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We present numerical simulations of metastable states in heterogeneous neural fields that
are connected along heteroclinic orbits. Such trajectories are possible representations of
transient neural activity as observed, for example, in the electroencephalogram. Based
on previous theoretical findings on learning algorithms for neural fields, we directly
construct synaptic weight kernels from Lotka-Volterra neural population dynamics
without supervised training approaches. We deliver a MATLAB neural field toolbox
validated by two examples of one- and two-dimensional neural fields. We demonstrate
trial-to-trial variability and distributed representations in our simulations which might
therefore be regarded as a proof-of-concept for more advanced neural field models of
metastable dynamics in neurophysiological data.

Keywords: neural fields, kernel construction, metastability, heteroclinic orbits, trial-to-trial variability, distributed
representations, sub-networks, sparsity

1. Introduction

Metastable states and transient dynamics between metastable states have received increasing
interest in the neuroscientific community in recent time. Beginning with Dietrich Lehmann’s
original idea to identify “atoms of thought” as metastable topographies, so-called brain microstates,
in spontaneous and event-related electroencephalograms (EEG) (Lehmann et al., 1987; Lehmann,
1989; Lehmann et al., 2009), experimentalists found accumulating evidence that metastability is
tentatively an important organization principle in neurodynamical systems. Mazor and Laurent
(2005), e.g., reported metastable states in the locust odor system (cf. Rabinovich et al., 2001, 2008a),
while Hudson et al. (2014) found metastability in the local field potentials of rats recovering from
anesthesia. For the analysis of human EEG, several segmentation techniques into metastable states
have recently been suggested by Hutt (2004), Allefeld et al. (2009), and beim Graben and Hutt
(2015).

From a theoretical perspective, metastable EEG topographies or components of the event-
related potential (ERP) have been identified with saddle-nodes in deterministic low-dimensional
systems by Hutt et al. (2000) and Hutt and Riedel (2003). Particularly, the discoveries of
winnerless competition (Rabinovich et al., 2001; Seliger et al., 2003) and heteroclinic orbits in
neural population dynamics (Afraimovich et al., 2004a,b; Rabinovich et al., 2008b) led to better
understanding of metastability and transient behavior in theoretical neuroscience. Winnerless
competition is ubiquitous in complex excitation-inhibition networks with strong asymmetries.
While symmetric connectivity usually leads to Hopfield-type attractor neural networks (Hopfield,
1982; Hertz et al., 1991) where transient dynamics is only observed for the motion from a basin
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of attraction toward an asymptotically stable fixed point
attractor, winnerless competition between neural Lotka-Volterra
populations (Fukai and Tanaka, 1997; Cowan, 2014) allows
for hierarchical transient computations, bifurcations, and the
resolution of sequential decision problems, as applied for
modeling speech processing (Kiebel et al., 2009), bird songs
(Yildiz and Kiebel, 2011), syntactic parsing (beim Graben
and Potthast, 2012), and, most recently, working memory
(Rabinovich et al., 2014a,b).

However, these phenomena have been investigated on the
rather abstract level of macroscopic neural populations so far,
without reference to the mesoscopic and microscopic levels
of spatially given nervous tissue and individual neurons. One
important approach to characterize the former, nervous tissue
at the mesoscopic scale, are neural fields, i.e., continuum
approximations of infinitely large neural networks (Coombes
et al.,, 2014). In a recent theoretical study, beim Graben and Hutt
(2014) investigated stationary states and heteroclinic dynamics
in neural fields with heterogeneous synaptic connectivity.
The present work applies this previous study to describe
experimentally observed transient neural activity as a proof-
of-concept of our theoretical approach. We propose a novel
hypothesis on the origin of trial-to-trial variability observed in
most experimental data, on episodic cell assembly dynamics and
on sparsely sampled neural representations.

Moreover, we disseminate our software implementation as a
MATLAB neural field toolbox to facilitate further research on this
intriguing field of computational neuroscience.

2. Materials and Methods

In this section we present some of the theoretical findings of
beim Graben and Hutt (2014) and indicate how they have been
implemented in our simulations.

