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It has long been known, in large part from animal studies, that the control of brown
adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS),
which integrates several stimuli in order to control BAT activation through the sympathetic
nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons
found in brain structures involved in homeostatic regulations and whose activity is
modulated by various factors including oscillations of energy fluxes. The characterization
of these neurons has always represented a challenging issue. The available literature
suggests that the neuronal circuits controlling BAT thermogenesis are largely part of
an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent
neurons. In the present review, we recapitulate the latest progresses in regards to
the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the
thermoregulatory pathway and its interactions with the energy balance systems in the
control of thermogenesis. We also reviewed the involvement of the brain melanocortin
and endocannabinoid systems as well as the emerging role of steroidogenic factor 1
(SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between
these systems and the homeostatic factors that modulate their activities.

Keywords: brown adipose tissue, melanocortin, endocannabinoid, hypothalamus, steroidogenic factor 1,
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INTRODUCTION

Brown adipose tissue (BAT) represents a major thermogenic effector. BAT is found in relative
abundance in small mammals, where it plays a key role in thermoregulatory thermogenesis
(Cannon and Nedergaard, 2004). Recent studies have confirmed not only its presence but also its
functionality in adult humans (Cypess et al., 2009; Virtanen et al., 2009; van Marken Lichtenbelt
et al., 2009; Ouellet et al., 2012), which has driven a renewed interest for the role of BAT in
energy balance regulation in relation with obesity. There currently is a therapeutic interest in
targeting BAT thermogenesis to treat excess fat deposition and related metabolic disorders (Chechi
et al., 2014). One other aspect that supports a role of BAT in energy balance regulation is the
involvement of brain neuronal circuits in the control of thermogenesis via the sympathetic
nervous system (SNS; Bartness and Ryu, 2015; Chechi and Richard, 2015). Indeed, most circuits
controlling BAT thermogenesis genuinely play roles in energy balance regulation (Richard and
Picard, 2011; Chechi et al., 2013). BAT thermogenesis control is insured by different brain
systems, essentially owing to the hypothalamus and the brainstem, that insure the autonomic
control of BAT (Richard, 2015). This review briefly overviews the role of the thermoregulatory
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pathway and its modulation by energy balance systems for
the purpose of thermogenesis. The review also addresses
three important hypothalamic homeostasis regulatory pathways
modulating BAT thermogenesis, which are the melanocortin and
endocannabinoid systems, as well as the steroidogenic factor
1 (SF1; also known as NR5A1) neurons of the ventromedial
hypothalamus (VMH). We further aim at clarifying how these
systems interact and how homeostatic hormones such as insulin
and leptin strategically modulate their activity.

BAT Thermogenesis
BAT is a specialized tissue whose main function is to
produce heat (Cannon and Nedergaard, 2004). It is present
in small mammals, allowing them to produce non-shivering
thermogenesis (NST) and therefore live in cold environments
without relying on muscle-derived shivering thermogenesis
(Cannon and Nedergaard, 2004). The thermogenic potential
of BAT owes to the presence of uncoupling protein 1
(UCP1), a protein uniquely found in the inner membrane of
the brown adipocyte numerous mitochondria, that uncouples
substrate oxidation from electron transport. In rodents, BAT is
‘‘classically’’ located in the interscapular, subscapular, axillary,
perirenal, and periaortic regions (Cannon and Nedergaard,
2004), while in humans, it is found in subscapular, cervical,
peri-spinal, mediastinal, periaortic, pericardial and periadrenal
regions (Cannon and Nedergaard, 2004; Lidell et al., 2014).
The thermogenic potential of BAT is remarkable, making it the
primary site of NST in rodents (Foster, 1974; Depocas et al.,
1978; Foster and Frydman, 1978). Impressively this tissue can
account for up to 75% of the increased metabolic rate induced
by noradrenaline (NA) in cold-adapted animals (Foster, 1984).
Importantly, BAT can burn up to 50% of ingested triglycerides
and 75% of ingested glucose (Nedergaard et al., 2011). We also
recently estimated that the BAT intracellular triglycerides pools
contributed to up to 84% of thermogenesis during an acute cold
challenge (Labbé et al., 2015). These estimations demonstrate
the undeniable ability of BAT to regulate systemic substrates
homeostasis.

Histologically, BAT cells differ from white adipose tissue
(WAT) adipocytes, the latter being considered as mainly fat
reservoirs containing few mitochondria and a single large lipid
droplet. Brown adipocytes, which can also develop in WAT in a
process referred to as ‘‘beiging’’ of WAT (Wu et al., 2012a, 2013)
contain numerous small lipid vacuoles surrounded by numerous
well-developed mitochondria (Lim et al., 2012), which contain
iron pigmented-cytochromes that are largely responsible for
the brownish color of BAT. Previous investigations (Timmons
et al., 2007; Seale et al., 2008; Tseng et al., 2008) have provided
compelling evidence that brown and white fat cells are not only
distinct histologically, but that they also origin from different
precursor cells (Shan et al., 2013; Sanchez-Gurmaches and
Guertin, 2014a,b). Accordingly, BAT cells in so-called classical
brown fat depots (listed above) share their origin with myogenic-
factor 5 (Myf5)-expressing cells, which are also precursors of
myocytes (Crisan et al., 2008; Kajimura and Saito, 2013). For
comprehensive overviews on the transcriptional mechanisms

that control adipose tissues development, we referred the reader
to other excellent reviews (Harms and Seale, 2013; Liu et al., 2013;
Wu et al., 2013; Sanchez-Gurmaches andGuertin, 2014b; Sidossis
and Kajimura, 2015).

