
MINI REVIEW
published: 14 December 2015

doi: 10.3389/fnsys.2015.00166

Working Memory in the Service
of Executive Control Functions
Farshad A. Mansouri 1,2,3*, Marcello G. P. Rosa 1,2,3 and Nafiseh Atapour 1,3

1 Department of Physiology, Monash University, Melbourne, VIC, Australia, 2 ARC Centre of Excellence in Integrative Brain
Function, Monash University, Melbourne, VIC, Australia, 3 Neuroscience Program, Biomedicine Discovery Institute, Monash
University, Melbourne, VIC, Australia

Edited by:
Natasha Sigala,

University of Sussex, UK

Reviewed by:
Jose L. Pardo-Vazquez,

Fundaçao Champalimaud, Portugal
Shintaro Funahashi,

Kyoto University, Japan

*Correspondence:
Farshad A. Mansouri

farshad.mansouri@monash.edu

Received: 05 August 2015
Accepted: 16 November 2015
Published: 14 December 2015

Citation:
Mansouri FA, Rosa MGB and

Atapour N (2015) Working Memory in
the Service of Executive Control

Functions.
Front. Syst. Neurosci. 9:166.

doi: 10.3389/fnsys.2015.00166

Working memory is a type of short-term memory which has a crucial cognitive function
that supports ongoing and upcoming behaviors, allowing storage of information across
delay periods. The content of this memory may typically include tangible information
about features such as the shape, color or texture of an object, and its location and
motion relative to the body, as well as phonological information. The neural correlate of
working memory has been found in different brain areas that are involved in organizing
perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes
task-related information corresponding to working memory across delay periods, and
lesions in the prefrontal cortex severely affect the ability to retain this type of memory.
Recent studies have further expanded the scope and possible role of working memory
by showing that information of a more abstract nature (including a behavior-guiding rule,
or the occurrence of a conflict in information processing) can also be maintained in short-
term memory, and used for adjusting the allocation of executive control in dynamic
environments. It has also been shown that neuronal activity in the prefrontal cortex
encodes and maintains information about such abstract entities. These findings suggest
that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior
by supporting many different mnemonic processes, which maintain a wide range of
information required for the executive control of ongoing and upcoming behaviors.

Keywords: executive control, prefrontal cortex, working memory, non-human primates, short-term memory

SHORT-TERM STORAGE OF INFORMATION REQUIRED TO
GUIDE ONGOING OR UPCOMING BEHAVIOR

The concept of working memory describes a process of short-term storage of information
to support ongoing or upcoming actions, and is considered a crucial component of the
executive control of goal-directed behavior (Baddeley, 1986; Fuster, 1995; Goldman-Rakic,
1995a,b). One view, emerging mostly from human studies, considers working memory as
an essential intermediate stage (or buffering system) for retrieved memories, thus enabling
further manipulation and integration of information involved in perceptual and mental
functions (Baddeley, 1986, 2012). A related perspective, mostly focused on the neural substrate
of working memories, assumes that retention of task-relevant information is essential for
complex behaviors which evolve in time, in order to maintain the perception and actions in a
coherent and goal-directed framework. Therefore, working memory processes appear crucial
for the temporal organization of behavior (Fuster, 1997; Fuster et al., 2000), including linking
processes across delays (Goldman-Rakic, 1995a,b). Related models propose that other short-term
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memory functions provide an intermediate stage for the
buffering and exchange of information between working
memory and long-term memory repositories (Ericsson and
Kintsch, 1995).

Various techniques, including non-invasive imaging and
cellular and molecular studies in animal models, have enriched
our knowledge about the working memory process. Here, we
briefly review some of the studies that have been conducted
in non-human primates to examine the neural substrates and
mechanisms of working memory, with emphasis on recent work
that demonstrates working memory for abstract features such as
rules and strategies.

WORKING MEMORY IN NON-HUMAN
PRIMATES

Single-cell recordings afford high temporal and spatial resolution
for the study of information conveyed by neuronal activity.
This type of research, using behaving monkeys, has provided
ample evidence for the involvement of different cortical and sub-
cortical areas in the short-term storage of information in delayed
response tasks. In such studies the cognitive tasks typically
include an encoding period, during which a to-be-remembered
‘‘cue’’ or ‘‘sample’’ is presented, followed by a delay period,
during which information about the cue has to be maintained
for successful resolution of an upcoming problem. At the end of
the delay period the memory of the cue is tested by requiring an
operant behavior to select a choice. Examples of cognitive tasks
with such paradigms include the delayed matching to sample
task, in which a choice object that matches the sample needs
to be selected, and the delayed alternation task, in which an
alternative action, different from a previous response, has to be
selected (Fuster, 1995; Goldman-Rakic, 1995a,b, 1996). Various
tasks have examined the process of working memory in different
modalities (such as visual, auditory or tactile) by changing the
features and modality of the to-be-remembered cue. Neural
correlates of workingmemory have been found inmany different
brain areas, including those typically regarded as being involved
in perceptual and motor functions.

