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Before participating in a space mission, astronauts undergo parabolic-flight and
underwater training to facilitate their subsequent adaptation to weightlessness.
Unfortunately, similar training methods can’t be used to prepare re-adaptation to
planetary gravity. Here, we propose a quick, simple and inexpensive approach that
could be used to prepare astronauts both for the absence and for the renewed
presence of gravity. This approach is based on motor imagery (MI), a process in
which actions are produced in working memory without any overt output. Training
protocols based on MI have repeatedly been shown to modify brain circuitry and to
improve motor performance in healthy young adults, healthy seniors and stroke victims,
and are routinely used to optimize performance of elite athletes. We propose to use
similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for
landing.
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When humans are exposed to weightlessness during spaceflight, they typically exhibit sensorimotor
deficits such as spatial disorientation, postural instability and reduced manual dexterity;
the symptoms gradually subside over a period of weeks to months, but often re-appear
after return to Earth (Clément and Ngo-Anh, 2013). Since these sensorimotor deficits are
unpleasant, degrade task performance and increase the risk of accidents, astronauts’ preflight
training includes activities during parabolic flight and water immersion, where they experience
weightlessness and can pre-adapt to it. Unfortunately, it is difficult to implement similar
training regimes to prepare astronauts for their return to Earth, due to the limited availability
of equipment and crew time. Here, we propose an approach for a pre-landing training, which
requires little time and instrumentation, and which is already used with success in sports. Like
astronauts, high-performance athletes face a limited availability of training equipment and
a shortage of time, and an established approach to overcome these constraints is the use of
motor imagery.

Motor imagery (MI) is a widely used experimental paradigm for the study of action planning
and representation (Jeannerod, 1994). MI is described as an active cognitive process during
which a specific action is internally reproduced in working memory, from a first-person
perspective, without any overt motor output (Decety and Grèzes, 1999). It typically includes
multiple sensory modalities, e.g., a person might mentally visualize her arm to move a ball,
mentally feel her muscles to contract, and mentally hear the ball’s ‘‘thump’’ against the ground
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(Weinberg, 2008). Compared to executed movements, imagined
movements have similar temporal structure, accuracy and
vividness (Guillot and Collet, 2005; Papaxanthis et al., 2012;
Schott, 2012), activate similar brain regions in the motor and
premotor cortices, the posterior parietal cortex, the basal ganglia
and the cerebellum (Jeannerod, 2001; Munzert and Zentgraf,
2009), and are associated with similar autonomic responses
(Decety et al., 1991; Mulder et al., 2005).

When motor imagery is scheduled repeatedly rather than
just once, for the purposes of training or therapy, it is
usually referred to as mental practice (MP; Driskell et al.,
1994). It has been documented that MP can improve several
aspects of motor performance such as muscle strength (see
Yue and Cole, 1992; Ranganathan et al., 2004), movement
execution and accuracy (Pascual-Leone et al., 1995; Yágüez
et al., 1998; Gentili et al., 2004, 2010), and movement quality
(Vogt, 1995). These changes of performance are paralleled by
changes of the underlying neuronal circuitry. In a seminal
study, Pascual-Leone et al. (1995) used transcranial magnetic
stimulation (TMS) to investigate the cortical representation
of the hand before and after a 5-day practice of a five-
finger exercise on the piano, performed physically in one
group and by mental practice in another group. Both groups
improved their performance in terms of accuracy and temporal
consistency, and the cortical representation of long finger flexor
and extensor muscles in contralateral M1 expanded similarly
in both groups. Another study (Clark et al., 2014) reported
that 4 weeks of wrist-hand immobilization in a control group
severely reduced muscle force, impaired voluntary activation
and prolonged corticospinal inhibition as assessed by TMS,
while the same immobilization in an MP group that practiced
5 days per week reduced muscle force only about half as much,
and completely prevented the prolongation of corticospinal
inhibition. Similar effects were observed in a group of elderly
patients with distal radius fracture (Schott et al., 2013a).
Here, the MP group received a 6 weeks regimen consisting
of 45 min training every weekday. A significant increase in
grip strength and range of motion was observed compared
to the control group. Lacourse et al. (2005) observed that
1 week of hand-movement training increases the hemodynamic
response of the primary and secondary motor cortex and of
the cerebellum by a comparable amount in a physical-practice
and in a mental-practice group. Thus taken together, benefits
of PM have been reported both at the behavioral and ant
the neuronal level for healthy subjects as well as young and
elderly patients.

