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Affect is the fundamental neuropsychological state combining value- and arousal-related processes
underpinning emotion and mood. A major goal of the emerging field of affective science is to
explain the mechanisms of valuation within the brain. A core network of brain activity is seen
across mammals in response to appetitive or aversive stimuli, and appears to be largely independent
of stimulus modality (Bissonette et al., 2014; Hayes et al., 2014a). However, the underlying
mechanisms of valuation (i.e., appetitive- and aversive-related brain activity) are unclear, and there
is particularly little information about how these two valuative networks interact. One candidate
which is likely central to the activity of both networks is the neurotransmitter γ-aminobutyric
acid (GABA). Here, I briefly discuss some of the evidence pointing to GABA as a central player
in mediating appetitive and aversive activity throughout the brain. The broader implication is that
the role of GABA in valuative processing may be at the heart of affective regulation, and thus also
important for a wide variety of psychological phenomena, from emotion (Stan et al., 2014) and
impulsivity (Hayes et al., 2014b) to sense of self (Wiebking et al., 2014a,b).

Keys to Understanding GABA Circuitry

An exploration of GABA in appetitive and aversive behavior began following its identification in the
mammalian brain (Roberts and Frankel, 1950). Although central dopamine was discovered seven
years later, many barriers to GABA-related research—including its relative ubiquity throughout
the brain, the robust effects of GABAergic drugs administered systemically (e.g., which can easily
lead to seizures or immobility), and little knowledge about GABAergic neurocircuitry—has led
to a much greater understanding of dopamine in this context (Iversen and Iversen, 2007). Early
advances in rodents were nonetheless made delineating key roles for GABA in consummatory
behavior, stress, and anxiety (Kelly et al., 1977; Biggio et al., 1990). Studies such as these revealed
that beyond dopamine, GABA was involved in mediating motivated behaviors in widespread, but
regionally-selective ways (Kelly et al., 1977), and that dynamic cortical and subcortical changes to
GABAergic microcircuits were involved (Biggio et al., 1990).

Improved mapping of the extensive brain GABAergic circuits (illustrated in Figure 1), coupled
with technological advances in detection and manipulation, have partly driven the recent focus of
the role of GABA, and its sister excitatory neurotransmitter glutamate, in value-related processing.
Moreover, structural advances have continued steadily, from the identification of key GABAergic
hubs, such as the basal ganglia and nucleus accumbens (Groenewegen and Russchen, 1984), tomore
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FIGURE 1 | Simplified schematic diagram of GABAergic circuitry

underlying valuative processing. Inhibitory connections, mainly

GABAergic, are indicated by black arrows; excitatory connections, which are

glutamatergic unless otherwise indicated, are indicated by green arrows.

Brain regions are grouped by neocortex (blue), basal ganglia (brown),

thalamus (orange), midbrain/mesencephalon (gray), amygdala (purple) and

brainstem (green) for illustrative purposes. Adapted from Dalley et al. (2011),

Squire et al. (2012), and Nieh et al. (2013).

recent elaborations on the nature of inter- and intra-regional
short and long-range GABAergic connections (Caputi et al.,
2013). GABA circuits are uniquely situated as both local
communicators and whole-brain integrators, given their
dynamic control over excitatory and inhibitory signal conduction
through axo-dendritic and astrocytic synapses (Frola et al., 2013)
and their role in broader oscillatory and synchronistic activities
(Melzer et al., 2012).

GABAergic interneurons, particularly parvalbumin-
containing, are fundamental drivers of cortical oscillations,
which emerging research suggests may be a fundamental
context-dependent mechanism for intra- and inter-regional
communication (Sohal, 2012; Jadi and Sejnowski, 2015). For
instance, beyond the hippocampus and select regions of the
neocortex, where these oscillations are better studied, there is also
evidence for GABA-driven oscillatory synchronization within
the striatum (Sharott et al., 2009)—a hub region connecting the
cortex to the basal ganglia and heavily involved in motivation
and valuative processing. Moreover, there is evidence that GABA
cells are necessary for sustained reward-related signaling, as
noted in a study of reversal learning in mice with decreased levels
of prefrontal cortical GABAergic interneurons (Bissonette et al.,
2015). Going forward, I briefly discuss a sample of recent studies
which support the fundamental role of GABA in valuative

processing and highlight future directions which will likely
contribute to advances in this area.