WORKING MEMORY OF CONCRETE
ENTITIES

In a classical study, Fuster andAlexander (1971) trainedmonkeys
to perform a delayed response task in which the monkeys had to
remember a visual cue across a delay period. The authors found
that a significant number of cells in prefrontal cortex and in the
mediodorsal nucleus of thalamus displayed a persistent increase
in activity during the delay period. This led them to conclude that
this persistent activity might represent the mnemonic processes
that enable short-term storage of information across the delay
period. Kubota and Niki (1971) also reported persistent activity
during the delay period in the context of a delayed alternation
task. These pioneering studies supported the emerging idea
that working memory is based on maintained representation of
events and stimuli, even after their cessation, in the prefrontal
neurocircuitry. Fuster (1990, 1995, 1997) subsequently suggested

that such representations enable temporal linking of recent
salient experiences to the upcoming action. These studies were
followed by others which characterized the relationship between
the delay-period activities, the preceding (to-be-remembered)
stimulus features, and the intended (upcoming) action, as well
as the persistence of this activity and its resistance to distraction
and interruption.

In another study, Funahashi et al. (1989) examined the
delay period activity in a more controled condition, in which
eye position was closely monitored and the monkeys were
required to maintain information of a location in space,
to guide an upcoming saccadic eye movement. Eye fixation
during the delay period was crucial to rule out the possible
confounds arising from different eye positions during the
delay period. Their findings revealed the presence of ‘‘memory
fields’’ within the prefrontal cortex, suggesting that separate
memory-processing modules covered the visual scene in terms
of temporary storage of memory. They also showed that the
delay period activity was attenuated in error trials (in which
the eye saccade was made erroneously in a manner that was
unrelated to the previously given information), suggesting that
the delay period activity was linked to correct behavioral
performance. This finding was first to link the persistent delay
period activity to the overall behavior of the monkeys. In
follow-up studies, the same group (Funahashi et al., 1993a,b)
provided evidence to support the idea that a memory map in
prefrontal cortex underlies spatial working memory. However,
related studies indicated that sustained activity in the delay
period was not a unique property of prefrontal neurons.
Cellular activity in other cortical areas, particularly the posterior
parietal cortex, also conveys information during delay periods
(Gnadt and Andersen, 1988; Chafee and Goldman-Rakic,
1998). These findings raised important questions regarding
the significance of delay period activity in guiding overall
behavior, its relation to required mnemonic process and other
impending processes or actions, and the possible differential
contributions of individual brain areas to the working memory
process.

In the following years different research groups found
sustained neuronal activity in delayed response tasks in various
compartments of the prefrontal cortex as well as in the sensory
and motor areas (di Pellegrino and Wise, 1991; Miller et al.,
1993; Ferrera et al., 1994; Motter, 1994; Bodner et al., 1996;
Constantinidis and Steinmetz, 1996; Miller et al., 1996; Rao et al.,
1997; Asaad et al., 1998; Chelazzi et al., 1998; Rainer et al.,
1998a,b; Romo et al., 1999; Fuster et al., 2000; Zaksas et al., 2001;
Pardo-Vazquez et al., 2008, 2009; Rawley and Constantinidis,
2009; Sigala, 2009). These studies showed that, depending on the
task demand, information about different stimulus features, from
different modalities, could be maintained in working memory
and represented in neuronal activity within the prefrontal cortex
and sensory areas.

In a landmark study, Rao et al. (1997) trained monkeys to
perform a delayed response task in which they had to make a
saccade to the remembered location of an object. In each trial,
the object was presented briefly at the center of the screen, and
then replaced by a fixation point. During the ensuing delay
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period the monkeys had to retain information about the identity
of this particular object (sample) in their short-term memory.
Two different objects were then shown, one of which matched
the previously presented sample. This was followed by another
delay period (in which the monkeys had to hold information
regarding the ‘‘sample location’’) before the appearance of four
saccade targets on the screen; only then did the animals make
saccades to the remembered location of the object. Therefore,
in the same trial the monkeys had to retain the memory
of an object and its location in two separate delay periods,
respectively. This study showed that the same population of
prefrontal neurons can convey information about objects and
their locations, across two delay periods, depending on the task
demands. Such neurons were distributed in different parts of
the lateral prefrontal cortex, indicating that representations of
working memory of objects and their locations are not regionally
segregated.

