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Information processing in the hippocampus begins by transferring spiking activity of
the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is
separated by the DG such that it plays an important role in hippocampal functions
including memory. The structural and physiological parameters of these neural networks
enable the hippocampus to be efficient in encoding a large number of inputs that animals
receive and process in their life time. The neural encoding capacity of the DG depends
on its single neurons encoding and pattern separation efficiency. In this study, encoding
by the DG is modeled such that single neurons and pattern separation efficiency
are measured using simulations of different parameter values. For this purpose, a
probabilistic model of single neurons efficiency is presented to study the role of structural
and physiological parameters. Known neurons number of the EC and the DG is used to
construct a neural network by electrophysiological features of granule cells of the DG.
Separated inputs as activated neurons in the EC with different firing probabilities are
presented into the DG. For different connectivity rates between the EC and DG, pattern
separation efficiency of the DG is measured. The results show that in the absence of
feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency
and high firing frequency. Feedback inhibition can increase separation efficiency while
resulting in very low single neuron’s encoding efficiency in the DG and very low firing
frequency of neurons in the DG (sparse spiking). This work presents a mechanistic
explanation for experimental observations in the hippocampus, in combination with
theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory
neurons in schizophrenia where deficiency in pattern separation of the DG has been
observed.

Keywords: pattern separation, sparse spiking, sparse coding, feedback inhibition, connectivity rate, mutual
information, dentate gyrus, entorhinal cortex

Introduction

The brain’s ability to generate a representation of stimuli in the environment, as induced changes
in neurons and neuronal networks, is essential for efficient memory and learning capabilities.
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The fundamental structure and function of many parts of the
invertebrate and vertebrate brains are relatively well-studied.
Neurons show rich morphological and electrophysiological vari-
ations in different brain regions and sub-regions. Different mor-
phological and electrophysiological features of neurons are linked
to dissociable neural functions (Barres et al., 1988; Zawadzki et al.,
2012).

Moreover, the morphological and physiological properties
of many kinds of neurons have been previously described.
Exploring neural circuits and mechanisms of information pro-
cessing that enables animals to live in dynamical environ-
ment play an important role in modern neuroscience (Clayton
and Hen, 2005; Wilbrecht and Shohamy, 2009). Understanding
the principal parameters which are involved in efficient stim-
uli encoding by biological neural systems plays an important
role for understanding the neural mechanism of learning and
memory, and designing bio-inspired systems that can per-
form complicated tasks (Yue et al., 2006; Rozo et al., 2013).
Modeling and simulation studies aim to design bio-inspired
neural systems (e.g., advanced robotic systems) that are capa-
ble of sensing stimuli and navigating in different environments
such that they can perform some complicated tasks includ-
ing human-like learning and memory processes (Stramandinoli
et al., 2012). These efforts have led to the development of new
generation of robots that can make decisions based on olfac-
tory or auditory cues (Marjovi and Marques, 2011; Song et al.,
2011).

Many parameters enable efficient information processing,
including connectivity rate, firing threshold, and feedback inhi-
bition among neurons. For example, morphological variations of
neurons lead to different connectivity rate between different neu-
rons and neural layers in the animal brain because it determines
the flow of information that a neuron receives from its neighbors
(Lamprecht and LeDoux, 2004; Seung and Sümbül, 2014). Single
neurons as information processing units within neural popula-
tion show a dynamic and activity-dependent synaptic strength.
As an example, in trace eye-blink conditioning in mice, the con-
tribution of hippocampal synaptic contact takes place at different
moments during associative learning (Gruart et al., 2014). In
some neurological disorders (e.g., Alzheimer’s disorder), a change
in neural connectivity is associated with abnormalities in cogni-
tive capabilities (He et al., 2009; D’Amelio and Rossini, 2012). The
potential connectivity of neurons and their electrophysiological
properties have been broadly studied in the rodent hippocam-
pus (see: http://hippocampome.org/ for more information about
comparing electrophysiological features of 122 neuron types in
different sub-regions of hippocampus).