SNS Control of Brown Adipose Tissue
BAT thermogenesis is highly dependent on the SNS (Bartness
et al., 2010; Bartness and Ryu, 2015). In fact, brown adipocytes
are richly innervated as evidenced by thyroxin hydroxylase
positive cells (Murano et al., 2009), and also highly expressed
the β3-adrenoreceptor, a Gs protein-coupled receptor primarily
involved in BAT thermogenesis (Cannon and Nedergaard, 2004;
Bartness et al., 2010; Richard and Picard, 2011). The release
of NA by SNS efferent postganglionic fibers and the binding
of this transmitter to the β3-adrenergic receptors (mostly)
lead to a cascade of metabolic events triggering unimpeded
substrate oxidation and ultimately heat production (Bachman
et al., 2002; Jimenez et al., 2002; Lowell and Bachman, 2003).
Mechanistically, the release of NA enhances brown adipocyte
thermogenic activity (heat production as such) by increasing
cyclic adenosine monophosphate (cAMP) levels, which in
turn activates the protein kinase A (PKA) and the ultimate
generation (through lipolysis) of fatty acids that serve as energy
substrate and UCP1 activators (Cannon and Nedergaard, 2004).
In addition, the enhanced SNS activity also increases BAT
thermogenic capacity (number of brown adipocytes, quantity
of mitochondria per adipocyte, expression of UCP1 and
accompanying thermogenic proteins; Cannon and Nedergaard,
2004; Nedergaard and Cannon, 2013). Importantly, conditions
such as cold exposure (cold-induced thermogenesis) and feeding
(diet-induced thermogenesis) are integrated by the central
nervous system (CNS) in order to stimulate brown adipocyte
thermogenesis. In addition, β3-adrenergic agonism, be it driven
by cold or drugs, also promotes the ‘‘beiging’’ of white fat,
which currently represents a major focus of attention in among
investigators addressing the brain control of thermogenesis
(Oldfield et al., 2002; Contreras et al., 2014; Bartness and Ryu,
2015; López et al., 2015).

The determination of the brain regions genuinely driving the
SNS outflow to BAT has been a challenging issue. In that regard,
retrograde transneuronal viral tracing using the pseudorabies
virus (PRV) have been of paramount importance in delineating
the brain regions as well as the neuronal circuits connected to
BAT and WAT (Bartness et al., 2005; Song et al., 2005). When
injected into BAT, PRV is retrogradely transported to the brain
via the SNS outflow, allowing for the identification of the origin
of the neuronal pathways connected to this tissue (Bamshad
et al., 1999; Song et al., 2008). These experiments demonstrated
that the SNS activity to BAT is governed by brain regions
involved in the regulation of body temperature (Nakamura and
Morrison, 2008) as well as in the regulation of energy balance
(Richard, 2015). In addition to the cold-activated pathways
(e.g., the thermoregulatory pathway), a number of hypothalamic
nuclei have been linked to the control of BAT thermogenesis to
allow diet-induced thermogenesis (e.g., the energy homeostasis
regulatory pathway). These nuclei especially include the
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FIGURE 1 | Hypothalamic control of brown adipose tissue thermogenesis. (A) Schematic and tentative representation of the hypothalamic structures involved
in the control of BAT thermogenesis. (B) POA is considered to be a major coordinator of thermoregulation as it receives inputs from thermoreceptors essentially
located in the skin. Within the POA, cold appears to signal mainly through the MnPO, where GABAergic neurons inhibit GABAergic neurons of the MPO. On the other
hand, warm activates glutamatergic neurons in the MnPO, which activate GABAergic neurons of the MPO. One important relay receiving inputs from the POA to
regulate BAT metabolism is the DMH. The GABAergic neurons of the MPO provide a negative tonic inhibition toward glutametergic neurons located in the DMH. DMH
neurons project to the rostral ventromedial medulla, apparently to the RPa, amain site of BAT SNS premotor neurons. NPY neurons of the DMH could apparently
also negatively affect BAT thermogenesis, possibly by inhibiting glutamatergic neurons located in the DMH itself. There also exists at least three important energy
homeostasis pathways for BAT thermogenesis. (C) The melanocortin system is a critical component for the maintenance of energy balance. In the ARC, NPY/AgRP
neurons inhibit, while POMC neurons (through the production of α-MSH) activate MC4R neurons located in the PVH. These neurons stimulate BAT thermogenesis.
However, their identity is actually unknown. Non-MC4R neurons expressing BDNF were also recently shown to regulate BAT metabolism. (D) The endocannabinoid
system represents another important system regulating BAT thermogenesis. We have recently shown that injection of ∆9-THC into the fourth ventricle blunts the
thermogenic effects of MTII injected in the PVH. This suggests that MC4R-CB1R neurons located in the PVH regulate BAT metabolism. (E) SF1 neurons of the VMH
are also well known to affect BAT thermogenesis. Converging evidence indicates that both AMPK and mTOR signaling are molecularly involved in this fine regulation.
The VMH neurons regulating thermogenesis seem to relay through hindbrain structures such as the RPa, OI or Sol. (C–E) It is noteworthy that in addition to
interacting together, these hypothalamic systems regulating BAT thermogenesis are modulated by important homeostatic hormones such as leptin and insulin.
Abbreviations: 5-HT, serotonine; α-MSH, α-melanocyte-stimulating hormone; ∆9-THC, ∆9-tetrahydrocannabinol; AMPK, AMP-activated protein kinase; ARC,
arcuate nucleus; BAT, brown adipose tissue; BDNF, brain-derived neurotrophic factor; CB1R, cannabinoid receptor type 1; DMH, dorsomedial hypothalamus, GABA,
gamma-aminobutyric acid; IML, intermediolateral nucleus; LH, lateral hypothalamus; MC4R, melanocortin receptor 4; MnPO, median preoptic area; MPO, medial
preoptic area; MTII, melanotan II; mTOR, mechanistic target of rapamycin; NPY, neuropeptide Y; OI, inferior olive; POA, preoptic area; POMC, proopiomelanocortin;
PVH, paraventricular hypothalamus; RPa, raphe pallidus; SF1, steroidogenic factor 1; Sol, nucleus of the solitary tract; VMH, ventromedial hypothalamus.