These findings have changed the classic view of the prefrontal
cortex as the powerhouse of working memory processes. Recent
models suggest that short-term storage of discrete information
can be achieved in the same areas that initially process the
sensory information and enable perception (Pasternak and
Greenlee, 2005; Zaksas and Pasternak, 2006; Lui and Pasternak,
2011; D’Esposito and Postle, 2015). An important question
arising from these studies is the specific contribution of
prefrontal cortex to these mnemonic processes. Different models
have emerged from imaging and animal model studies to
suggest that the storage of information in short-term memory
can be accomplished by sensory areas; however, persistent
representations in prefrontal cortex might act as a medium
for additional processes on the maintained representation of
stimuli, as well as the application of these to guide goal-directed
behavior (Pasternak and Greenlee, 2005; D’Esposito and Postle,
2015). This view is supported by numerous studies showing that
cellular activity in the prefrontal cortex during cue-presentation
and/or delay period activity can convey information about the
upcoming reward (Watanabe, 1986, 1996; Watanabe et al., 2002;
Leon and Shadlen, 1999; Tremblay and Schultz, 2000; Kobayashi
et al., 2002; Wallis and Miller, 2003), the upcoming actions
(Quintana and Fuster, 1992; Asaad et al., 1998; Ferrera et al.,
1999; Hoshi et al., 2000) and the task context (Sakagami and
Niki, 1994; Hoshi et al., 1998; White and Wise, 1999; Wallis
et al., 2001; Barraclough et al., 2004; Genovesio et al., 2005;
Johnston and Everling, 2006; Mansouri et al., 2006). The findings
of neuroimaging and neuropsychological studies in humans also
support this emerging view regarding the contribution of the
prefrontal cortex to primate cognition (Sakai and Passingham,
2003, 2006; Müller and Knight, 2006; Sreenivasan et al., 2014).

In summary, our views about the function of the prefrontal
cortex as a center for working memory of task-relevant
information has evolved to a more comprehensive model, which
considers the prefrontal cortex as the site of dynamic and
highly plastic integrative machinery for the executive control of
behavior. Such integrative functions are supported by reciprocal
connections between the prefrontal cortex, sensory association
areas, premotor areas, and areas involved in the organization
of emotions and motivations (Barbas, 2000; Burman et al.,

2011, 2015; Petrides et al., 2012; Reser et al., 2013). These
connections might enable prefrontal areas to select sustained
neural representations in sensory areas, and link them to
other task-relevant information such as reward and actions
and/or retrieved memories, in order to construct an active
representation of the task set required to achieve a particular
goal (Miller, 1999; Miller and Cohen, 2001; Courtney, 2004; Deco
and Rolls, 2005; Pasternak and Greenlee, 2005; Ranganath, 2006;
Watanabe and Sakagami, 2007; Rushworth et al., 2011; Funahashi
and Andreau, 2013; D’Esposito and Postle, 2015).

WORKING MEMORY OF ABSTRACT
ENTITIES WITHIN AND ACROSS TRIALS

Other studies have shown that the information contained
in working memory can be of a more abstract nature.
Nieder et al. (2002) and Nieder (2005) trained monkeys
to perform a delayed matching to ‘‘number of items’’ task,
in which the monkeys first observed a sample comprising
several items; after the delay period they then had to
decide whether the display had the same number of items.
The exact physical appearance of the displays was changed,
and the monkeys therefore had to maintain information
about ‘‘numerosity’’ during the delay period. The authors
found that prefrontal cell activity encoded and maintained
such information, suggesting that the abstract concept of
number can be held in working memory via prefrontal
neurons.