In addition to connectivity rate, variations in electrophysi-
ological properties of a neuron affect its firing response to its
input. One key electrophysiological feature is ‘firing threshold’ of
a neuron because each neuron temporally integrates its inputs to
firing threshold which, when met, results in spike trains (Ebner
and Hameroff, 2011; Gupta et al., 2012). Although neurons can
affect activity of other neurons by diffusing different chemicals
(retrograde signals), spiking is believed to be the major method
for neural communication. Another known parameter which
is involved in efficient neural encoding is the balance between

inhibition that a neuron receives in the networks and excitatory
inputs of neurons. This balance plays a critical role in neural
information processing (Sengupta et al., 2013). Recently, the role
of the balance of excitation and inhibition among neurons in hip-
pocampus functionality has been shown (English et al., 2014).
Inhibitory neurons are found in all parts of the animal brain such
that any impairment in their function is associated with psychi-
atric and neurological disorders (Konradi et al., 2011). The role
of the balance between excitation and inhibition has been shown
using simulation studies to be critical in keeping the efficiency of
neurons in response to presenting incremental stimulus intensity
(Faghihi and Moustafa, 2015).

It is critical to measure the efficiency of a single neuron and
neural population to transfer information regarding different
parameters involved in biological neural systems. Importantly,
information theory has helped neuroscientists by proposing
some measures of system efficiency such as mutual informa-
tion (MI) (Deco and Schürmann, 1998; Mitaim and Kosko,
2004). MI quantifies the reduction of the uncertainty of a vari-
able when we have knowledge of another variable. To quantify
the neural system efficiency, MI between a single neuron and
its neighbor has been measured (Roudi et al., 2009; Rowan,
2012). However, these studies have not considered connectivity
rate and firing threshold as parameters involved in informa-
tion processing by a single neuron. Moreover, MI was used
to study the role of basic structural and functional parame-
ters in information processing by neural population in insects’
olfactory systems (Faghihi et al., 2013). This study assigns
an optimal value for feedback inhibition to encode different
levels of odor concentration assuming that stimulus intensity
affects just neurons’ firing rate. Importantly, stimuli informa-
tion may be encoded by both changes in firing rate of sin-
gle neurons and number of activated neurons in a neural
ensemble.

The hippocampus is a brain structure that plays a critical role
in consolidating information from short-termmemory into long-
term memory. In the classic tri-synaptic pathway, information
proceeds from the entorhinal cortex (EC) to the dentate gyrus
(DG) to CA3 and then to CA1 which is known as the main hip-
pocampal output (Van Strien et al., 2009; Newman andHasselmo,
2014; Figure 1A). The animal’s brain ability to discriminate
between similar experiences is a crucial feature of episodic mem-
ory. It is believed that information processing in the hippocam-
pus complies with ‘compressed sensing theory’ (Petrantonakis
and Poirazi, 2014). The formation of discrete representations
in memory is thought to depend on a pattern separation pro-
cess whereby cortical inputs are decorrelated as they enter the
early stages of the hippocampus (Gilbert et al., 2001; Leutgeb
et al., 2007). Computational models suggest that such function
is dependent on pattern separation (Bakker et al., 2008; Yassa
and Stark, 2011). Pattern separation is defined as the ability to
transform a set of similar input patterns into a less-similar set of
output patterns, which is believed to be dynamically regulated by
hilar neurons. The storage capacity of such memory system, in
terms of the number of patterns that can be stored and retrieved,
is maximized if the patterns to be stored do not overlap exten-
sively (Marr, 1970). In this context, overlap between patterns is
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FIGURE 1 | Model structure. (A) Information flow in the hippocampus. The
perforant path is the major input to the hippocampus. The axons of the
perforant path mainly arise in layer II of the entorhinal cortex (ECII). Axons from
ECII/IV project to the granule cells of the DG. The mossy fibers are the axons of
the DG granule cells and extend from the DG to CA3 pyramidal cells, forming
their major input. Information is transferred by axons that project from the CA3
to the CA1 region. The information from CA1 to the subiculum (SUB) and on the

entorhinal cortex (EC) performs the principal output from the hippocampus.
(B) The model is composed of a neural network with 800 neurons in EC and
4000 neurons in the DG. Fully separated input pattern in EC may trigger
separated neurons in the DG. (C) Increase in the number of activated neurons in
EC or the connectivity rate between layers may lead to overlap in pattern of
activated neurons in the DG (shown by red) which results in a decrease in
pattern separation efficiency of the DG.

defined as the degree to which individual elements in one pattern
are also active in another pattern.

