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Empirical Bayes for DCM: A Group
Inversion Scheme

Karl Friston *, Peter Zeidman and Vladimir Litvak

The Wellcome Trust Centre for Neuroimaging, University College London, London, UK

This technical note considers a simple but important methodological issue in estimating
effective connectivity; namely, how do we integrate measurements from multiple subjects
to infer functional brain architectures that are conserved over subjects. We offer a solution
to this problem that rests on a generalization of random effects analyses to Bayesian
inference about nonlinear models of electrophysiological time-series data. Specifically,
we present an empirical Bayesian scheme for group or hierarchical models, in the setting
of dynamic causal modeling (DCM). Recent developments in approximate Bayesian
inference for hierarchical models enable the efficient estimation of group effects in DCM
studies of multiple trials, sessions, or subjects. This approach estimates second (e.g.,
between-subject) level parameters based on posterior estimates from the first (e.g.,
within-subject) level. Here, we use empirical priors from the second level to iteratively
optimize posterior densities over parameters at the first level. The motivation for this
iterative application is to finesse the local minima problem inherent in the (first level)
inversion of nonlinear and ill-posed models. Effectively, the empirical priors shrink the
first level parameter estimates toward the global maximum, to provide more robust and
efficient estimates of within (and between-subject) effects. This paper describes the
inversion scheme using a worked example based upon simulated electrophysiological
responses. In a subsequent paper, we will assess its robustness and reproducibility using
an empirical example.

Keywords: empirical Bayes, random effects, fixed effects, dynamic causal modeling, Bayesian model reduction,
hierarchical modeling

INTRODUCTION

This technical note describes an application of Bayesian model reduction to the inversion of
hierarchical or empirical Bayesian models (Efron and Morris, 1973; Kass and Steffey, 1989). These
sorts of models are used (either implicitly or explicitly) in the analysis of multisubject studies that
contain both within and between subject effects (e.g., Friston et al., 1999; Woolrich et al., 2004,
2009). In neuroimaging, models of regional responses are usually linear (convolution) models at
the within-subject level. Here, we consider the problem of inverting or fitting equivalent models of
effective connectivity, which are necessarily nonlinear.

The contribution of this paper is to finesse the local maxima problem that attends the inversion
of nonlinear dynamic causal models (DCM). In a recent paper (Friston et al., 2015) we described
the use of Bayesian model reduction to invert a DCM for each subject in a group study and then
evaluate the posterior density over group effects, using the posterior densities from subject-specific
inversions. Crucially, this means that one does not have to re-fit the subject-specific models to
accumulate evidence in favor of one or more models from successive subjects. This application
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can be regarded as a generalization of the standard summary
statistic approach; however, instead of just using point estimators
as summaries of first (within-subject) level effects, one can
take the full posterior density to the second (between-subject)
level. Here, we apply this empirical Bayes procedure recursively,
replacing the original priors used at the first level with empirical
priors from the hierarchical inversion. In principle, with exact
Bayesian inference and a convex (variational free energy)
objective function, this scheme should converge after the first
iteration to the (global) maximum. However, we conjectured that
posterior uncertainty would decrease with successive iterations
as estimators are pulled (shrunk) toward the global maximum
and away from local maxima. In this paper, we verify this
conjecture using simulations of realistic event related potentials
and illustrate its application.

We also take the opportunity to compare and contrast
Bayesian model comparison (and inference about model
parameters like effective connectivity and synaptic time
constants), when using empirical Bayesian estimators of group
effects, relative to the more conventional modeling of the grand
mean response over all subjects. In brief, we found that the two
approaches were remarkably consistent; however, the empirical
Bayes estimators were more efficient. We imagine that this
iterative application of empirical Bayes will be useful when trying
to estimate subject-specific parameters for subsequent analysis
at the between-subject (or trial) level using classical or Bayesian
inference at the second level. We will illustrate the latter by
trying to recover the changes in connectivity responsible for
condition-specific (mismatch negativity) effects.