2.1. Theoretical Background
An important representative of neural fields is given through the
Amari equation

D) e+ f we ) fluly, ) dy (1)
ot 2

describing the evolution of neural activity u(x, t) at site x €
Q c R and time ¢ (Amari, 1977). Here, Q is a d-dimensional
manifold, representing neural tissue. Moreover, w(x, y) is the
synaptic weight kernel, and f is a sigmoidal activation function,
usually chosen as f(u) = 1/(1 + exp(—B(u — 6))), with gain
B > 0,and threshold & > 0. The time scale of the dynamics, often
characterized by a particular time constant is implicitly included
in the kernel w(x, y).

The neural field described by Equation (1) is called
homogeneous when the kernel is translation invariant: w(x, y) =
w(x — y). If the field is not homogeneous it is called
heterogeneous.

Stationary states, v(x), of the Amari equation which are
obtained from du/dt = 0 obey the nonlinear Hammerstein

integral equation

V) = /Q W, Y)f () dy @)

By choosing a heterogeneous Pincherle-Goursat kernel (Veltz and
Faugeras, 2010)

w(x, y) = v(x)v(y) , (3)

and carrying out a linear stability analysis, beim Graben and
Hutt (2014) were able to prove that the stationary state v(x) is
either an asymptotically stable fixed point attractor, or a saddle
with a one-dimensional unstable manifold, ie., a metastable
state. Since such saddles could be connected along their stable
and unstable directions, heterogeneous neural fields may exhibit
stable heteroclinic sequences (SHS: Afraimovich et al., 2004b;
Rabinovich et al., 2008b).

Let {vi(x)}, 1 < k < nbe such a collection of metastable states
which we assume to be linearly independent. Then, this collection
possesses a biorthogonal system of adjoints {v,ir (x)} obeying

/ V;r ()vi(x) dx = S . (4)
Q

For the particular case of Lotka-Volterra neural populations,
described by activities &(t),

d n
% =& ok — D piki (5)
j=1

with growth rates o > 0, interaction weights py; > 0 and pg =
1 that are tuned according to the algorithm of Afraimovich et al.
(2004b) and Rabinovich et al. (2008b), the population amplitude

wi(t) = (% ©)

recruits its corresponding metastable state vy (x), leading to an
order parameter expansion

ux, ) =Y o)) (7)

k=1

of the neural field.

Under these assumptions, beim Graben and Potthast (2012)
and beim Graben and Hutt (2014) have explicitly constructed
the kernel w(x, y) through a power series expansion of the right-
hand-side of the Amari equation (Equation 1),

du(x, t) = —u(x, t) +/ wy (x, )’)u()’a t) dy )
at g

+ / / wa(x, y, 2)u(y, hu(z, t) dy dz
QJa
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with Pincherle-Goursat kernels!.

wi(x,y) = Y (ox + D) () 9)
k
wa(x,y,2) = = Y ooV v (2) - (10)
kj

Interestingly, the kernel wj(x, y) describes a Hebbian synapse
between sites y and x whereas the three-point kernel w(x, y, z)
further generalizes Hebbian learning to interactions between
three sites x, y, z of neural tissue.

2.2. Numerical Studies

For a numerical implementation of the theoretical results
above, we have to discretize time and space. Using MATLAB,
temporal discretization on the one hand is achieved through the
ordinary differential equation solver ode15s for stiff problems.
On the other hand, spatial discretization converts the kernels
wp and w, into tensors of rank two and three, respectively.
Consequently, the integrals in Equation (8) become contractions
over products of tensors and state vectors u(t). In order to
properly deal with tensor algebra, we use the Sandia Tensor
Toolbox?. Our neural field toolbox, thus obtained is available as
Supplementary Material. We evaluate our implementation in the
next subsections by means of two examples.