It is believed that the DG is involved in learning and mem-
ory (Gould et al., 1999). The DG is thought to contribute
to spatial or episodic memory by functioning as a pattern
separator (Leutgeb et al., 2007; Bakker et al., 2008). Given
the premise that CA3 performs pattern storage and pattern
completion, and that pattern separation can optimize CA3
function, the DG, which is a primary way station for entorhi-
nal inputs traveling to CA3 was considered as pattern sepa-
ration region in the hippocampus (Yeckel and Berger, 1990;
Derrick, 2007). Pattern separation as a feature of the DG is
performed by the low contact probability of dentate granule
cell axons to CA3 pyramidal cells which could decrease the
probability that two separate entorhinal input patterns acti-
vate the same subset of CA3 neurons (Myers and Scharfman,
2009). Moreover, to support this hypothesis, it has been observed
that lesions of the DG circuitry result in impaired pattern
separation-dependent memory (Gilbert et al., 1998). Pattern
dysfunction impairment due to DG dysfunction may lead
to declarative memory deficits in schizophrenia (Das et al.,
2014).

The number of granule cells in the DG is approximately five
times larger than the number of entorhinal cells (Amaral et al.,

1990) where input pattern separation takes place (Bakker et al.,
2008). The pattern separation process may be impaired in aging
when the connectivity of these layers is affected (Spalding et al.,
2013). For example, when a new event occurs, a sparse subset
of neurons in the DG will respond. Studies examining the DG
activity have found sparse coding from 2 to 4% of granule cells
in a single context (Schmidt et al., 2012). Moreover, granule cells
show a low firing rate compared with other brain regions (sparse
spiking; Leutgeb et al., 2007; Piatti et al., 2013) which seems to
be governed by GABAergic inhibition (Nitz and McNaughton,
2004). Information collected in the Hippocampome project (see:
http://hippocampome.org) about the location of soma, axon and
dendrite of excitatory and inhibitory neuron types in the DG sup-
port the hypothesis of feedback inhibition as the main cause of
sparse spiking of granule cells of the rodents’ hippocampus. In
this work, we present a computational model of single neuron
computation and separation efficiency of neural populations in
the DG. The connectivity of single neuron to its neighbors in a
neural population, firing threshold of neuron, impact of stimulus
intensity and feedback inhibition are being considered as funda-
mental parameters involved in pattern separation in the DG. For
this purpose, MI between inputs to a single neuron and its output
is measured for different parameter values and different stimulus
intensities.
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The efficiency of neural systems to encode a stimulus is
encoded by population of neurons. Therefore, a measure for pat-
tern separation efficiency by the DG is presented. The model
aims to describe optimal conditions which lead to a high pat-
tern separation efficiency in the DG. This study additionally
attempts to shed light on a theory of the role of impaired func-
tional activity of inhibitory neurons in the DG and its implica-
tions in pattern separation deficiency observed in schizophrenia
disorder.

Materials and Methods

To model information processing in the DG, a probabilistic
model of neural encoding efficiency of single neurons in the DG
is presented to study the role of connectivity rate between the EC
and the DG, firing probability of activated neuron in EC and feed-
back inhibition in efficiency of single neurons in the DG. Then a
computational model of pattern separation efficiency of neural
population of the DG is presented. The combination of these two
calculations is being used to explain observed experimental data
in the DG and pathological features of schizophrenia related to
the DG dysfunction.

Neural Encoding Efficiency of Single
Neurons in the DG
To model information processing by single neurons we consider
a single neuron in the DG and a neural layer composed of 100
neurons. The neural layer and the single neuron are connected
according to a connectivity rate. The connectivity rate is defined
as the probability of connection of single neurons in the DG to
each neuron in the EC (one synapse between each neuron in the
EC and a single neuron in the DG). For each connectivity rate,
the connected neurons are randomly chosen from 100 neurons
in the EC (Figure 1B). A stimulus is presented to the neural layer,
which leads to the activation of a set of neuron in the neural layer.
According to the connectivity vector between the single neurons
in the DG neuron and the EC, the single neuron may receive
some inputs. This number may increase if intensity of a stimu-
lus is raised (Figure 1C). An inhibitory neuron may connect to
the single neurons in the DG and can inhibit their activity as a
function of firing probability of the single neuron.