This note comprises two sections. The first reviews the basic
theory behind the iterative empirical Bayesian scheme, while the
second describes the modeling of data from multiple subjects
using the grand mean response and empirical Bayes. This worked
example was chosen to be representative of real DCM studies—so
that the procedures could be illustrated in a pragmatic way. We
will therefore refer to specific (Matlab) routines that implement
the procedures. These routines are part of the academic SPM
software available from http://www.fil.ion.ucl.ac/spm.

METHODS AND THEORY

Bayesian model reduction refers to the analytic inversion of
reduced models using the posterior densities of a full model.
Reduced models are formed from full models by removing
parameters from a full model using very precise priors that shrink
their values to zero. In other words, the difference between a
reduced (or restricted) model and the full (or parent) model is
specified in terms of their respective priors, where the reduced
prior eliminates or applies shrinkage priors to combinations of
model parameters. Please see (Friston and Penny, 2011) and the
Appendix for a more complete discussion of Bayesian model
reduction and the optimization of models. In short, Bayesian
model reduction is an efficient way of estimating the posterior
density one would have obtained under new priors, from the
posterior of a full model.

Model reduction can be especially useful in hierarchical model
inversion, where the reduced prior over the parameters of lower

levels is provided by an empirical prior from the level above. For
example, consider the empirical Bayes model:

Inp (360,62 = Inp(ylo™®) +Inp(@16@) + In p(6?)
p(10W) = MTED), 2(OD))
p(9<1)|9(2>) = N6, (6@))
p (9(2)) = N, %) (1)

Here, I'(9) are (possibly nonlinear) mappings from the model
parameters to the response y or the parameters at a lower level.
Gaussian assumptions about random effects, with parameterized
covariances X(6), complete the specification of the likelihood
model at the first level and empirical priors at subsequent
levels. The ensuing generative model provides a complete
probabilistic mapping from model parameters to observed data.
Inference corresponds to the inversion of this mapping; from
data to parameters. Usually, this inversion uses some form of
approximate Bayesian inference.

Approximate Bayesian inference can always be cast as
maximizing the (negative) variational free energy with respect
to the sufficient statistics g of an approximate posterior q(6|q):
see (Roweis and Ghahramani, 1999; Friston, 2008) for a fuller
discussion. Using p = (57, X) for the sufficient statistics of a prior,
this maximization can be expressed in terms of free energies at the
first and second levels, where (under the Laplace approximation):

é(l)* — argmaxau)F(l)(f)p, ;1(1))

é(Z)* — argmaxa(z)F(z)(ﬁ(z), 51(2), z](l)*)

FO@EM, §D) = Ewlinp(1o™, m)]

— Dre[g(@ (g 1p@ ™V pM)] (2)
F(2)(1“7(2)’ 7](2), é(l)) — F(l)(ﬁ(l), é(l))
— Dxe[q(0®15?)1p(0® 15P)]
P = (@), =(@))

In this formulation, the approximate posterior over first level
parameters is evaluated in the usual way using uninformative
(full) priors; for example, by inverting a DCM for each subject.
Following this, the empirical prior over second (e.g., between-
subject) level parameters can be evaluated by maximizing a
(second level) free energy. This free energy comprises the
(reduced) free energy from the first level and the complexity
attributable to the empirical prior. Crucially, the reduced free
energy is a function of the empirical prior and the full posterior
over the first level parameters. This means we do not have to
repeat the inversion at the first (e.g., within-subject) level, every
time the empirical prior is updated. A more detailed explanation
of this scheme can be found in the Appendix.

This scheme is the basis of the empirical Bayesian model
reduction for group studies described in Friston et al. (2015).
Effectively, it enables one to perform Bayesian model comparison
and make inferences at the group level, without having to re-
estimate each subjects DCM. In this paper, we consider the
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iterative optimization of (approximate) posteriors in Equation
(2). In other words, we return to the first level, replacing
the full prior with the empirical prior. Algorithmically, this
corresponds to:

Initialise empirical prior

~ 1 ~
p( ) — PE
Iterate until convergence:

;1(1)* —

q
51(2)* = argmax_g) F(Z)(L{)(Z),q(Z), q(l)*) (3)

50— (@), $(?))

argmax_) FO (W, 70)