arcuate nucleus (ARC), preoptic area (POA), dorsomedial
hypothalamus (DMH), paraventricular hypothalamus (PVH),
lateral hypothalamus (LH) and ventromedial hypothalamus
(VMH; Richard, 2015; Figure 1A).

THE THERMOREGULATORY PATHWAY

The brain integration of information about external temperature
is insured by a complex neurocircuitry that includes several
brain nuclei. Within the hypothalamus, the POA is considered
to be a major coordinator of thermoregulation as it receives
inputs from thermoreceptors essentially located in the skin

(Osaka, 2004; Nakamura and Morrison, 2008, 2011; Morrison
et al., 2014; Figure 1B). The POA comprises the median
preoptic area (MnPO), the medial preoptic area (MPO), the
lateral preoptic area (LPO) and the preoptic periventricular
area (POP). Skin or direct POA cooling (Magoun et al., 1938;
Hammel et al., 1960; Imai-Matsumura et al., 1984; Martelli et al.,
2014) induces SNS activation of BAT in laboratory rodents.
Within the POA, cold appears to signal mainly through GABA
neurons to ultimately release an inhibition on the DMH neurons
triggering thermogenesis (Morrison et al., 2014). Furthermore,
the POA projects to other hypothalamic nuclei known to
control thermogenesis, including the VMH (Hogan et al., 1982;
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Imai-Matsumura et al., 1984; Preston et al., 1989) and PVH
(Horn et al., 1994; Caldeira et al., 1998; Zhang et al., 2000). For
a comprehensive overview on the central neural pathways for
thermoregulation, we referred the reader to excellent reviews by
Morrison et al. (2008, 2012, 2014).

One important relay receiving inputs from the POA to
regulate adipose tissues metabolism is the DMH. The DMH
plays a wide range of metabolic and behavioral function,
including body weight regulation (Bellinger and Bernardis,
2002). Stimulation and disinhibition of DMH neurons, by
parenchymal microinjection of respectively glutamate and
GABAA receptor antagonist, increases BAT thermogenesis and
elevates body core temperature (Figure 1B; Zaretskaia et al.,
2002; Cao et al., 2004; Dimicco and Zaretsky, 2007; Morrison
and Nakamura, 2011). A recent study also identified a subset
of DMH cholinergic neurons (Jeong et al., 2015), whose activity
was elevated by warm ambient temperature and associated
with a decrease in BAT activity and body temperature (Jeong
et al., 2015). Importantly, DMH lesion abolishes the ability
of external cooling or direct stimulation of the POA to
stimulate BAT thermogenesis (Hogan et al., 1982; Preston et al.,
1989; Monge-Roffarello et al., 2014a), reinforcing the fact that
POA activation of BAT involves the DMH. Also, consistent
with the fact that the DMH is an intermediate relay for
POA-dependent thermogenesis, neuronal tracing studies have
identified the POA as the region containing the largest number
of neurons retrogradely labeled from the DMH (Thompson
and Swanson, 1998). Many neurons in the POA are known
to be GABAergic (Okamura et al., 1990), and those that are
relevant to thermoregulation are thought to exert tonic inhibition
of downstream DMH neurons important for BAT activation
(Chen et al., 1998). Microinjection of bicuculline methiodide,
a GABAA receptor antagonist, is an efficient means of evoking
activation of neurons in the DMH that are involved in the SNS
control of BAT, suggesting that these neurons are restrained by
tonic GABAergic inhibition under normal circumstances. Thus,
GABAergic neurons in the POA are likely to provide a key source
of tonic inhibitory input to sympathoexcitatory neurons in the
DMH. It is important to note that DMH neurons do not directly
project to BAT SNS preganglionic neurons. Instead, DMH
neurons project to the rostral ventromedial medulla, apparently
to the RPa, the main site of BAT SNS premotor neurons
(Nakamura et al., 2005; Yoshida et al., 2009). Consequently, the
RPa could represent an essential component of this POA-DMH
thermoregulatory pathway.