To quantify the efficiency of the single neurons in the DG to
encode its input, MI is measured between its output and inputs
for different set of parameters values. The parameters that are
involved in this calculation are:

S = 100: total number of neurons in neural layer
n = 0, . . . , S: number of connected neurons to single neuron
m = 0, . . . , S: number of activated neurons in neural layer by
a stimulus
m

′ = 0, . . . , S: number of inputs to single neuron (number of
activated and connected neurons in neural layer)
r ∈ [0, 1]: connectivity rate between neural layer and single
neuron
p ∈ [0, 1]: firing probability of neurons in neural layer
θ = 2, 3, . . . , n: firing threshold of single neuron

Firing probability of the single neuron givenm is calculated as
Equation 1
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Mutual information is then calculated as Equation 2

MI = �mP(T = 1| m) log
(
P(T = 1| m)

P (T) P (m)

)
+

�mP(T = 0| m)log
(
P(T = 0| m)

P (T) P (m)

) (2)

Mutual information as efficiency measure of the single neu-
ron is measured for different sets of structural and physio-
logical parameters in the absence and presence of feedback
inhibition. Moreover, feedback inhibition is involved in the sys-
tem to observe its effect on MI. Feedback inhibition is mod-
eled using Equation 3, which is modified from Faghihi et al.
(2013).

PI = e− α /f (3)

Where PI is the inhibition probability of each spike of the
single neurons in the DG and f is average activity of its input.
In the presence of feedback inhibition, MI (Equation 2) is cal-
culated using modified firing probability of the single neuron
(Equation 4).

P(T = 1) = P(T = 1) − e
−α

P(T=1) , if P(T = 1) > e
−α

P(T=1) (4)

Otherwise, P (T=1) = 0

Pattern Separation Efficiency of Neural
Populations in the Dentate Gyrus
The information of any event/stimulus which is presented to the
hippocampus as a pattern of activated neurons in the ECII (briefly
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EC in the model) is transferred and encoded by activated neu-
rons in the DG. The memory efficiency of the hippocampus is
partially dependent on its capability to encode overlapped sets
inputs from the EC as patterns of activated neurons in the DG
with minimum overlap between patterns (Myers and Scharfman,
2009). The transferred information depends, on one the hand,
on the connectivity rate between the EC and the DG, and on
the other hand, on the firing rate of activated neurons in the
EC. These two integrated parameters determine the population
of activated neurons in the DG in response to a given input
pattern. Eventually, each activated neuron has its own encod-
ing efficiency (measured by MI) that is independent of other
neurons or separation efficiency of the neural population in the
DG. Hence, first separation efficiency of the DG is defined and
measured in the simulation of a subset of real neuron numbers
then a comprehensive explanation is presented for experimen-
tally observed sparse coding and sparse spiking in the DG. The
approximated number of neurons in many parts of rodent’s hip-
pocampus is relatively known. The ratio of 1:5 is considered
for number of neurons in the EC and the DG (actual num-
bers 200,000 and 1,000,000 for the EC and the DG, respectively).
Keeping the ratio, we developed a neural network composed
of two layers and an inhibitory neuron. The first layer and
the second layer contained 800 and 4000 neurons, respectively
(Figures 1B,C). The connectivity rate between the EC and the
DG is unknown so it is assumed as a model parameter as val-
ues between zero and one which is defined as the probability of
connecting each neuron in second layer to neurons in the first
layer. The inhibitory neuron with different inhibition intensity
is modeled as in (Faghihi and Moustafa, 2015). The activity of
neurons in the first layer (the EC) is modeled as firing prob-
ability in each time bin. Totally, 500 time bins, each equal to
10 ms, were used to simulate neural activity of input pattern.
The neural activity of neurons in the second layer (the DG) was
modeled as integrate and fire model using electrophysiological
features of granule cells in the rodent’s DG (Lübke et al., 1998).
In this work, we have assumed that the input patterns from the
EC are fully separable (overlap equal to zero).This assumption
allows for studying the role of different structural and physio-
logical parameter values on the DG efficiency to separate inputs.
However, modeling transferred information from the DG into
CA3 needs considering overlapped inputs pattern from the EC
and how the pattern completion is performed in CA3 (Gold and
Kesner, 2005).