If we were performing exact Bayesian inference (or if our model
was linear) this scheme would converge after a single iteration.
This is because exact inversion under a (reduced) empirical
prior produces the same results as a reduced posterior using
Bayesian model reduction (see DEMO_GROUP_PEB.m for a
numerical illustration of this). However, with nonlinear models
the iteration of Equation (3) could improve the estimates, if
the empirical priors are sufficiently precise to preclude local
maxima in the original inversion under full priors. In other
words, empirical priors can shrink the estimators toward the
global maxima, providing more consistent estimators over
subjects and further shrinking the empirical priors. One might
therefore conjecture that iterative inversion under empirical
priors might progressively eliminate local maxima—and increase
model evidence (or precision at the second level). In the next
section, we provide a numerical proof of principle that iterative
Bayesian model reduction can indeed improve model inversion
(i.e., system identification), when applied to weakly nonlinear
models.

A WORKED EXAMPLE

This section provides a worked example of how to apply
empirical Bayesian reduction to multi-subject DCM studies.
We consider the simplest situation, in which a group of
normal subjects have been studied to characterize the functional
anatomy of some cognitive process. Our objective is therefore to
combine data from several subjects to optimize Bayesian model
comparison (to test specific hypotheses changes in effective
connectivity) and Bayesian model averaging (to identify and
quantify condition-specific connectivity changes that have been
induced experimentally).

We chose a fairly standard setup to reproduce the sorts
of data and questions typically encountered in DCM studies.
We simulated data from 16 subjects based on a previously
reported EEG study of the mismatch negativity (Garrido et al,,
2007)—a paradigm that has been examined extensively using
DCM in both normal subjects and schizophrenia (Garrido et al.,
2009a; Fogelson et al., 2014). In brief, subjects are presented
with streams of auditory tones, whose frequency is changed
sporadically and unexpectedly. These correspond to standard

and oddball stimuli, which evoke responses that can be recorded
electromagnetically (here with EEG) as event related potentials.
Previous studies have established a minimal network of five
cortical sources is sufficient to explain the evoked responses,
where differences between standard and oddball stimuli can
be accounted for by differences in connectivity both within
(intrinsic) and between (extrinsic) sources (Garrido et al., 2009b),
see Figure 1.

We generated data for each of the 16 subjects using the
locations of five sources (right and left auditory sources, right
and left superior temporal sources, and a right prefrontal
source) and the (connectivity) parameters estimated from a
previously reported DCM study of the grand mean response
(Garrido et al., 2007). The parameters used to generate the
simulated data were obtained by inverting a model with
hierarchical connectivity among the five sources, while allowing
for condition-specific changes in the intrinsic connectivity of
the auditory and temporal sources and extrinsic connectivity
from the auditory to temporal sources. Physiologically, this
corresponds to a change in the excitability of neuronal
populations in the auditory and temporal sources, with a selective
change in forward connectivity (i.e., temporal sensitivity to
ascending auditory input). We deliberately precluded changes
in backward connections to see whether model inversion
could correctly identify changes in, and only in, forward
connections.

The resulting estimates were used as group mean values,
to which random Gaussian variates were added to produce
subject-specific parameters. These random effects were sampled
from the prior distribution over model parameters, described in
Garrido et al. (2009a). More precisely, we fixed the between-
subject parametric variability to be a sixteenth of the usual
prior variances used in this sort of DCM. These prior variances
now play the role of full priors on the second level (group
mean) parameters. This model has 158 neuronal parameters
and 40 spatial parameters for each subject. Of these, we
were particularly interested in 18 parameters encoding the
strength of connections within and between sources and
how they changed with experimental condition (see Figure 1).
We generated event related potentials using the lead field
employed in the empirical study but with random (dipole
orientation and amplitude) parameters sampled from their prior
distribution.