2.2.1. One-dimensional Neural Field
In our first simulation, we use a d = 1 dimensional neural field
where we choose n = 3 sine functions

Vi(x) = sin kx (11)

as metastable states on the domain Q = [0, 2] discretized with
a spatial grid of Ny = 100 sites. According to the orthogonality
relations

/ sin jx sin kx dx = 78k (12)
Q
we easily obtain the adjoint modes
+ .
vy (x) = —sinkx . (13)
b

For the temporal dynamics we prepare the stable heteroclinic
contour solving (Equation 5) used by beim Graben and Hutt
(2015) with o7 = 1,0, = 2,03 = 3. Metastable states vi(x)
and their population activities & () are shown in Figure 1.

We run simulations with one fixed initial condition and also
from an ensemble of 60 initial conditions randomly distributed in
the vicinity of the first saddle, where we add some small portion
of Gaussian observational noise (noise level o = 0.005) in order
to demonstrate trial-to-trial variability and hence event-related
phase decoherence (Jung et al., 2001; Makeig et al., 2002).

! There was a mistake in our previous reports (beim Graben and Potthast, 2012;
beim Graben and Hutt, 2014). Although the kernel construction has been correctly
derived, a minus sign was omitted in the final result for kernel w;(x, y, ). This is
corrected now.

2 http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html

2.2.2. Two-dimensional Neural Field
For our second demonstration, we assume a spatially distributed
response in a neural population to external stimuli triggering
a sequence of neural activity patterns. It is well-established
that sensory input features (Pasupathy and Connor, 2002)
at earlier stages of the object’s representation pathway and
memory (Rissman and Wagner, 2012) is encoded by distributed
cortical neural populations while objects are sparsely coded in
later stages of the representation pathway (Connor, 2005). Here
we consider a cortical neural population embedded in two-
dimensional space involving interleaved patterns. These patterns
are d = 2 dimensional gray scale bitmap images of the numbers>
1, 2, and 3 (see Figure 4 in Section 3.2). In the implementation,
these bitmaps are downsampled to a 20 x 20 grid and reshaped
into vectors with Ny = 400 elements. Adjoint patterns are
obtained as Moore-Penrose pseudoinverses (Hertz et al., 1991).
The temporal evolution of these patterns follows the same
heteroclinic contour as above. Here, the underlying working
assumption is the presence of interacting sub-networks, e.g.,
reflecting several distributed representations of signal features
or of pieces of working memory. The study predicts what one
expects to measure in single spatial locations while the neural
system encodes information in a spatially distributed population.

3. Results

The results of our simulation studies are presented in this section.

3.1. One-dimensional Neural Field

For the one-dimensional neural field we compare in Figure 2 the
prescribed spatiotemporal dynamics as resulting from the order
parameter expansion (Equation 7) with the solution of the Amari
(Equation 8).

Figure 2A shows the prescribed dynamics on a spatiotemporal
grid with time on the x-axis and space on the y-axis. The
instantaneous activations are therefore given by vertical slices.
Going from left to right, these slices first exhibit one wave crest
(in red at the bottom) and one wave trough (in blue at the top),
corresponding to metastable state v; (x). Around time t = 15 the
frequency doubles and metastable state v,(x) can be observed for
approximately seven ticks. The third metastable state met by the
trajectory around time ¢t = 21 is the mode with tripled frequency.
It is only stable for five ticks and evolves thereafter into the first
mode again.

In contrast, Figure 2B depicts the numerical solution of the
Amari equation (Equation 8). Obviously, no deviation is visible.

In order to draw neurophysiologically relevant conclusions
from our toy model, we consider the metastable states of the
heteroclinic contour as “synthetic ERP components” (Barres
etal.,, 2013) measured with “electrodes” at the particular sampling
points. Because ERPs are obtained from averaging spontaneous
EEG over ensembles of several trials that are time-locked to the
perception or processing of stimuli, we simulate 60 synthetic
ERP trials by randomly preparing initial conditions of the Amari
equation.

30Original images are taken from the webpage http://www.iconarchive.com/tag/
number-3 before modifications with respect to color and resolution.
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system (Equation 5). Blue: k = 1, green: k = 2, red: k = 3.