Several groups have reported that neuropeptide Y (NPY) gene
expression increases in the DMH of obese animals (Kesterson
et al., 1997; Guan et al., 1998; Tritos et al., 1998; Bi et al.,
2001) or in animals with increased energy demands (Bi et al.,
2003; Kawaguchi et al., 2005). DMH-NPY overexpression leads
to hyperphagia and obesity (Yang et al., 2009), while DMH-
NPY knockdown protects against high-fat diet-induced obesity
(Chao et al., 2011). DMH-NPY knockdown also causes increased
expression of UCP1 in BAT (Chao et al., 2011). In support to
this observation, DMH-NPY knockdown results in an increase
in BAT thermogenesis as directly determined by a rise in BAT
temperature (Chao et al., 2011). At room temperature, BAT

temperature is significantly higher in rats having a DMH-NPY
knockdown (Chao et al., 2011). These data support a role for
DMH-NPY in modulating BAT thermogenesis and in affecting
energy expenditure. Moreover, knockdown of DMH-NPY in rats
was reported to increase the thermogenic response following
6 h of cold exposure (6◦C; Chao et al., 2011). Supporting these
results, it was demonstrated that NPY production as well as the
number of NPY-immunoreactive fibers decreased in the DMH
during an acute cold exposure context (2 h at 4◦C), possibly
to facilitate BAT thermogenesis (Park et al., 2007). Considering
all these evidences for a negative role of DMH-NPY neurons
on BAT thermogenesis, it is possible that the function of these
neurons is to inhibit the glutamatergic neurons located in the
DMH itself (Figure 1B).

HYPOTHALAMIC ENERGY HOMEOSTASIS
PATHWAYS OF BAT THERMOGENESIS

In addition to the thermoregulatory thermogenesis, the activity
of BAT might also be modulated by neurons that are part of
hypothalamic energy homeostasis regulatory pathways located
mainly in the ARC, PVH, LH and VMH (Chechi et al., 2013;
Stefanidis et al., 2014; Richard, 2015). These neurons are sensitive
to energy balance fluctuations and could also act independently
of the POA-DMH-RPa thermoregulatory circuit as in the case of
PVH neurons directly projecting to the IML (Zheng et al., 1995).
Over the last decades, it has become clear that the melanocortin
and endocannabinoid systems, as well as the SF1 neurons of the
VMH play a pivotal role in the hypothalamic energy homeostasis
regulatory pathways of thermogenesis.

The Melanocortin System in the Control
of BAT Thermogenesis
The brain melanocortin system is a critical component for the
maintenance of energy balance (De Jonghe et al., 2011; Xu
et al., 2011; Richard, 2015). It primarily consists of neurons
producing melanocortins and agouti-related peptide (AgRP)
together with neurons upon which the melanocortins and AgRP
act and which express the melanocortin receptors 3 (MC3R)
and 4 (MC4R). AgRP has been referred to as a melanocortin-
receptor inverse agonist (Ollmann et al., 1997) and more recently
as a possible ‘‘biased’’ agonist (Ghamari-Langroudi et al., 2015).
The activation of the melanocortin system essentially emerges
from the ARC, which represents one of the most acknowledged
hypothalamic nuclei in energy homeostasis (Schwartz et al.,
2000). The ARC includes at least two known populations of
neurons strongly involved in the regulation of energy balance.
One population co-synthesizes, together with AgRP, NPY and
gamma-aminobutyric acid (GABA), while the other synthesizes
pro-opiomelanocortin (POMC; Morton et al., 2006; Dietrich and
Horvath, 2013; Mercer et al., 2013). These neurons abundantly
project to the neuroendocrine and metabolic divisions of several
brain nuclei including the PVH, which constitutes an important
relay for the ARC neurons involved in energy balance regulation.
POMC neurons release α-melanocyte-stimulating hormone (α-
MSH), a peptidergic fragment produced following POMC
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cleavage. α-MSH has emerged, in rodents at least, to be the
melanocortin the most involved in energy balance. Within the
brain, α-MSH binds to MC4R, which likely represents the main
melanocortin receptor in energy balance regulation (Butler, 2006;
Ellacott and Cone, 2006; De Jonghe et al., 2011; Xu et al.,
2011). The melanocortin system has been linked to both energy
expenditure and food intake and thus likely represents a genuine
regulator of energy balance (Richard, 2015).

Early studies showing that numerous brain populations
of MC4R expressing-neurons are (poly)synaptically connected
to BAT, have contributed to underline the relevance of the
melanocortin system in the metabolic control of BAT activity
(Song et al., 2008). Consistently, pharmacological investigations
have established that the central injection of the melanocortin
receptors agonist melanotan II (MTII) directly into the PVH
leads to BAT thermogenesis (Figure 1C; Song et al., 2008;
Monge-Roffarello et al., 2014b). The functional significance
of this system in regulating BAT metabolic activity has
also been validated in Pomc knock-out (KO) and Mc4r-KO
mice, which exhibit widespread obesity resulting from both a
hyperphagic and hypometabolic phenotype (Butler and Cone,
2002). Consistently, this phenotype is characterized by a decrease
in cold-induced thermogenesis (Butler et al., 2001; Voss-Andreae
et al., 2007).