Figure 2, shows an example of the data simulated over 128
channels. The upper left panel shows the simulated sensor data
with and without simulated observation noise. Observation or
sensor noise was created by convolving Gaussian noise with a
smoothing kernel of eight (4ms) time bins. The observation
noise was scaled to have a standard deviation that was an eighth
of the simulated signal. This signal-to-noise ratio corresponds
roughly to the levels that one would expect after averaging
64 trials, where the amplitudes of signal and noise were
equivalent. The lower panels show the between-subject variance
in terms of the response of the first principal component
over channel space; for the two conditions (left panel) and
the condition-specific differences or mismatch negativity (right
panel).
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Generative model
(effective connectivity)

subcortical input

FIGURE 1 | This figure describes the generative model used to simulated data for subsequent model inversion and reduction. The circles represent
electromagnetic sources of data (recorded by 128 sensors or channels). These sources have intrinsic dynamics, modeled with eight ordinary differential equations per
source. The dynamics are perturbed with a parameterized exogenous (subcortical) input and coupled to each other through (effective) connections. Because the
sources are organized hierarchically, one can refer to (between-source or extrinsic) connections as forward or backward. The strengths of these connections
correspond to the key model parameters with random effects. The group averages (based on analysis of grand mean data from normal subjects) are shown alongside
their connection: red connections (left panel) indicate connections that are common to both conditions, while blue connections (right panel) are equipped with
parameters encoding condition-specific effects. The values are log scale parameters, therefore a negative value means a smaller (excitatory) connection strength. A1,

primary auditory source; ST, superior temporal source; PF, prefrontal source.

Condition-specific effects
(mismatch negativity)

subcortical input

Empirical Bayesian Inversion and Model

Comparison
We inverted the data from each subject using iterative
empirical Bayesian inversion (as described in Equation (3) and
implemented in spm_dcm_peb_fit.m). In this case, the second
level model was a simple general linear model with a mean or
constant term for each parameter at the first level. Figure 3 shows
the free energy continues to increase after the first iteration. As
noted above, this and subsequent increases can only be explained
by local maxima (or other convergence behavior) induced by
the non-linear nature of our DCM. If our model was linear and
the free energy objective function was perfectly behaved, then
the free energy would not change with successive iterations. The
correlations between the subject-specific parameter estimates and
the true values are also shown in Figure 3. In line with the
local maxima conjecture, the correlations increase after the first
iteration and then remain relatively high (at about 0.88). The
improvement in the correlations is mirrored by a decrease in the
sample and posterior variance of the parameters—as shown for
the changes in connectivity in the lower panels of Figure 3.

Note that the correlation with the true values falls very slightly
after the fourth iteration. This behavior is characteristic of the
(extensive) simulations that we have performed. Generally, the

free energy continues to increase with successive iterations but
after a few iterations, the correlations with the true values tend
to decrease, and the posterior covariance starts to increase.
We therefore require the (log determinant) of the posterior
covariance to decrease before terminating the iterations. The
rationale for this convergence criterion is that if the empirical
priors are destroying local maxima, we would expect the posterior
variance to decrease as subject-specific estimators converge to
their global minima, which we suppose are in the vicinity of the
group mean. Practically, this means the iterative scheme usually
converges after three or four iterations.

The correlation between the empirical Bayesian estimators
and the true parameter values (over subjects) are shown in
Figure 4 (upper panel). At these, not unrealistic, levels of noise
and intersubject variability, there is a remarkably high correlation
(of 0.89) between the parameters of interest; namely, those
responsible for condition-specific effects (blue dots). A key thing
to take from the results in Figure4 is that the dispersion of
estimators for any given parameter is very similar to the true
dispersion. This suggests that the between-subject variability has
been estimated reasonably accurately, thereby enabling optimal
shrinkage to the group means. Note the vertical line of blue dots
that correspond to the (backward) extrinsic connections that we
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Signal (single subject)

response

0 50 100 150 200 250 300
pst (ms)

Group data

response

0 50 100 150 200 250 300
pst (ms)

condition-specific responses (left) and differences (right).