For each pair of firing rate of activated neurons in the EC
and connectivity rate between the EC and the DG, inputs as
fully separated sets of activated neurons in the EC were pre-
sented to the neural network. In the simulations here, the number
of activated neurons in an input pattern of the EC was equal
to 20, so the number of input patterns from the EC in any
simulation was equal to 40 (totally 800 neurons in the sim-
ulated EC). The activation patterns in the DG neurons were
compared to calculate their degree of separation as ‘separation
efficiency (S).’

The activation pattern in the DG is presented as columns
of input patterns: [I1, . . . , IL] and rows of DG neurons
[n1, . . . , nk].

S =
(
�K
i=1�

L
j=1

(
1 − Ni,j

L

))
K

: [0, 1] if Ni,j > 0 (5)

Ni,j ≤ L; K ≤ 4000

Where ‘K ’ is the number of activated neurons in the DG in
response to inputs presentation and ‘N’ is the number of acti-
vation of each neuron in the DG by ‘L’ as the number of
separated sets of activated neurons in the EC (input patterns).
S is based on the percentage of 40 inputs from the EC which
activated a given neuron in the DG. Such quantity is calculated
and summed up for all DG neurons. Minimizing this overlap,
maximizing S as a measure of the DG separation efficiency. As
there are large possibilities to choose sets of separable sets of
neurons in the EC, we derived the average of S by measuring
500 trials (each trial as 40 sets of 20 fully separated neurons
in the EC) for each pair of connectivity rate between the EC
and the DG, and firing probability of activated neurons in the
EC. Feedback inhibition with different parameters values are
used to study the role of inhibition in separation efficiency of
the DG.

Results

The information processing in the DG is performed by single
neurons that receive information from the EC activated neurons.
This process depends on its connectivity to other neurons and
firing probability of activated and connected neurons. Therefore,
to quantify efficiency of a single neuron to encode its input, the
MI between output of the single neuron and its input for differ-
ent connectivity rates and firing probability of inputs is measured.
Feedback inhibition may play important role in information pro-
cessing in the hippocampus. Figure 2 shows the relationship
between ‘input intensity’ into inhibitory neuron and ‘inhibition
intensity’ into the single neuron.

FIGURE 2 | The relationship between the probability of feedback
inhibition and firing probability of the single neurons. For different
parameter value (α), average firing probability of the single neurons elicits
activity of inhibitory neuron. The vertical dash line shows the role of inhibition
parameter for different inhibition intensity for average firing probability of single
neurons equal to 0.4.
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Figure 3 shows theMI for different firing thresholds of the sin-
gle neuron. The results illustrate a non-linear dependency of MI
on connectivity rate and firing probability of inputs. An increase
in firing threshold leads to a shift of high MI to right. Figure 4
shows MI for different firing threshold at low and high connec-
tivity rate, 0.2 and 0.8, respectively. The results show that for a low
connectivity rate (equal to 0.2) increase in θ leads to a decrease in
average MI while it increases MI for high connectivity rate.

To generalize the simulation of the effect of feedback inhibi-
tion on MI of a single neuron, MI was measured for different
inhibition parameter values (Figure 5). The results show the exis-
tence of a possible optimal inhibition parameter value for a given
connectivity rate (see also Figure 2).

Figure 6 shows the optimal inhibition parameter equal to 0.7
for both low and high connectivity rates.