GABAergic Microcircuits Regulate
Valuative Networks

The present focus on GABA is not intended to ignore the
important role played by other neurotransmitters. GABA-
glutamatergic dynamics are fundamentally important for a
complete understanding of circuit dynamics, as has been
underscored by findings of neuronal co-release in value-related
regions (Root et al., 2014) and multimodal neuroimaging
studies in humans (Duncan et al., 2014). Nonetheless,
GABA likely plays a unique role in neural control as, for
instance, local and long-range GABAergic projections are
highly diffuse and GABAergic synapses can precisely target
the dendritic shafts of pyramidal cells, allowing for earlier
neuronal signal gating in comparison to glutamatergic synapses
(Chiu et al., 2013). Moreover, some GABAergic projections
are noted to bypass the typical brainstem-thalamo-cortical
and cortico-basal ganglia-thalamo-cortical connections,
including for instance the direct meso-cortico, meso-limbic
and pallidal-cortical pathways (Cohen et al., 2012; Nieh et al.,
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2013; Saunders et al., 2015)—see Figure 1 for illustrative
purposes.

Studies investigating neurotransmitter involvement in
combined appetitive and aversive processing are limited in
general and sparser for GABA (Hayes et al., 2014a). Existing
studies in rodents using combined electrophysiological and
optogenetic techniques have shown that the majority of ventral
tegmental area (VTA) cells respond to value-related stimuli. This
is interesting as one-third to half of VTA cells are GABAergic
(Swanson, 1982) and may also include cells which co-release
dopamine and GABA (Tritsch et al., 2012). While dopaminergic
cells typically increase activity to appetitive stimuli as might be
expected, some GABAergic cells can increase activity in response
to aversive stimuli, be modulated by reward cues (Cohen et al.,
2012), and also appear to help signal expected rewards (Lammel
et al., 2012). Many of these cells are flexibly responsive to both
appetitive and aversive cues, suggesting that they respond to the
learned value of the stimulus and not its static properties (Kim
et al., 2010). Networks of intra-VTA GABAergic cells, however,
show increased correlations to theta band power in response to
appetitive, but not aversive, cues (Kim et al., 2012) and so might
be involved in the integration of appetitive networks needed
to learn about, and maintain, reward-related behaviors such as
electrical brain self-stimulation (Steffensen et al., 2001; Lassen
et al., 2007).

Though the nucleus accumbens is comprised almost entirely
of short- and long-range GABAergic projections and is a
high-density region tasked with integrating motor, sensory,
and valuative/motivational signals (Mogenson et al., 1980),
it has been underexplored in this context (Carlezon and
Thomas, 2009; Hayes et al., 2014a,b). Feeding studies have
shown that presumably inhibiting the GABAergic cells of the
accumbens shell corresponds to increases in appetitive feeding
behaviors (Stratford and Kelley, 1997). Others have identified
a rostrocaudal gradient in the shell, whereby GABAA receptor
activation in the rostral shell leads to increases in appetitive
feeding, conditioned place preference and sucrose responding,
and caudal activation results in aversive, defensive, behaviors
(Reynolds and Berridge, 2002). Although our group found
similar orexigenic effects of GABAergic drugs in the rostral
shell, we noted a clear increase and decrease in electrical brain
self-stimulation following intra-accumbens GABAA receptor
blockade and stimulation, respectively, at the same injection
sites (Hayes et al., 2011). These seemingly opposing results
suggest that although GABAergic accumbens microcircuits are
fundamental to valuative processing, subtle differences in their
activation are likely involved in differentiating responses to
different kinds of appetitive and aversive stimuli. One clear
possibility is that valuative GABAergic signaling is context-
dependent on the temporal interplay with other biochemicals,
such as glutamate (Clements and Greenshaw, 2005; Richard and
Berridge, 2011).