Mc4r mRNA is found in oxytocin positive cells (Siljee
et al., 2013), suggesting that oxytocin neurons could be good
candidates to connect MC4R signaling to BAT activation. In
that respect, retrograde transneuronal viral tracing experiments
performed in rodents have also demonstrated that BAT is
(poly)synapticaly connected to caudal PVH neurons expressing
oxytocin (Oldfield et al., 2002). It has also been shown that the
deletion of oxytocin or its receptor impaired BAT activation
induced by cold exposure (Kasahara et al., 2007) or high-fat
diet (Wu et al., 2012b), suggesting a direct involvement of
this population of PVH neurons in BAT regulation. However,
a recent report indicate that rescuing MC4R expression in
neither oxytocin nor corticotropin-releasing hormone (CRH)-
expressing neurons rescue food intake or energy expenditure
in Mc4r-KO mice (Shah et al., 2014). This observation tends to
exclude the direct involvement of these two neuronal populations
in the PVH MC4R signaling. Moreover, this study also excludes
the direct involvement of PVH vasopressin- and prodynorphin-
expressing neurons in MC4R-dependent BAT activation (Shah
et al., 2014). Interestingly, another study recently reported that
brain-derived neurotrophic factor (BDNF) neurons in the PVH
control both food intake and energy expenditure (An et al.,
2015). Accordingly, BDNF expression in the PVH was reported
to be increase following cold exposure, whereas its specific
ablation impairs BAT thermogenesis (Figure 1C; An et al., 2015).
However, BDNF neurons of the PVH did not expressed MC4R,
thus suggesting that the thermogenic effects ofMC4R in the PVH
occur in another unidentified population.

The POA represents an important hypothalamic area
expressing the MC4R. It is noteworthy that in hamsters
no less than 77% of the 589 neurons (some 450 neurons),
which are (poly)synaptically connected to interscapular BAT,
express MC4R (Song, 2005; Song et al., 2008). This group

of cells represents the second largest population of MC4R
neurons in the hypothalamus that are connected to interscapular
BAT (Song, 2005; Song et al., 2008). Recently, we have
demonstrated that pharmacological activation of MC4R (using
MTII) in MPO increases BAT temperature, CO2 production
and BAT non-esterified fatty acids (NEFA) uptake measured
by 14C-bromopalmitate (Figure 1B; Monge-Roffarello et al.,
2014a). This further suggests an important relation between the
thermoregulatory circuit and the melanocortin system in the
regulation of BAT thermogenesis. These data also suggest a
potential involvement of MC4R in cold-induced thermogenesis.
Accordingly, it was shown that the acute effects of cold
exposure seem to be mediated by MC4R, since mice lacking
MC4R exhibit a defect in BAT UCP1 expression after 4 h at
4◦C (Voss-Andreae et al., 2007). However, it is important to
mention that UCP1 in normally induced following a longer
cold exposure in Mc4r-KO mice, suggesting that melanocortin
system-mediated NTS is differentially modulated by chronic cold
or that alternative compensatory mechanisms develop. A recent
study also demonstrated the importance of MC4R in cholinergic
autonomic pre-ganglionic neurons in terms of regulation of cold-
induced thermogenesis and glucose homeostasis, reinforcing the
importance of MC4R in systemic metabolism, even in extra-
hypothalamic area (Berglund et al., 2014).

Supporting a relation between the melanocortin and
thermoregulatory pathways, our group have also recently
demonstrated that kainic acid lesion of the DMH blunts the
thermogenic effects of MPO activation by MTII (Figure 1B;
Monge-Roffarello et al., 2014a). Accordingly, we showed that the
DMH lesion blunts the increase of BAT temperature and NEFA
uptake, as well as the induction of thermogenic genes such as
Dio2 and Pgc1α, induced by the MTII injection in the MPO of
male rats (Monge-Roffarello et al., 2014a). Our data supported
previous findings suggesting that DMH could be involved in
the modulation of the melanocortin system activation through
BAT (Enriori et al., 2011). It is conceivable that MC4R-MPO
activation of BAT is mediated by a DMH relay in line with the
thermoregulatory network described in the previous section
(Morrison et al., 2014).

The Endocannabinoid System in the
Control of BAT Thermogenesis
Another important player in the hypothalamic energy
homeostasis regulatory pathway of thermogenesis appears
to be the endocannabinoid system. The CNS endocannabinoid
system includes neurons expressing the cannabinoid receptor
type 1 (CB1R). CB1R is one of the two identified cannabinoid
receptors and is expressed in energy-balance brain structures
(Richard et al., 2009) that produce or inactivate N-arachidonoyl
ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG),
the most abundantly formed and released endocannabinoids
(Di Marzo and Matias, 2005). It is well recognized that
the endocannabinoid system activation reduces energy
expenditure as administration of the cannabinoid receptor
agonist ∆9-tetrahydrocannabinol (∆9-THC) inhibits BAT
thermogenesis (Verty et al., 2011). Reliably, subchronic
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administration of rimonabant, a CB1R antagonist, has been
shown to enhance thermogenesis (Verty et al., 2009), while
this stimulatory effect was totally lost after denervation of
BAT (Bajzer et al., 2011). However, the mechanisms whereby
endocannabinoids affect energy homeostasis are still unclear.
Growing evidence nonetheless suggests an interaction with the
melanocortin system. Accordingly, we recently demonstrated
that the stimulatory effect of MTII injection into the PVH on
BAT temperature was blocked by the co-injection of ∆9-THC in
the fourth ventricle (Figure 1D; Monge-Roffarello et al., 2014b).
These results indicate that the endogenous endocannabinoids
could, via possibly a pre-synaptic effects exerted at the level
of the IML (or brainstem), inhibit the stimulating effects of
the PVH MC4R-containing neurons driving BAT activation.
Consistently it has been shown that hindbrain overexpression
of the hydrolase monoacylglycerol lipase (MGL), which can
inactivate 2AG, leads to an increase in BAT activity (Jung et al.,
2012), further supporting a role of the hindbrain CB1R neurons
in BAT thermogenesis.