Figure 7 shows the separation efficiency of the DG calcu-
lated for different firing probabilities of activated neurons in
the EC and connectivity rate between the EC and the DG.
Figure 7A shows the separation efficiency in the absence of

feedback inhibition effect on neural activity of the DG. For low
connectivity rate (between 0.05 and 0.15), an increase in firing
probability leads to an increase in separation efficiency while for
higher connectivity rates it causes decrease in separation effi-
ciency. The cause of a decrease in separation efficiency for higher
firing rates is the increase in the number of activated neurons in
the DG in response to separated inputs (activated sets of neurons
in the EC) which consequently results in the overlap of the DG
activated neurons by separated inputs from the EC. Moreover,
increase in the number of activated neurons in the DG associates
with an increase in the average firing frequency of activated neu-
rons in the DG (Figure 8A right panel). Feedback inhibition with
a different α value leads to change in separation efficiency for
different connectivity rates of the EC andDG, and firing probabil-
ity of the EC. The optimal parameter value to obtain maximum
separation efficiency among the α values (0.05, 0.1, 0.15,...1) is
α =0.2 (Figures 7A–D). The optimal α value (to obtain maxi-
mum pattern separation efficiency) causes a low average firing
frequency in activated neurons in the DG in response to inputs

FIGURE 3 | Mutual information for different parameters values.
Mutual information is calculated for a connectivity rate between the EC
and the single neuron, firing probability of activated neurons in the neural
layer and firing threshold of the single neuron between 2 and 5 (A–D).

An increase in firing threshold leads to a shift of high mutual information
values to right (higher firing probability of neurons in the neural layer) for
all connectivity rates. Two connectivity rates (0.2 and 0.8) are studied
(shown in Figure 4).
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FIGURE 4 | Mutual information for low and high connectivity rates. The
average mutual information for a low connectivity rate equal to 0.2 is
decreased by increasing firing threshold while it is increased for high
connectivity rate equal to 0.8.

from the EC (Figure 8B right panel). To obtainmaximum separa-
tion efficiency, feedback inhibition with high inhibition intensity
(α =0.2) is required when different probabilities of inputs are
presented to the DG.

The input to the EC may have different intensities as dif-
ferent firing probability of neurons in the EC. Therefore, the
average pattern separation efficiency for different connectivity
between the EC and the DG was measured over firing proba-
bilities of the EC (Figure 9A). The results show that α = 0.2
helps the DG to keep its average separation efficiency at high level
(optimal inhibition parameter in regard to maximum separation
efficiency; Figure 9A). This inhibition parameter value causes a
low firing frequency in activated neurons in the DG (Figure 9B).
The inhibition intensity equal to 0.2 (α = 0.2) leads to a low
encoding efficiency as compared to the absence of inhibition
(Figure 9C).

Discussion

Animals receive large amounts of information from different
source of stimuli and encode them efficiently in different parts
of their brains. Neural encoding is essentially performed by
single neurons while the functionality of neural systems strongly
depends on the activity of neural populations. Single neurons

FIGURE 5 | The effect of feedback inhibition on mutual
information. Mutual information as single neuron’s encoding
efficiency for all connectivity rates and firing probability depends
on the feedback inhibition parameter value. A decrease in

inhibition parameter value leads to an increase in mutual information
(A–C) but lower values (high inhibition intensity) lead to a decrease in
mutual information (D). This observation motivates the search for an
optimal inhibition parameter.
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FIGURE 6 | Optimal inhibition parameter for low and high connectivity rates. Average mutual information (single neuron’s encoding efficiency) was measured
for θ =2 and for connectivity rates equal to 0.2 and 0.8. The results show that optimal inhibition parameter (α) for both connectivity rates is 0.7.

FIGURE 7 | Separation efficiency of the DG for different firing
probabilities of activated neurons in the EC, and connectivity rates
between the EC and DG. (A) In the absence of feedback inhibition, an
increase in connectivity rate leads to a decrease in separation efficiency when
incremental firing probability of neurons in the EC is presented. (B) In the

presence of feedback inhibition, different inhibition intensities as different α

values leads to different separation efficiency (α =0.1). (C) α =0.2 (D) α =0.3.
Feedback inhibition with α =0.2 leads to high separation efficiency while
decrease in α value (high inhibition intensity) causes deficiency in separation of
pattern by suppressing the activity of neurons in the DG.
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FIGURE 8 | Separation efficiency of the DG versus average firing
probability of neurons in the DG. (A) In absence of feedback inhibition
separation efficiency is decreased by increase in firing probability of neurons
in the EC for connectivity rates higher than 0.1 (left panel) while the average
firing probability of activated neurons in the DG is raised (right panel). (B) In

presence of optimal inhibition parameter (α =0.2) increase in separation
efficiency for all connectivity rates and firing probability of inputs in the EC is
observed (left panel) while the average firing probability of activated neurons
in the DG is decreased remarkably as a consequence of high inhibition
intensity (right panel).