FIGURE 1 | Prescribed dynamics. (A) Three sinusoids as spatial patterns. (B) Stable heteroclinic contour resulting from winnerless competition in a Lotka-Volterra

order parameters
P
:

0 10 20 30 40 50 60
time / a.u.

A
e

0 10

20 30 40 50 60
time /a.u.

(Equation 8).

FIGURE 2 | One-dimensional spatiotemporal dynamics. (A) Prescribed trajectory from order parameter ansatz (Equation 7). (B) Solution of the Amari

(] 10 20 30 40 50 60
time /a.u.

The results are displayed in Figure 3 for four “measurement
electrodes” at positions 3, 21, 47, and 88. Interestingly, our
algorithm exhibited numerical instabilities in five runs which
have been marked as “rejected” outliers and excluded from
presentation. The resulting 55 trials are shown as colored traces
in Figure 3. At simulation start all signals are nicely coherent, but
later substantial phase dispersions take place (Jung et al., 2001;
Makeig et al., 2002).

We also calculated the ERP averages from our simulation
shown as bold black traces in Figure3. On the one hand,
the averaged ERP is much smoother than the noisy single
realizations which justifies averaging in our simulation. However,
the averaged ERP significantly decays in the course of time. This
is obviously due to the increasing phase decoherence (Jung et al.,
2001; Makeig et al., 2002).

3.2. Two-dimensional Neural Field
The numerical simulation of Equation (8)
sequence of two-dimensional transient

yields a
patterns  which

is shown as a sampled sequence of snapshot maps in
Figure 4.

According to the different growth rates oy of the populations,
pattern “1” stays the longest period of time, pattern “2” is visible
for a shorter period of time and pattern “3” can be seen for
the shortest period of time. These modes represent interweaved
spatial networks reflecting intrinsically stored activity patterns.

Now assuming that measurement of neural activity takes place
at discrete spatial locations (color-coded points in Figure 4), one
observes different transient dynamics dependent on the spatial
location of the measurement point that is shown in Figure 5.
Considering the red-coded spatial location, one observes strong
activity in the time periods when pattern “1” is active, and well-
reduced activity in the time windows of active patterns “2” and
“3.” Conversely, the activity at the blue-coded location defined in
Figure 4 raises only if pattern “3” is active, otherwise its activity is
well-reduced. The green-coded spatial location shows negligible
activity in time periods when pattern “1” is active while activity is
increased during the emergence of patterns “2” and “3.”
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FIGURE 3 | Four selected “recording sites” for neural field simulation with 55 randomly prepared initial conditions (colored traces) and “grand
average” (bold black trace). (A) At position: 3, (B) position 21, (C) position 47, (D) position 88.

0 10 20 30 40 50 60 70 80
time / a.u.

4. Discussion

In this paper, we presented a software implementation
(neural field toolbox) and numerical simulation results of
previously reported theoretical findings on metastable states
and heteroclinic dynamics in neural fields (beim Graben and
Potthast, 2012; beim Graben and Hutt, 2014). For the particular
case of Lotka-Volterra population dynamics and linearly
independent spatial modes, the synaptic weight kernel of the
Amari neural field equation (Amari, 1977) can be explicitly
constructed from the prescribed metastable states and their
evolution parameters as Pincherle-Goursat kernels. This is an
important finding as our kernel construction method is not a
standard training algorithm such as backpropagation (Igel et al.,
2001; beim Graben and Potthast, 2009). Yet it implements a
straightforward generalization of Hebbian learning algorithms
(beim Graben and Potthast, 2009; Potthast and beim Graben,
2009).

We validated our algorithm by means of two examples,
a one-dimensional neural field where metastable states are
three sinusoidal excitations over a line, and a two-dimensional
example where we have chosen three bitmap images as spatial

modes. The temporal dynamics was prescribed as a heteroclinic
contour connecting these three patterns in a closed loop. In
both simulations, the results were in exact agreement with the
prescribed trajectories.