The Steroidogenic-Factor 1 Neurons in the
Control of BAT Thermogenesis
The VMH has been implicated in a wide array of physiological
and behavioral processes since the classical lesion studies of
Hetherington and Ranson (Hetherington and Ranson, 1940;
Canteras et al., 1994; King, 2006). Several studies have in
fact confirmed that VMH lesions affect both body weight
and food intake (reviewed in Choi et al., 2013). In the 80’s,
many studies have supported the role of the VMH in the SNS
control of BAT. Convincingly, it was shown that the electrical
stimulation of the VMH increased BAT temperature in rats
(Perkins et al., 1981; Holt et al., 1987; Hugie et al., 1992). VMH
lesions/electrical stimulation were further demonstrated to affect
BAT NE turnover, indicative of a mobilization of the autonomic
nervous system (Yoshida and Bray, 1984; Saito et al., 1987).
Although these studies pointed out the relationship between
VMH and BAT thermogenesis, it was only recently that the
molecular events responsible for this thermogenic function were
investigated (Choi et al., 2013). This was made possible by the
discovery of SF1, an important target for VMH-specific genetic
manipulations.

The fact that CNS SF1 is restrictedly expressed in VMH
neurons has been exploited in the development of many VMH-
specific transgenic models (Bingham et al., 2006; Dhillon et al.,
2006). Sf1-KO mice revealed SF1 to be essential in establishing
the cytoarchitecture of the VMH (Ikeda et al., 1995; Shinoda
et al., 1995). As SF1 deletion led to neonatal lethality due to
adrenal insufficiency (SF1 is also expressed in adrenal glands
and gonads; Majdic et al., 2002), different approaches were
used to develop viable SF1 models. By transplanting adrenal
glands into Sf1-KO animals, neonatal lethality was circumvented,
and obesity was observed (Majdic et al., 2002). Accordingly,
investigators developed a post-natal VMH-specific Sf1-KO
model, using CamKII-Cre line, and observed a similar phenotype
explained by an impaired energy expenditure along with a
decrease in BAT UCP1 expression (Kim et al., 2011). Therefore,

the discovery of SF1 has shed light on the many facets of the SNS
control of BAT by the VMH. In recent years, the accessibility of
the SF1-Cre model has extended our understanding of the VMH-
dependent hormonal regulation of BAT.

How the VMH stimulation couples the SNS outflow to
BAT remains obscure. In that regard, it is noteworthy that
retrograde transneuronal viral tracing studies have not revealed
the VMH as a main hypothalamic structure in driving the
sympathetic outflow to BAT activation (Bamshad et al., 1999).
It has nonetheless been suggested that the RPa and inferior olive
could act as relays for the VMH neurons to modulate the SNS
outflow to BAT (Morrison, 1999). SF1 neurons in the VMH are
also known to project to several autonomic centers, including
the nucleus of the solitary tract (Sol; Lindberg et al., 2013;
Figure 1E). This raises a particular interest in the involvement
of brainstem structures in the regulation of BAT thermogenesis,
as Sol neurons have been shown to integrate several metabolic
signals influencing BAT activity (reviewed in Morrison et al.,
2014). Combining retrograde transneuronal viral tracing and the
use of SF1-cre lines could be a potential strategy to identify
missing links between the VMH and BAT thermogenesis.

A role for the endocannabinoid system in SF1-dependent
regulation of BAT activity was also suggested following the
observation that CB1R mRNA was highly expressed in the
VMH (Richard et al., 2009), and that the deletion of CB1R
in the hypothalamus led to an increase in energy expenditure
(Cardinal et al., 2012). Supporting this possibility, a recent
study in which CB1R was ablated in SF1-expressing neurons
demonstrated the importance of the VMH endocannabinoid
system in determining the metabolic adaptation to various
dietary conditions (Cardinal et al., 2014). Although no difference
was observed in terms of energy expenditure, this study did
not invalidate the potential involvement of VMH CB1R neurons
in regulating BAT thermogenesis since prenatal recombination
was used to generate the model. Growing evidence suggests that
the traditional genetic modifications that occur prenatally may
lead to compensatory mechanisms (Choi et al., 2013). In that
regards, it was recently showed that the expression pattern of
SF1 differs between prenatal and adult mice (Cheung et al.,
2013). The generation of an adult inducible SF1 model could be
instrumental in understanding the role of SF1 neurons on the
different metabolic variables that they affect.