in a neural ensemble integrate their inputs and generate output
as spiking trains with different firing rates. Synchronization of
neural activities and their role in neural systems is an exam-
ple of population coding performed by the animal brain (Jiao
et al., 2015). Therefore, encoding by single neurons and neural
populations is critical to study the role of structural and func-
tional parameters involved in information processing. Moreover,
finding these parameter values shed light on the principles of
designing efficient bio-inspired neural systems. Years of research
have demonstrated the vital role of the hippocampus in informa-
tion processing including memory. Although many neuron types
in rodent’s hippocampus have been detected and named, how-
ever, the role of inhibitory neurons and their high variability is
not known. Specially, the balanced excitation and inhibition plays
a critical role in neural communication (Roux and Buzsáki, 2014;
Vega-Flores et al., 2014). In addition, the connectivity rate of dif-
ferent regions of hippocampus is under research as it may play
an important role in normal and disorders with hippocampal
dysfunction (e.g., Schizophrenia). The main information path-
way in hippocampus is known such that separation of input

patterns presented to the ECII has been assigned to the DG
(Yassa and Stark, 2011). Hence, theoretical studies and simu-
lations may help to study structural and functional parameters
in the hippocampus that are difficult to assess by experiments.
Pattern separation as a critical function of the DG depends on
many parameters that we have modeled in the current study.
Two well-known phenomena in the DG are ‘sparse coding’ as
low number of activated neurons in the DG (about 4%) and
‘sparse spiking of single neurons.’ Sparse coding which may play
a fundamental role in pattern separation capability of the DG.
However, the role of sparse spiking of the DG excitatory neu-
rons (low firing rate of DG neurons) in information processing
of the DG has not been studied yet. It is noticeable to con-
sider the role of neurons number in the EC and the DG with
ratio about 1:5 which may act as an important structural fea-
ture of hippocampus to diverge information from the EC to the
DG and so consequently to improve pattern separation efficiency
of the DG. Such divergences of information and sparse spiking
have been detected in the Mushroom Body as insects’ memory
center (Heisenberg, 2003). Therefore, sparse coding and sparse
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FIGURE 9 | Comparing average separation efficiency of the DG, the
average firing frequency of the DG and average single neurons
efficiency in the DG for optimal inhibition parameter value and without
inhibition. (A) Average separation efficiency over different firing probability of
EC. In the presence of optimal inhibition for all connectivity rates between the
EC and DG, high separation efficiency for the DG is obtained while in the
absence of inhibition increase in connectivity leads to low separation efficiency.

(B) Average firing frequency over different firing probability of EC. In the
presence of optimal inhibition parameter value very low firing frequency is
obtained for all connectivity rates between the EC and the DG. (C) Average
single neurons encoding efficiency over different firing probability of EC. In the
presence of optimal inhibition parameter value, low MI as the measure of
encoding efficiency is obtained, comparing to the absence of inhibition for
different connectivity rates between the EC and the DG.

spiking may be common features of animals’ memory centers
which enable them to store huge amount of information with
different intensities.

In this work, we developed a computational model using
experimental information available on hippocampus to address
some questions. The first problem is the role of connectivity rate
between the EC and the DG, and firing probability of activated
neurons in the EC in the separation efficiency of the DG. The
next question is about information transferred from the EC into
the DG neurons regarding their low firing frequency. The last
problem is to study the role of feedback inhibition in pattern
separation efficiency of the DG and sparse spiking of the DG
neurons.

