 77.4 (1.01) 20.2 (2.72) 25.0 (2.20) 1.75 (0.21) 66.1 (0.75) 38.0 (1.23) 29.8 (1.31) 0.61 (0.06)

ICA 78.5 (0.72) 20.0 (1.58) 23.0 (0.68) 1.71 (0.11) 77.3 (0.45) 23.6 (1.26) 21.8 (0.81) 1.45 (0.08)

Pre-ICA + Kalman Filter 77.0 (0.97) 14.6 (1.16) 31.4 (2.53) 2.13 (0.1) 65.3 (0.96) 35.4 (2.78) 34.0 (2.40) 0.78 (0.17)

ICA + Kalman Filter 81.1 (0.35) 10.0 (1.19) 27.8 (1.35) 2.65 (0.18) 79.2 (0.39) 22.6 (1.12) 19.0 (1.16) 1.51 (0.07)

The standard error is given in parentheses below each mean value of the 10 nested cross-validation iterations.

classification accuracy, false positive rate and false negative rate.
The differences between the classification results obtained from
each of the preprocessing conditions were then compared using
Wilcoxon sign-rank test.

RESULTS
The number of channels not rejected out of the 64 by the
preprocessing steps for the various conditions are as follows:
Platform Off (46), Platform On (20), Biplane Engine Off
(30), Biplane Engine On (34). The independent components
showing auditory evoked potentials used to train the LSPC
models were the following for the various conditions: Platform
Off (2, 3), Platform On (1, 3), Biplane Engine Off (2, 3),
Biplane Engine On (2, 16). The components are sorted in
descending order of mean projected variance. Therefore, the
lower the component number the larger is the projected variance.
Parentheses.

The results of the single trial classification performance for
audio chirp verses silent stimuli for all environmental and analysis
method conditions were significantly above chance (p < 0.05)
based on permutation testing of 100 random shuffling of the
labels compared to the mean performance of the respective
models trained with correct labels. The accuracy, false positive
rate, false negative rate, and d’ (sensitivity) along with the
standard errors in parentheses for the platform off and platform
on conditions for the four analysis conditions (Pre-ICA, ICA Pre-
ICA + Kalman Filter, and ICA + Kalman Filter) are given in
Table 1. The corresponding results for the biplane Engine Off
and Engine On conditions are given in Table 2. The statistical
significance of model stability for accuracy on the contrasts of
pre-ICA vs. ICA, Off vs. On, and No Kalman filter vs. Kalman
filter are given in Tables 3A–C. Testing for significance based on

the 100 trials of the test set across the various contrasts using the
Wilcoxon sign-rank test is given in Tables 4A–D.

DISCUSSION
The primary objective of this experiment was to show as a proof
of concept that a dry-wireless EEG system could be used in
extremely noisy real-world environments while the operator is
carrying out complex perceptual motor tasks and still show good
classification performance of a perceptual event. Both the motion
platform based flight simulation and the open cockpit biplane
environments produced considerable artifacts challenging the
ability for accurate classification of a perceptual event from EEG
data. In the platform on condition the subject was flying through
a Redbull Air Race course making abrupt banks to go through
the cones in the correct orientation (Callan et al., 2013). The
movement of the platform and the head and body to these banks
produces large artifacts in the EEG trace. In the open cockpit
biplane there is considerable vibration, wind, acoustic noise,
and physiological noise resulting from control of the plane and
movement of the body that produces large artifacts in the EEG
trace.

Despite these challenging environments our study showed
that far above chance classification performance can be achieved
for all environmental conditions (Platform Off, Platform On,
Biplane Engine Off, Biplane Engine On) and for all analysis
conditions (Pre-ICA, Pre-ICA Kalman filtered, ICA, and ICA
Kalman filtered) (See Tables 1–4). The classification performance
was the best when applying both ICA and Kalman filtering to
the data. This was especially true in the Biplane Engine On
condition in which classification performance improved from
66.1% in the baseline pre-ICA no processing condition to 79.2%
in the ICA Kalman filtering condition (See Tables 2–4). This
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Table 3 | Statistical significance of the various contrasts using nested cross-validation to evaluate model stability.