HOMEOSTATIC MODULATION OF THE
REGULATORY SYSTEMS INVOLVED IN
BAT THERMOGENESIS

The adipocyte-derived hormone leptin is a key regulator of
energy balance as it acts in the brain to decrease food intake
and increase energy expenditure (Gautron and Elmquist, 2011).
As such, leptin is considered as a prominent catabolic hormone,
since disruption of the gene coding for leptin (ob/obmice) and/or
its receptor (db/db mice) induces massive obesity, resulting
from hyperphagia and reduced BAT thermogenesis (Thenen
and Mayer, 1976; Leiter et al., 1983; Malik and Young, 1996;
Mizuno et al., 1998; Goncalves et al., 2009). In the CNS,

Frontiers in Systems Neuroscience | www.frontiersin.org 6 November 2015 | Volume 9 | Article 150

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Labbe et al. Hypothalamus and BAT thermogenesis

insulin also acts as a catabolic hormone through stimulating
energy expenditure and reducing food intake (Menéndez and
Atrens, 1991; Varela and Horvath, 2012). The following section
described how these important homeostatic hormones affects
BAT thermogenesis, by acting on the different regulatory systems
and pathways that we have been described.

Homeostatic Modulation of the
Melanocortin System in the Control
of BAT Thermogenesis
Investigations aimed at identifying the ARC neurons involved in
BATmetabolism regulation have established that leptin receptors
(LEPR)-expressing neurons are (poly)synaptically connected to
BAT (Oldfield et al., 2002). In addition, the activities of POMC
and NPY/AgRP/GABA neurons have long been considered to be
directly modulated by energy reserve sensing hormones, such as
leptin (Varela and Horvath, 2012). Moreover, leptin is ineffective
in stimulating thermogenesis in Pomc-KO and Mc4r-KO mice,
reinforcing the notion that the melanocortin system is a major
relay for leptin-induced thermogenesis (Butler and Cone, 2002).
Although the role of leptin in mediating BAT thermogenesis is
well acknowledged, the molecular signaling pathway allowing
LEPR to activate BAT was only recently investigated. One
important candidate could be the phosphatidyl inositol 3-kinase
(PI3K), which is a downstream effector of both the leptin
and insulin receptors signaling. However, deletion of PI3K in
POMC neurons does not appear to lead to widespread obesity
and does not affect long term whole body weight regulation
(Hill et al., 2008). A recent study also revealed that POMC-
specific deletion of rho-associated protein kinase 1 (ROCK-1),
leads to mild adiposity, suggesting that leptin signaling in
these neurons involves ROCK-1 activation (Huang et al., 2012).
Besides, ROCK-1 ablation in AgRP neurons was also shown
to increase O2 consumption, suggesting that this protein is
also involved in leptin-induced inhibition of AgRP neurons
(Huang et al., 2013). However, ROCK-1 disruption in these
neuronal populations only induces mild obesity as compared
to the massive obesity observed in mice lacking LEPR in ARC
GABAergic neurons (Vong et al., 2011). Another study revealed
the importance of an intact leptin signaling for the regulation of
adipose tissues metabolism (Dodd et al., 2015). Indeed, ablation
of both protein tyrosine phosphatases PTP1B and TCPTP, two
important negative regulators of leptin signaling, in POMC
neurons, increased UCP1 expression and temperature in BAT
(Dodd et al., 2015).

Homeostatic Modulation of the VMH SF1
Neurons in the Control of BAT
Thermogenesis
VMH integrates many hormonal signals that could modulate
SNS-mediated BAT thermogenesis. There is evidence suggesting
that leptin signaling in the VMH plays a pivotal role in the
mediation of the SNS tone; injection of leptin into the VMH
increases glucose uptake in various tissues including BAT, an
effect that is blunted by the sympathetic denervation (Haque
et al., 1999; Minokoshi et al., 1999; Toda et al., 2009). The

recent generation of SF1-Cre transgenic lines allowed to further
understand the mechanisms whereby leptin acts in the VMH to
control BAT thermogenesis (Xu et al., 2010; Kim et al., 2011,
2012). Even if signal transducer and activator of transcription 3
(STAT3) signaling plays a major role in leptin’s control of energy
metabolism (Bates et al., 2003), recent attention has focused
on the implication of the PI3K signaling pathway in mediating
hypothalamic leptin actions (Hill et al., 2008). Accordingly, LEPR
and PI3K expression in SF1 neurons were both proven to be
required for normal body weight homeostasis (Dhillon et al.,
2006; Bingham et al., 2008; Xu et al., 2010). Leptin was also shown
to directly activate SF1 neurons since selective deletion of the
LEPR from these neurons induced obesity (Balthasar et al., 2004;
Dhillon et al., 2006; Bingham et al., 2008). In addition, mice with
reduced PI3K activity in the VMH proved to be more sensitive
to diet-induced obesity due to a reduced energy expenditure (Xu
et al., 2010). Altogether, these observations indicate an important
role for PI3K signaling in SF1 neurons in mediating the effects of
leptin on BAT thermogenesis.