FIGURE 2 | Simulated data. The upper panel shows channel data from a single subject as a function of peristimulus time. The solid lines (upper left) correspond to
the simulated signal, while the dotted lines correspond to signal plus noise. For comparison, the observation noise is shown on the upper right. The lower panels
show simulated responses over subjects in terms of a mixture of sensor data based upon the first principal component of the prior predictive covariance. The solid
lines (middle left) correspond to the first (standard) condition, while the dotted lines report the second (oddball) condition. The right panel shows the condition-specific
effects in terms of the waveform differences between the two conditions; namely, the mismatch negativity. The red lines report the grand means of the
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fixed to their prior mean (with a log scaling of zero). Although the
true values were zero, the empirical Bayesian estimators suggest
these connections were actually reduced very slightly during the
oddball conditions. We now look at the parameter estimates in
greater detail, at the between-subject level:

Having inverted the group data, we then applied Bayesian
model reduction to evaluate the Bayesian model average
over the group means. In this example, we performed an
exhaustive search over all combinations of parameters and
their condition-specific changes; using spm_dcm_peb.m to
evaluate the posterior densities over second level parameters
and spm_dcm_peb_bmc.m for Bayesian model averaging. The
ensuing posterior densities are shown before and after Bayesian
model reduction in the right panels of Figure 4. Crucially, every
condition-specific increase was detected with a high degree of
posterior confidence, with one exception (one of the forward
connections). Conversely, the connections that did not change
were estimated to decrease slightly—although the posterior

confidence interval on one of the backward connections included
zero. The lower right panel of Figure4 shows the results of
Bayesian model comparison, when comparing models that did
and did not include each parameter. This is a simple form of
Bayesian model comparison that quantifies the belief that each
parameter deviated from its prior expectations.

Analysis of the Grand Average

Finally, we repeated the above Bayesian model averaging
following inversion of the grand mean data. These simulated
grand mean data were obtained by averaging the responses over
the 16 subjects, which were subsequently inverted in the usual
way (using spm_dcm_fit.m). Bayesian model reduction and
averaging (using spm_dcm_bmr.m) produced results that were
remarkably similar to the second level group means obtained
with empirical Bayesian inversion. The lower panel of Figure 5
illustrates this correspondence by plotting the Bayesian model
averages following empirical Bayesian inversion against the
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FIGURE 3 | Upper panels: The (second level or total) free energy (left) and correlations with true parameter values (right) over iterations of empirical Bayesian
inversion of the simulated data. In the absence of local maxima and other convergence failures, this free energy would otherwise saturate after the first iteration.
Lower panels: these report the sample and posterior variance of the interesting (condition specific) scaling effects, averaged over subjects. These variances fall

markedly after the second iteration and then remain relatively stable.

Bayesian model averages obtained by inverting the average of the
data.

This is a reassuring result because it means similar inferences
can be obtained by inverting the average data over subjects and
a full (empirical Bayesian) analysis. This is important because
previous group studies using DCM have used the grand mean
(average) responses. This sort of correspondence is nontrivial
because the model is nonlinear. In other words, the parameters
estimated from average of the data are not necessarily the average
of the parameters estimated from the data. Having said this, the
correspondence shown in Figure 5 probably owes much to the
linearity of the mapping between neuronal sources and measured
data, implicit in a linear electromagnetic forward model—that is
part of the DCM for event related potentials (ERP).

The posterior densities before and after Bayesian model
averaging are shown in Figure 5 (left panels) for comparison with
the corresponding empirical Bayesian estimates. The key thing
to note here is that the posterior confidence intervals are larger
for the grand average analysis. In other words, the empirical
Bayesian scheme provides more precise estimates. This has two
consequences. First, the empirical Bayesian estimators are biased
toward the prior mean and generally underestimate the true
effects, in relation to the equivalent estimators based upon the

grand average. However, the greater uncertainty associated with
the grand average estimators means that several connections are
eliminated following Bayesian model reduction. This effect is
particularly severe for the intrinsic and extrinsic connections at
the lowest level of the auditory hierarchy (compare the results of
Bayesian model comparison in the lower panels in Figure 4).