A. ICA vs. Baseline Pre-ICA

Overall Platoff Platon Engoff Engon Platoff + Platon + Engoff + Engon +
Kalman Kalman Kalman Kalman

*** ** ** ** **
B. Off vs. On

Overall Platform Engine Platform Engine Platform Engine Platform Engine
Pre-ICA Pre-ICA Pre-ICA + Pre-ICA + ICA ICA ICA + ICA +

Kalman Kalman Kalman Kalman
*** ** ** ** ** ** ** *
C. Kalman Filter vs. no Kalman Filter

Overall Platform Platform Engine Engine On Platform Platform Engine Engine
Off Pre-ICA On Pre-ICA Off Pre-ICA On Pre-ICA Off ICA On ICA Off ICA On ICA

* ** * **

Significance (one-tailed) is determined using the Wilcoxon sign-rank test. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

Table 4 | Statistical significance evaluated across trials of the test set for the various contrasts.

A. ICA vs. Baseline Pre-ICA
Overall Platform Biplane Platoff Platon Engoff Engon
** ** **
B. ICA + Kalman vs. Baseline Pre-ICA
Overall Platform Biplane Platoff Platon Engoff Engon
** ** * **
C. Off vs. On
Overall Platform Biplane
*** ** *
D. ICA + Kalman vs. ICA
Overall Platform Biplane Platoff Platon Engoff Engon

* *

Significance (one-tailed) is determined using the Wilcoxon sign-rank test. * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

classification performance was comparable to that of the Engine
Off condition (81.1%) in which the biplane was sitting on the
tarmac. It is unclear why the Platform On condition did not
show the same beneficial effects of ICA Kalman filtering vs. the
baseline no processing condition (73.1% vs. 71.6% respectively),
as did the Biplane Engine On condition (See Tables 1–4). One
possibility is that the abrupt movement of the body and head
during the flight task produced non-stationary artifacts that
could not be separated by the EEGLAB artifact cleaning methods
or by ICA and Kalman filtering. In the future utilizing data
from an accelerometer mounted on the head as a regressor
of non-interest may be able to extract possible movement
related artifacts and improve classification performance. The
significantly greater accuracy for the Off over the On conditions
is to be expected (See Tables 1–4) not only because of the
much greater artifacts present in the On conditions but also
because auditory responses are decreased depending on attention
(Paul et al., 2014). It is likely that the attention needed for
piloting in the On conditions reduced attention to the auditory
stimuli.

The use of Kalman filtering was most effective when conducted
on ICA processed data. Kalman filtering on pre-ICA data did
not show improvement in performance compared to that of ICA

processed data (See Tables 1–4). One possible explanation for
these results is that ICA is able to separate the brain activity
related to the auditory event from other brain activity and
artifacts allowing for better estimation by the Kalman filter
that utilizes generic information about the auditory evoked
response as a dynamical model. In the pre-ICA data the brain
activity for various processes as well as artifacts are mixed
within all the channels and estimation of the auditory events
by the Kalman filter model may be more difficult for these
signals.

Because the results are only of a single subject it is not clear
how well they generalize to other individuals. It is likely that
different individuals with different levels of flight experience may
show more/or less movement and physiological artifacts that may
decrease/increase classification performance. The Cognionics dry
wireless EEG system has already been shown to give good
classification performance on a SSVEP test across a number
of subjects (Lin et al., 2014). The Lin et al. (2014) study
demonstrates that the Cognionics EEG system is able to extract
from a group of individuals and is not just limited to a few
special individuals. ICA has additionally been shown to be very
good at extracting artifacts and task related components from
EEG data (Delorme et al., 2007). This was also demonstrated
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for the data collected in this study and it is unlikely that it is
only applicable to the single subject that participated. Despite
these limitations the results do stand as a demonstration that it
is possible to collect data in real-world environments that have
considerable noise, both environmental and physiological, using
dry-wireless EEG and obtain classification performance sufficient
for some BMI augmentive neuroscience based applications. The
research presented here lays a foundation for future aviation
based studies where subject variability in EEG responses can be
evaluated.