The evidence for GABA as a central regulator in valuative
processing is not simply limited to the VTA or accumbens. For
instance, the GABAergic lateral habenula inhibits VTA-related
medial prefrontal cortex dopaminergic projections and local
GABAergic cells which are both tied to aversive processing and

behavioral output (Lammel et al., 2012; Shabel et al., 2012). The
activation of nucleus accumbens GABAergic cells are also known
to inhibit ventral pallidal activity (Wang et al., 2014), which is an
area that contributes to changes in valuative responding (Tindell
et al., 2004). For example, inactivation of pallidum by stimulating
inhibitory GABAA receptors results in the elimination of reward-
related saccade responding in rhesus monkeys (Tachibana and
Okihide, 2013). Interestingly, a recent study suggested that
increases in feeding following intra-pallidal, but not intra-
accumbens, GABAA receptor antagonism corresponded to a
specific “fat craving” signal instead of general increases in
appetitive activity (Covelo et al., 2014). Aversion-related activity
may also involve GABAergic inhibition of infralimbic cortex
in rats, a homolog to the primate medial prefrontal cortex, as
has been demonstrated by showing that pain-related GABAergic
inhibitions in the prefrontal cortex are reversed following
the local injection of GABAA receptor antagonists (Ji and
Neugebauer, 2011)—though infralimbic activation in the absence
of pain may also be anxiogenic (Bi et al., 2013). Moreover,
GABAA receptor activation in the infralimbic cortex increases
impulsive responding (Murphy et al., 2012), while activation in
the prelimbic cortex reduces aversive behaviors such as fear-
potentiated startle and freezing (Almada et al., 2015).

Beyond the regions of the extended amygdala noted above
(e.g., nucleus accumbens shell, habenula), the amygdala itself
is one region that deserves a brief note. Although its role in
processing aversive stimuli is well-established, our understanding
of its role in appetitive encoding is relatively recent —it is also
considered mainly as a singular structure in human studies,
though it is known to be made up of a number of uniquely-
connected nuclei (e.g., central, basolateral, and lateral) comprised
of differing cell types (Phelps and LeDoux, 2005; Janak and Tye,
2015). Few studies have looked at how this region processes
both appetitive and aversive stimuli and none have focused on
GABAergic cells. Studies in primates and rodents using single
cell basolateral and central area recordings showed that at least
half of the cells sampled were value-responsive, sensorymodality-
independent, consisted of general responders and those with
preferences for either appetitive or aversive stimuli, and that there
was no clear anatomical distribution for such cells across each
subregion (Paton et al., 2006; Belova et al., 2007, 2008; Shabel and
Janak, 2009). At least one study has also shown the importance
of safety signaling for cells throughout the basal amygdala,
identifying subpopulations of cells that respond to combinations
of value and safety cues (Sangha et al., 2013). Of further
interest, recent reports have described long-range GABAergic
hippocampal- and intra-amygdalar projections likely involved in
valuative processing (Bienvenu et al., 2015; McDonald and Zaric,
2015).

Taken together, and as underscored by Figure 1, these
studies support the hypothesis that interconnected GABAergic
microcircuits are a binding feature of valuative processing.
Indeed, these circuits may be at the heart of whole-brain
reinforcement or valuative networks (English et al., 2011; Vickery
et al., 2011). Moreover, they likely also contribute to the
intraregional integration and differentiation of appetitive and
aversive signals (Hayes et al., 2014a).
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Future Considerations

A corollary of the hypothesis above is the emphasis on
undiscovered intra- and inter-regional value-related GABAergic
signaling throughout the brain. In this vein, our group showed in
a human multimodal neuroimaging study that GABAA receptors
in medial prefrontal cortex are negatively correlated to aversive
signals in both the medial prefrontal region itself as well as
distant sensorimotor clusters, but that GABAA receptors within
different clusters of sensorimotor cortex respond differentially to
the context of aversive stimuli (Hayes et al., 2013). Moreover, we
reviewed the human and rodent literature on impulsivity and
GABA, and concluded that GABAergic networks throughout at
least cortico-basal ganglia regions acted as a common substrate
of impulsive behaviors (Hayes et al., 2014b).