Furthermore, we examined the issues of trial-to-trial
variability and distributed representations. In the first example
we created solutions for randomly prepared initial conditions,
thereby emulating phase resetting in event-related brain
potentials (ERP). We observed increasing phase decoherence in
the resulting ERP averages. Our model presents a theoretically
satisfying explanation for this ubiquitous experimental finding
(Jung et al, 2001; Makeig et al., 2002). Assuming that ERP
components are metastable states that are connected along
heteroclinic orbits (Hutt and Riedel, 2003; beim Graben and
Hutt, 2015), single ERP trials start from randomly distributed
initial conditions, sometimes closer and sometimes farther from
the respective metastable stable. These initial distances from
a metastable state result in acceleration and hence in velocity
differences in phase space, eventually leading to dispersion and
decoherence. Moreover, such a dependence on initial conditions
resembles previous experimental results by Pastalkova et al.
(2008) showing that identical experimental initial conditions
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FIGURE 4 | Two-dimensional spatiotemporal solution of model (Equation 8) considering spatial patterns of the numbers “1,” “2,” and “3” as spatial
modes vy (x), va(x), and v3(x), respectively. The three color-coded points denote three spatial locations whose temporal evolution is shown in Figure 5.
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FIGURE 5 | The time-dependent activity u(x,, t) at three spatial
locations x;, I = 1, 2, 3 defined in Figure 4. The upper gray-colored bars
denote the emergence time intervals of the corresponding patterns in

Figure 4. The color codes of the time series correspond to the respective
colors of the spatial locations in Figure 4.

in a motor task lead to identical sequences of cell assembly
activations, while different initial conditions yield different
sequences.

For the second example we considered the interaction
of three two-dimensional populations, cf. Figure4. The
transient passage of the system at metastable attractors has
been shown experimentally in previous studies, such as in
middle-latent auditory evoked potentials (Hutt and Riedel,
2003) or in the population response of olfactory projection
neurons to odor stimuli (Mazor and Laurent, 2005). For
instance, the study of Mazor and Laurent (2005) also shows
nicely the responses of single neurons in the population
revealing different activity in different neurons: some neurons
respond to the external stimulus, others remain silent. Such a
distinction in response can easily be explained by an insufficient
spatial sub-sampling in the measurement and the presence
of spatially distributed patterns. However, just spatial sub-
sampling does not explain the fully distinct activity of different
neurons, such as different episode neurons found in the
hippocampus (Pastalkova et al., 2008). Here, different neurons
show distinct episodic temporal activities. The equivalent
temporal evolution is shown in our simulations in Figure 5,
where the units at different spatial locations exhibit different
temporal sequences of activation that are highly correlated
to the presence of the respective pattern representations.
This difference results from interacting populations or cell
assemblies.
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The latter line of argumentation raises the question whether
it may explain previous results on sparse neural representations
or even may contribute to the question on the existence of
“grandmother cells” (Connor, 2005; Quiroga et al., 2005). At a
first glance, the present work assumes the existence of interacting
spatially distributed sub-networks and supports their existence
by a qualitative comparison to previous experimental results by
Mazor and Laurent (2005) and Pastalkova et al. (2008). Our
assumption of interacting sub-networks does not rule out sparse
neural representations since our modeling approach does not
stipulate contiguous spatial patterns but also allows for sparse
patterns as well.

Metastable neural field dynamics as an ubiquitous
organization principle of the brain is also consistent with
findings from neuroanatomy and cognitive neuroscience.
Anatomically, neural circuits comprise convergent and divergent
pathways between populations (Kandel et al.,, 1991). Assuming
that a particular sub-network gets activated by percolation
along a convergent pathway and deactivated along a divergent
pathway subsequently entails a saddle-node picture in its
phase space description, hence a metastable attractor. In
cognitive neuroscience, mental representations are regarded
as intermediate results of cognitive computations in discrete
time. In order to embed these into continuous physical time,
they have to be considered connected through continuous
trajectories along their stable and unstable directions, i.e., as
metastable states, again (beim Graben and Potthast, 2009,
2012).

The present study is a first step toward metastability in
neural fields. We hope that our work encourages further
research on metastability in neural fields to describe transient
neural dynamics by interacting populations and contribute to
the description of neural information storage, being either
distributed or sparse.
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