Modeling of a single neuron’s encoding efficiency has shown
that high or low connectivity rate of the EC and the DG and/or
low or high firing probability of activated neurons in the EC may
cause remarkable decrease in encoding efficiency of single neu-
rons in the DG. It occurs as a consequence of low variation in
spiking pattern of neurons (vanSteveninck et al., 1997). In this
process, feedback inhibition with optimal intensity (here as 0.7)

can play an important role in neural encoding of single neu-
rons for different connectivity rates of the EC and the DG, and
firing probability of neurons in the EC. Different connectivity
rates of the EC and the DG, and firing probability of the EC
neurons affect the number of activated neurons in neural popula-
tion of the DG and their firing probabilities as well. Therefore,
one can expect that there are optimal values for these param-
eters to obtain maximum separation efficiency of the DG. In
this study, simulations have shown that in the absence of feed-
back inhibition, for low connectivity rate between the EC and
the DG (<0.15) for all firing probabilities of the EC neurons,
high separation efficiency is obtained. For other connectivity val-
ues, increase in firing probability of the EC neurons can lead
to decrease in separation efficiency. Further, feedback inhibition
with an optimal value (about 0.2) can help the DG to illustrate
high separation efficiency when incremental firing probability of
the EC neurons is presented. However, this optimal inhibition
intensity which results in high separation efficiency, on one the
hand, leads to low encoding efficiency, and on the other hand,
causes low firing frequency of the DG neurons (on average 0.06).
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These simulations explain why neurons in the DG have low fir-
ing frequency (sparse spiking) and high separation efficiency.
Low firing frequency of the DG neurons may be considered
as the expense of having high separation efficiency but low
encoding efficiency of single neurons may lead to the defi-
ciency of the DG to encode small changes in input’s intensity.
In other words, similar input patterns should not be encoded
in the DG. The high capability of the DG to separate similar
patterns regarding its very low single neuron’s encoding effi-
ciency may be done by the activation of very low number of
neurons in the DG. Experiments have shown that about 4%
of the DG neurons are being activated in response to input
presentation to the EC. Therefore, the DG is able to sepa-
rate very similar input patterns to encode small fluctuations in
input intensity. In this study, we assume that inputs have no
overlap and it was used to measure separation of fully sepa-
rated inputs for different structural and physiological param-
eters. For future works, the separation efficiency of the DG
should be measured for inputs with different levels of similarities
(overlapped inputs from the EC) to model information pro-
cessing from the DG to CA3 and CA1. The simulations assign
a critical role for feedback inhibition on the DG neurons by
interneurons with an optimal parameter value that leads to low
single neurons efficiency. The neural substrate of the param-
eter value which was modeled as the inhibition intensity by
interneurons can be considered as the amount of neurotrans-
mitter release like GABA in response to the sum of inputs to
the interneuron. For better understanding of inhibitory neurons,
it is required to model interneurons’ activity using electrophys-
iological data and neural activity models. Such improvement
helps to explore the role of inhibitory synaptic plasticity and
its role in disorders related to the DG dysfunctions (Flores
and Méndez, 2014; Griffen and Maffei, 2014; Wang and Maffei,
2014).

Schizophrenia patients often show functional abnormalities
in memory. The dysfunction in the DG may lead to impair-
ments in memory and cognition capability. Moreover, molecular
and cellular evidences motivate to consider the DG as a brain
region involved in Schizophrenia (Das et al., 2014). The impaired
functionality of the DG to CA3 may reduce the pattern separa-
tion efficiency (Tamminga et al., 2010). Furthermore, reduction
in number of inhibitory interneurons in hippocampus has been
explored in Schizophrenia (Konradi et al., 2011). The experimen-
tal information integrated with the model presented here propose
a critical role of feedback inhibition in information processing in
the DG as pattern separator and its impairment in Schizophrenia;
the model predicts impaired inhibitory activity in the DG as a
cause of the disorder which should be experimentally checked.

The computational model presented in this work illustrates
the importance of the combination of theoretical measures with
simulations to understand the role of structural and physiological
parameters in biological neural systems. It also allows to model
information processing in any kind of neural system indepen-
dent of specific neural architectures or physiological constraints.
The model proposes a system neuroscience perspective on the
architecture of neural systems with high efficiency of information
processing independent of physiological constraints. Future work
should include other parameters or mechanisms that have been
discovered in neural communication to check their impact on
information processing by single neurons and neural populations
as well. Some of these mechanisms include synaptic computa-
tion and unreliable synapses where spiking dose not results in
neurotransmitter release.
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