PI3K is also phosphorylated and activated following insulin
receptor (IR) activation, and consequently plays a major role in
insulin function, mainly through the activation of protein kinase
B (Akt/PKB; Laplante and Sabatini, 2012). Forkhead box O1
(FoxO1) is a well-characterized transcriptional factor that target
Akt/PKB. Once activated, Akt/PKB phosphorylates FoxO1,
preventing its translocation to the nucleus. Hence, Akt/PKB
reduces the transcriptional activity of FoxO1. Interestingly,
mice lacking FoxO1 in SF1 neurons are lean due to an
increased energy expenditure (Kim et al., 2012). These findings
indicate a likely crosstalk between leptin and insulin signaling
pathways in the regulation of BAT thermogenesis by the
VMH. However, further studies are needed to understand the
entire molecular cascade and the different contributors of this
leptin and insulin relationship. For example, the mechanistic
target of rapamycin (mTOR), which is downstream of PI3K-
Akt signaling, could play an important role in SF1-mediating
effects on energy homeostasis. mTOR nucleates two distinct
multi-protein complexes termed mTORC1 and mTORC2 that
play important roles in metabolism (Laplante and Sabatini,
2012; Caron et al., 2015). Interestingly, it was shown that
leptin deficiency suppresses VMHmTORC1 activity (Villanueva
et al., 2009) and that PI3K-mTORC1 signaling is critical in
mediating the SNS effects of leptin (Harlan et al., 2013).
In addition, mTORC2 neuronal deficiency reduces energy
expenditure and core temperature by impairing hypothalamic
Akt/PKB signaling (Kocalis et al., 2014). It is noteworthy
that we recently demonstrated a high expression of the
mTOR endogenous regulator DEP-domain containing mTOR-
interacting protein (Deptor) in the dorsomedial part of the VMH,
which houses the SF1-expressing neurons (Caron et al., 2014).
The demonstration of the potential involvement of Deptor in
the control of BAT thermogenesis by the VMH awaits further
investigation.

Another important molecular target of the homeostatic
regulation of BAT thermogenesis is AMP-activated protein
kinase (AMPK). As such, it was recently revealed that AMPK
activity in the VMH mediated the effects of both thyroid
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hormone and estradiol on BAT SNS activity and the resulting
thermogenesis (López et al., 2010; Martínez de Morentin et al.,
2014). Reinforcing the importance of VMH AMPK in regulating
BAT thermogenesis, ablation of bone morphogenetic protein 8B
(BMP8B) in mice impairs thermogenesis and reduced metabolic
rate, at least by reducing hypothalamic AMPK activity (Whittle
et al., 2012). It was also recently showed that central injection
of a glucagon-like peptide 1 (GLP-1) receptor agonist in
mice stimulates BAT thermogenesis by activating hypothalamic
AMPK (Beiroa et al., 2014). Finally, studies also indicate
that nicotine increases energy expenditure by modulating the
hypothalamic AMPK-BAT axis (Martínez de Morentin et al.,
2012; Seoane-Collazo et al., 2014).

Homeostatic Modulation of the
Thermoregulatory Pathway
Leptin also contributes to BAT sympathetic outputs through
GABAergic and glutamatergic neurons of the POA (Zhang
et al., 2011; Rezai-Zadeh and Münzberg, 2013). It is well known
that leptin-deficient mice are hypothermic and are unable to
defend their body temperature during an acute cold exposure
(Trayhurn et al., 1976, 1977). The thermoregulatory defects in
these mice have been attributed to defective BAT thermogenesis
(Goodbody and Trayhurn, 1981, 1982), but little is known
about the neuronal circuits that are involved. Interestingly,
exogenous leptin injection rapidly rescues their ability to survive
during a cold exposition (Trayhurn et al., 1976; Ukropec et al.,
2006), indicating that leptin per se is necessary for a normal
thermoregulatory response. Recently, it was shown that LEPR
neurons in the POA, as well as in the DMH, represent a potential
component of the thermoregulatory circuit (Zhang et al., 2011).
These data strongly suggest that LEPR neurons in both the POA
and the DMH represent thermoregulatory effectors that play a
key role in the regulation of BAT thermogenesis (Nakamura
et al., 2005, 2009). Confirming these results, neuronal activation
of DMH LEPR neurons promotes BAT thermogenesis in mice
(Rezai-Zadeh et al., 2014).

Less is known about the impact of insulin and its receptor in
thermoregulatory thermogenesis. However, a study has shown

that injection of insulin in the POA increases BAT thermogenesis
through IR-expressing warm sensitive neurons (Sanchez-Alavez
et al., 2010). Insulin seems to hyperpolarize warm-sensitive
neurons and to decrease firing rates of these neurons through
the DMH. Whether PI3K signaling is involved is unknown,
but considering the evidence reported, it is possible that PI3K
connects the effects of both leptin and insulin in POA-dependent
thermogenesis. This, however, needs to be further substantiated.

CONCLUDING REMARKS

Understanding how the brain controls BAT thermogenesis is an
important prerequisite to fully comprehend the metabolic role
that this tissue plays in energy homeostasis. We have overviewed
in this short article some of the main systems and circuits
that control BAT thermogenesis with a particular focus on the
melanocortin and endocannabinoid systems as well as on the
SF1 neurons. We have also tried to clarify how all these systems
and circuits interact together and how they are influenced by
different peripheral homeostatic signals. Finally, we have briefly
addressed some potential pathways coupling the metabolic and
thermoregulatory neuronal circuits driving BAT thermogenesis.
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