CONCLUSION

In conclusion, we have described an iterative extension to an
empirical Bayesian scheme for nonlinear models. By repeatedly
inverting models at the first level, under empirical priors
furnished by higher levels, one can finesse the local maxima
problem by shrinking estimators to the global mean. This
provides more robust estimates at the first (e.g., within-subject)
level for subsequent Bayesian model comparison and inferences
about key model parameters. Furthermore, we have shown that,
in principle, similar results can be obtained when analysing the
grand mean data from ERP studies; however, ERP studies may
be a rather special case given the linear relationship between
(hidden) neuronal responses and observed data (and identical
paradigms over subjects).
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FIGURE 4 | Upper panel: A plot of the empirical Bayesian estimators of connections (cyan) and their condition-specific changes (blue) against the true values, over
all subjects. The correlation coefficient corresponds to the condition-specific changes and is remarkably high. Lower left panel: this shows the posterior estimates of
parameter averages from the empirical Bayesian analysis (black) and analysis of the grand mean (blue), plotted against the true group mean values. Lower right
panel: this plots the two estimators against each other. As above, cyan denotes connections strengths per se, while blue corresponds to changes underlying the

This iterative application of empirical Bayes should provide
more efficient and accurate estimates of parameters obtained
from multiple trials, sessions or subjects. Although we have
focused on Bayesian inference about group means in this
technical note, subject-specific estimators can be treated as
summary statistics in the usual way—and used to test for
particular between trial or subject effects using classical inference.
However, there is a caveat here: because these estimates enjoy the
benefit of empirical shrinkage priors, they will all be shrunk to
the group mean. This means that classical tests against the null
hypothesis of a mean of zero will be biased. This does not affect
any other tests; for example, the effects of age or other parametric
(between trial or subject) variables.

We are currently evaluating the reproducibility and
robustness of this iterative scheme using empirical data.
Key questions here include reproducibility in terms of inference
about models and parameters under different models, different
data and the difference between empirical Bayesian averaging vs.
inversion of the grand average.

Future work will focus on the convergence of our iterative
scheme for group data. This is an interesting problem
(highlighted by our reviewers), because the very presence of local
minima—and related violations of the Laplace assumption—
means that variational free energy could be a poor approximation
to model evidence. In other words, the problem we are
trying to finesse precludes a simple free energy optimization
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FIGURE 5 | This figure compares the posterior estimates of group means based upon the grand average (left panels) and the empirical Bayesian
estimators (right panels). The top row shows the estimates prior to model reduction, while the second row shows the same results after redundant parameters have
been eliminated. The gray bars correspond to conditional expectations, while the pink bars denote 90% Bayesian confidence intervals. These are superimposed on
the true values, shown as black bars. The first 10 parameters correspond to the underlying connectivity (right panel in Figure 2), while the final eight parameters (in the
shaded regions) correspond to condition specific changes mediating the mismatch negativity (left panel in Figure 2). The lower row reports the posterior probability of
models containing each parameter, compared to models that do not (following an exhaustive model search over all combinations of the reported parameters).
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(indeed, one occasionally sees decreases in free energy with
successive iterations). This is further compounded by the fact
that approximate Bayesian inference based upon variational
free energy is known to provide overconfident solutions, even
when the assumptions of the Laplace approximation are met.
Our (pragmatic) solution to this is to use the reduction in

posterior uncertainty at the between subject level as a criterion
for convergence. The rationale here is that shrinkage to the group
mean will be reflected in a more precise posterior density (as
local minima are destroyed). This appears to work for a variety of
imaging modalities and data features; however, a full validation of
this criterion would require (multimodal) posterior distributions
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that eschew the Laplace assumption. These can be accessed using
sampling schemes that are the focus of current research (e.g.,
Sengupta et al., 2014). An alternative approach could call on
extensions of Variational Bayes and mean-field approximation
schemes, via the use of mixture distributions (e.g., Jaakkola and
Jordan, 1998). Essentially, instead of selecting one particular
mean-field solution, these schemes form a weighted average (a
mixture) of several mean-field solutions. Crucially, they rely on
the assumption that minima are not close to each other, which
might not be a completely unrealistic assumption in the context
of DCM.