It might seem surprising that MP enhances motor
performance even though it provides no sensory feedback
from body motion and the environment. The concept of
internal models offers a theoretical explanation of this
phenomenon. It is thought that neural mechanisms within
our sensorimotor system use the currently issued motor
commands to simulate the upcoming movement and its sensory
consequences; the output of these so-called forward internal
models (Kawato et al., 1987) is normally combined with—noisy
and delayed—sensory feedback to provide accurate and precise
movement estimations (Wolpert et al., 1995). Imagery of

movements provides no sensory feedback, but the output
of forward internal models is still available for movement
estimation (Miall and Wolpert, 1996; Wolpert and Flanagan,
2001). During physical practice, movement estimations serve
to refine future motor commands by generating an internal
training signal that modifies plastic neural processes (Wolpert
et al., 1995; Kawato, 1999; Desmurget and Grafton, 2000) and
the same may hold during MP as well, only that the training
signal may be less accurate and precise due to the lack of sensory
feedback.

Studies on motor imagery in sports can be subdivided
into three broad categories. One of them administers a single
session of motor imagery along with relaxation techniques
prior to a competition; this can enhance athletes’ subsequent
performance, probably by adjusting their arousal level and
attention focus, and by reducing their anxiety (Hinshaw, 1991;
Weinberg, 2008). The second category administers repeated
sessions of motor imagery (i.e., MP) as well as of physical
exercise; it has been shown that MP enhances progress beyond
that achieved by physical practice alone, possibly by serving
as a catalyst or as a genuine training stimulus (Taktek, 2004;
Weinberg, 2008; Malouin et al., 2013; Vogt et al., 2013).
The third category of sports-related research deals with pure
mental practice; it reports that MP is efficient, albeit less
efficient than pure physical practice (Hinshaw, 1991; Driskell
et al., 1994; Schott et al., 2013b). This category is in use
for more than 60 years (Twining, 1949); it produced training
benefits on tasks ranging from muscle strength building (Wright
and Smith, 2009) to gymnastic jumps (Smith et al., 2007),
ball games (Wakefield and Smith, 2009; Ramsey et al., 2010)
and ski slalom (Callow et al., 2006). The three categories
of sports-related imagery research are not equally relevant
for pre-landing countermeasures. The first category is less
critical since astronauts’ mental preparation for re-entry is
typically well developed. The second category is unsuitable
for inflight use since imagery training can’t be combined
with physical training under terrestrial conditions.1 The third
category, however, could form a useful approach for pre-landing
countermeasures.

MP has been used with success not only in sports, but also
in a range of other disciplines. It has been applied to train
surgical skills (Immenroth et al., 2007; Cocks et al., 2014),
enhance music performance (Keller, 2012), improve balance in
the elderly (Hamel and Lajoie, 2005), and support orthopedic
and neurological rehabilitation (Jackson et al., 2001; Schott
and Korbus, 2014). Several frameworks have been presented in
the literature to define the key components of successful MP
(for an overview see Guillot and Collet, 2008; Schott et al.,
2013a); among them, the PETTLEP model (Holmes and Collins,
2001) emerged as the most promising one. This framework is
elaborated by the Functional Equivalence Model, which states

1Although payload such as treadmills equipped with bungee cords is available
aboard the ISS, such hardware simulates some but not other impacts of
terrestrial gravity. This hardware is valuable for the training of strength
and endurance, but it would be inadequate for the training of sensorimotor
coordination where it even might produce negative transfer.
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that motor imagery should resemble the actual task in seven
critical aspects, summarized by the acronym PETTLEP (Holmes
and Collins, 2001). This acronym stands for Physical (body
should assume the same physical postures as in the actual
task, rather than being relaxed as in many earlier studies),
Environment (imagery should include the same architecture
and furnishing as the actual task), Task (same body and eye
movements, muscle tensions, heart rate, dry mouth etc. as in
actual task), Timing (not in slow motion as in some earlier
studies), Learning (imagery should be modified as practice
progresses), Emotion (same excitement and arousal as with
actual task, but avoid negative feelings) and Perspective (the 1st
person perspective is more efficient in most tasks, but there
are exceptions).