For effective use in implementing BMI in real-world applica-
tions it is necessary that the processes used for classification be
fast enough for online control either in terms of manipulating
robotic devices, giving feedback to the operator, and/or utilizing
adaptive automation to augment human performance (Byrne and
Parasuraman, 1996; Wilson and Russell, 2007). One of the key
elements of this study was that the training set came from the first
75% of the data and the novel test set came from the last 25% of
the data. All of the artifact-cleaning methods were applied to the
training set and the same criteria and weights were then applied
to the testing set. ASR, ICA, and LSPC classifier model selection
by cross-validation requires some processing time depending on
computer speed. In our case running the programs in Matlab
on a MacBook Pro took around 10 min. The largest portion of
time was spent computing the ICA. Therefore, implementation
of a BMI would require a delay of approximately 10 min after
the training data is collected before it could be applied if ICA
is used. Just a couple minutes for model selection and training
are required if ICA is not used. The extraction of channels, the
ASR model, and the ICA weights from the training data as well
as the Kalman filter can be applied without delay (the delay is
the same as the sampling rate) to the test set. In this case the
features used in the classification model were samples for 500
ms after stimulus onset. Therefore, depending on the type of
initial band-pass filtering, the processing delay to control the
BMI could be around 515 ms. Although the initial band-pass
filter order for processing this data set was 496 samples, which
would create a considerable delay it is possible to implement
different types of filters with a lower order to decrease the
processing delay. A delay of less than a second could certainly be
used in a BMI to give a warning signal to the pilot or engage
adaptive automation (Byrne and Parasuraman, 1996; Wilson
and Russell, 2007), however, it is not sufficient for closed-loop
control.

Given the significant number of aviation accidents that result
from missed auditory alarms (Bliss, 2003; Scannella et al., 2013;
Dehais et al., 2014), a BMI based on detection of auditory events
could be quite important in giving alternate forms of feedback
to warn the pilot when necessary. It is well known that high
workload decreases the ability to perceive task-irrelevant and/or
unattended visual and auditory information (Lavie, 1995, 2005,
2010). This phenomenon is called inattentional blindness with
respect to vision (Mack and Rock, 1998) and inattentional
deafness with respect to audition (Wood and Cowan, 1995;
Macdonald and Lavie, 2011; Dehais et al., 2014). Inattentional
deafness is known to be a critical factor in missing of auditory
alarms in aeronautics (Dehais et al., 2014). It is interesting that

although task irrelevant auditory stimuli can be presented in the
background without any decrement in task related performance,
the evoked brain potentials to these auditory events is modulated
by workload on the primary task (Krammer et al., 1995). As
such, it may be possible to assess the workload of the pilot and
likely occurrences of inattentional deafness by investigating brain
response to auditory events. An EEG based BMI system could
potentially be used to decode the mental state of the pilot for
occurrence of inattantional deafness and augment their mental
state by feedback through a different modality or engage adaptive
automation. Considerably more research needs to be conducted
to determine on a single event basis whether an incidence of
inattentional deafness is present or not before such a system can
be implemented.

When one considers that brain dynamics are different while
undergoing complex tasks in natural environments from that
of the laboratory (McDowell et al., 2013; Lin et al., 2014) and
that dry EEG systems are susceptible to movement-based artifacts
(Guger et al., 2012; Lin et al., 2014) the single-trial classification
performance of auditory perceptual events by a dry-wireless EEG
system in the robust flight conditions of our study are quite
impressive. This research demonstrates the feasibility of new
avenues for investigating brain processes in real-world situations
that cannot be conducted in the laboratory. In addition the
research presented here also demonstrates that plausible BMI
using dry-wireless EEG can be implemented in real-world settings
to augment human performance.
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