We believe that affective/valuative networks are at the core of
many psychological phenomena, from emotion (Stan et al., 2014)
and impulsivity to sense of self (Wiebking et al., 2014a,b), and
may even be fundamental to the initial recruitment of cognitive
control (Inzlicht et al., 2015). Indeed, some neuroimaging studies
have identified a common wide-spread network of regions which
may be common to these processes (Northoff and Hayes, 2011;
Amft et al., 2015). Future studies using complex multimodal
neuroimaging approaches will be necessary to elaborate and
connect the present neural and biochemical findings in humans
(Duncan et al., 2014). These should also include in vivo
neuroanatomical explorations of affective circuitry white matter,
by for instance using recent advancements in multitensor
tractography (Chen et al., 2014).

Conceptually, it is important to note that when discussing a
“system” of any sort in neuroscience (e.g., GABAergic, valuative)
one is often taking a broad sum-of-parts operational definition.
Because the entirety, and mechanistic underpinnings, of such
systems are incomplete, and cannot be fully understood in
isolation, these terms become placeholders for our dynamic
knowledge (see LeDoux, 2012; Gross and Barrett, 2013; Hayes
et al., 2014a for related discussions). For example, future research
will have to continue to identify clusters of GABAergic cells
which make up value-processing microcircuits as well as their
connections to other value- and non-value related clusters,

including other cell types, such that a better understanding
of their true function becomes clearer (and probably resulting
in clearer delineations between multiple “systems”). Analogous
advances in network neuroscience have been made to identify

many major nodes/hubs (i.e., clusters), edges (i.e., connections),
and the interactions within and between such brain networks
(Behrens and Sporns, 2012)—while most of this work is being
done in humans, progress on the vast animal literature has
also been made (Ikemoto, 2010). At this point, the greatest
advances at the molecular-cellular level of understanding are
likely being made through the identification and spatiotemporal
electrochemical characterization of value-related microcircuits,
for instance in the traditional mesocorticolimbic circuit (e.g.,
Nieh et al., 2013; Lammel et al., 2014). Indeed, the bulk of
information connecting behavior to underlying mechanisms is
confined to this value-related circuit, with disparate results
for other areas. Moreover, behavioral-cellular/neurochemical
connections related to GABA have been mainly restricted to
single regions, such as the VTA, nucleus accumbens, and areas of
the prefrontal cortex, although recent experiments have focused
increasingly on inter-regional interactions (Lammel et al., 2012;
Shabel et al., 2012; Hayes et al., 2013; Wang et al., 2014).

Going forward, future studies will also need to clearly answer
the question of how brain areas within similar affective networks
parse aversion- and appetitive-related neural signals, while also
providing mechanisms for fast intraregional communication.
Recent reviews of the human and animal literature have provided
some insight to this question (Bissonette et al., 2014; Hayes
et al., 2014a; Lindquist et al., 2015), but more work is needed.
For instance, the significance, if any, of structures which show
asymmetrical activity is unclear, e.g., appetitive and aversive
stimuli may result in more dopamine in the right and left
accumbens, respectively (Besson and Louilot, 1995). Moreover,
how these neural processes are translated at the behavioral
or “cognitive” level is of equal importance. Can appetitive
and aversive stimuli be subjectively, consciously, experienced
simultaneously (Barrett et al., 2007)? Why do some people
experience painful experiences as pleasurable, and is there any
connection to those who prefer to self-administer aversive stimuli
rather than be alone with their own thoughts (Wilson et al.,
2014)?
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