It became standard practice within the last decade to
guide subjects’ motor imagery by scripts. This approach has
been formalized in detail by Eberspächer and colleagues
(Immenroth et al., 2007). First, experimenter and trainees
observe and discuss the desired motor activity and its
sensory, autonomic and emotional concomitants. The outcome
is then fixed in written form to enhance precision. The
activity is subsequently broken down into key components
or ‘‘nodal points’’, and each nodal point obtains a verbal
label such that calling it up is facilitated. In a final step,
the key characteristics are marked symbolically, i.e., they are
renamed as individual short formulae (e.g., up—centered or
pull—release for dorsal flexion). The aim is the compression
of the information (cognitive chunking) of body postures and
movements. The image should thus be approximated to the
dynamics and temporal duration of the real movement. In
each session, the trainee reads or hears the script and then
engages in the pertinent imagery. Due to findings of Yao
et al. (2013), that mental imagery is most effective with a
kinesthetic focus, the training process should aim at that
modality.

A series of experiments by Smith and colleagues (Smith
et al., 2007) provides good examples for successful motor
imagery training based on PETTLEP and scripting. The
experimenter formulated with each trainee an individualized
script which included descriptions of visual and kinesthetic
inputs, motor outcomes, smells and emotions; these scripts
were modified as practice progressed, to satisfy the Learning
principle of PETTLEP. Imagery sessions were scheduled
in the trainees’ normal sports facility, with participants
wearing their normal sports clothes. PETLEP training
was not as effective as physical training, but was more
effective than standard imagery in seated and relaxed
subjects.

Given its success on Earth, MP based on PETTLEP and
scripting could also be useful for pre-adapting astronauts to the
terrestrial environment while they are still in orbit. We suggest a
training regime where individualized scripts are established and
refined before launch, and are used for MP during the final days
before landing.

The first phase would take place on Earth, in the
astronauts’ familiar environment. They would wear their
regular outfit and perform their typical daily activities such

as standing up, walking with and without a load, sitting
down, manually retrieving, handling and replacing of objects,
etc. Astronauts would then engage in mental practice of
these activities, using the scripts, to provide the individually
relevant functional, sensory and emotional aspects of the
reference movements, their dynamics and their timing. In a
next step, astronauts would elaborate the key characteristics
of the activities in form of scripts. To this end, they
assume and maintain the starting posture of the respective
physical movement, execute the activities with eyes open,
with eyes closed (to enhance kinesthetic perception, see Yao
et al., 2013) and mentally, and then report their sensations,
observations and emotions to the instructor. Once the scripts
are formulated in several iterative steps, the key movement
characteristics are marked symbolically, e.g., the sequence ‘‘stand
up—walk—turn—walk—sit down’’ could be labeled ‘‘TUG’’,
as in the timed-up-and-go test. To assess training progress,
astronauts would signal the onset and completion of each
imagined sub-movement to the observer by slightly lifting their
hand; the systematic and variable errors between the timing of
imagined and physical movements could then serve as markers
of progress.

The second phase would start several days before landing,
and consist of multiple sessions in which astronauts listen
to the short-formed scripts and then mentally imagine the
pertinent sensations, observations and emotions. They would
not engage in those activities physically, since in the absence
of gravity, this would defeat the purposes of training. Again,
astronauts would use hand signals to allow judgments of
their progress.

We expect that in analogy to MP in sports, MP before landing
will improve astronauts’ sensorimotor performance upon return
to Earth, and will thus serve as an effective countermeasure.
For example, practice of the above ‘‘TUG’’ script could enhance
astronauts’ ability for standing up and walking without assistance
after landing, and the benefit could generalize to other postural
tasks as well.

Mental practice could be applied to prepare astronauts
not only for the sudden onset of gravity upon landing, but
also to the sudden absence of gravity after launch. Presently,
this preparation is limited to parabolic flights—which offer
only brief periods of weightlessness that alternate with periods
of hypergravity, and to water immersion—which introduces
confounding factors such as viscosity, slight nitrogen narcosis
(Dalecki et al., 2012) and persistence of normal vestibular
inputs. Mental practice could offer an expedient alternative
or supplement to those established methods. Likewise, mental
practice could be applied to prepare astronauts for the landing
on and the launching from celestial bodies other than the
Earth. Finally, MP could be used as countermeasure for
decrements not only of motor skill, but also of muscular
force: particularly MP with kinesthetic imagery was found to
counteract the loss of muscle strength following immobilization
(Meugnot et al., 2015) without inducing muscular fatigue
(Rozand et al., 2014); the effects of MP on muscular force are
not much smaller than those of physical practice (Reiser et al.,
2011).
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