SOFTWARE NOTE

The procedures described in this paper are implemented
as Matlab routines in the SPM software (http://www.fil.ion.
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APPENDIX

Bayesian Model Inversion

Bayesian model reduction refers to the Bayesian inversion of
reduced models using the posterior density of a full model.
Consider a generative model specified in terms of its likelihood
and priors. For example, a model with additive Gaussian noise:

Inp (y,0|m) = Inp(y6, m) + Inp(6|m)
p (16, m) = N(IT©), Z(©))

p@Im) = N, X) (A1)

Here, I'(9) is a mapping from the parameters of a model
to the predicted response y. Gaussian assumptions about
observation noise, with a parameterized covariance (), define
the likelihood model that, when equipped with (Gaussian)
priors, specifies the generative model. Having specified in the
generative model, one can now estimate the sufficient statistics
of the approximate posterior and associated free energy by
solving:

~k

q" = argmax, F(p, q)
F(p, q) = Eqllnp(yl0)] — Dxr[q(®1)Ip(©1p)]
accuracy complexity

9(013") ~ p(©ly. p) (A2)
F(p,q") ~ Inp(y|p)

V" = argmax_1 FV (g, V)

q
51(2)* = arg maxazF(z)(ﬁ(z), é(Z)’ 7](1)*)

F(l)(ﬁ(1)7 é(l))

p@lmg) _ p(Oly, mp)p(y|mg)
p@lme) — p(@ly, mp)p(ylmp)
p(0@lmg) p(ylmp)
p@|mp) p(ylmg)

p(@|mpg)
Aly, do A
/p( o G (A4)

p(v10, mg) = p(yl6, mp) =

p (0ly. mg) = p(Oly, mp)

plylmg) _
p(ylmp)

This provides the posterior distribution over the parameters of
the reduced model and (by integrating over the parameters) the
evidence ratio of the reduced and full models. Substituting the
approximate posterior ¢(6|7*) and model evidence F(p, §*) from
Equation (A2) and replacing models (mpg, mp)with the sufficient
statistics of their priors (pr, pr) we get:

p01pr) p(y|pr)
p©@1pF) p(yIpr)

Z o~k ~x% P(GlﬁR)
F(pg, ~ | 6 =

q(013%) ~ 90135

do + F(pr, qp) (A5)
These (approximate) equalities mean one can evaluate the
posterior and evidence of any reduced model, given the
posteriors of the full model.

Parametric Empirical Bayes

If we now apply Equation (A4) to the hierarchical generative
model in Equation (1), we can express its inversion in terms of
reduced free energies [as summarized in Equation (2)]. These free
energies have exactly the same forms as in Equation (A2):

Eyo[In p(y10"), m)] — Die[q(®0™13M)11p(0 P ™))

accuracy

F(Z)(ﬁ(Z), ;1(2), ;1(1))

1st level complexity

Eyo [Inp(y16™), m)] — 0 [Dxe [0 131 Ip(0 ™ 1™)] — Dre[9(6P 131 1p(6? 1))

accuracy

Ego FYEW, )]

Lst level complexity 2nd level complexity

— Dir[q0P13 ) IpO@P 5]

accuracy and st level complexity

D = (r@e?), =(6?))
— ——

empirical prior

Bayesian Model Reduction

Now we want to estimate the posterior under a new model
after eliminating some parameters to produce a reduced model.
Consider Bayes rule for reduced and full models (mg, mr):

p(Oly, mp)p(ylmg) = p(y|60, mg)p(0|mp)
pOly, mp)p(ylmp) = p(yl0, mg)p(60|mp) (A3)

If the models differ only in terms of their priors, then the
likelihoods are identical and Equation (A3) can be simplified:

2nd level complexity

(A6)

This optimization problem has been written in a way that
clarifies the role of reduced free energy F1V'(pV, 3(V)): Here, the
(full) approximate posterior is evaluated in the usual way, using
relatively uninformative (full) priors. Then the approximate
posterior over second level parameters is computed from a
(second level) free energy that comprises the expected (reduced)
free energy from the first level and the complexity attributable
to the posterior over second level parameters. Crucially, this
means one never needs to re-estimate the first level posterior. The
expression in Equation (2) is slightly simpler than Equation (A6),
because it assumes the posteriors are Gaussian (see Equation 12
in Friston et al., 2015).
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