In another series of studies Mansouri and Tanaka (2002)
and Mansouri et al. (2006, 2007, 2014) trained monkeys to
perform a computerized analog of Wisconsin Card Sorting Test
(WCST; Figure 1A). In the WCST, successful adaptation to
the unannounced rule changes requires maintenance of the
information about the relevant rule within and across trials.
The monkeys had to match a sample to one of three test
items based on either color or shape. A liquid reward and a
discrete visual signal (error signal) were given as feedback to
correct and incorrect target selections, respectively. The relevant
rule and its frequent changes were not cued, meaning that
the monkeys could find it only by interpreting the feedback.
These studies showed that monkeys can successfully perform the
WCST analog, indicating that they could infer and memorize the
relevant rule. A significant number (about 30%) of dorsolateral
prefrontal neurons near the principal sulcus represented the
rules within and across trials, independent of the other aspects
of the task (Figure 1C). The magnitude of the rule-dependent
activity modulation correlated with the number of errors that
the monkeys made after each rule change, in the course of
reestablishing high performance. This indicated a link between
representation of the working memory of the rules and the
efficiency of the monkeys’ overall behavior in adapting to
frequent rule changes. However, information regarding the rule
was retained in prefrontal cell activity during error trials, when
the monkeys used the irrelevant rule to guide their behavior.
This suggested that even during error trials information about
the relevant rule was maintained in the prefrontal neurocircuitry,
but for some other reasons such as a lapse of attention,
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FIGURE 1 | Neuronal activity in prefrontal cortex representing abstract entities. (A) Cognitive task paradigm. In each trial, a start cue (a gray circle) appeared
when an inter-trial interval (ITI) was over. The monkey had to push a bar after the onset of the start cue. This action changed the start cue to a fixation point, after
which a sample stimulus replaced the fixation point. If the monkey maintained eye fixation and bar press three test items appeared (to the left, right and below the
sample). The monkeys had to touch the test item that matched the sample in color or shape. The relevant rule for matching (matching by shape or matching by
color) was consistent within a block of trials. The relevant rule was not cued and changed without any notice to the monkey when a criterion of 85% correct
performance was achieved. (B) Dorsolateral prefrontal cortex cell activity represented conflict level experienced in the previous trial. The rastergram indicates
activities in individual correct trials. Each row corresponds to a trial and each dot represents an action potential. Activities in high-conflict trials after low-conflict trials
(LH, blue) and those in high-conflict trials after high-conflict trials (HH, pink) are shown. The mean activities are aligned at sample onset. (C) Activity difference
between color and shape blocks in a dorsolateral prefrontal cortex cell represented the matching rules. The line graphs on the bottom left show the averaged firing
rates in color and shape blocks, aligned at the sample onset. The bar graph on the bottom right represents the mean firing rate during the Sample epoch in
consecutive blocks. The red and black dots, lines, and bars indicate color and shape blocks, respectively. The bin size is 50 ms. (A,B) are adapted from Mansouri
et al., 2007 (Ref. 49). (C) is adapted from Mansouri et al., 2006 (Ref. 48).

or inaccessibility of the content of working memory for the
decision process, the monkeys did not follow the relevant
rule (Mansouri et al., 2006). Follow-up studies showed that
lesions within the dorsolateral prefrontal cortex, orbitofrontal
cortex or anterior cingulate cortex impaired performance of
the WCST analog (Buckley et al., 2009; Kuwabara et al.,
2014).

Additional studies examined the susceptibility of the working
memory of the relevant rule to changes in task demand and
interruptions. After the monkeys reached a high performance
level with a particular rule, the inter-trial interval (ITI) was
lengthened to increase the period during which the memory
had to be held across trials. The monkeys’ ability to remember
the relevant rule was then tested in the following trial. The
working memory of the rule was very vulnerable to changes

in the holding period, as the performance of control monkeys
(without a brain lesion) significantly decreased after the long
ITI, although it still remained above the level of chance (Buckley
et al., 2009). Monkeys with lesions of the dorsolateral prefrontal
cortex were the most susceptible to this manipulation and their
performance dropped to the chance level, whereas animals with
orbitofrontal or anterior cingulate lesions could still perform the
WCST above the chance level (Buckley et al., 2009). Mansouri
et al. (2014, 2015) also examined the vulnerability of the working
memory process to interruptions. Working memory of the
rule was very vulnerable to distractions as introducing salient
events such as free reward or performing a simple additional
task during the ITI completely disrupted working memory
and the performance dropped to the chance level in control
monkeys.
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These findings indicate that working memory processes
maintain abstract information, and are not limited to a single
trial, bridging the ITI to maintain the information that is
necessary to guide behavior in the following trials. Other
studies have also shown that information of task/rule might be
maintained in prefrontal cell activity within and across trials
(Rainer et al., 1998b; Asaad et al., 2000; Wallis et al., 2001).

MNEMONIC PROCESSES IN
CONTEXT-DEPENDENT EXECUTIVE
CONTROL ADJUSTMENT

Conflict in information processing and the occurrence of
errors evoke trial-by-trial modulations in behavior. It has been
proposed that adaptive tuning of executive control, mediated by
the dorsolateral prefrontal cortex, underlies these modulations
(Botvinick et al., 2001; Carter and van Veen, 2007; Egner, 2007;
Mansouri et al., 2009; Schroder and Infantolino, 2013; Wessel
et al., 2014). The behavioral modulations induced by conflict
and error are seen in the trial in which these first become
manifest, and also in subsequent trials. It has been suggested that
a mnemonic process is necessary tomodulate behavior according
to conflict experienced in an earlier trial, so that the required
information is maintained (Mansouri et al., 2007, 2009). When
the conflict-inducing task context ends, this mnemonic process
should hold information about conflict during ITIs, to enable
modulation of behavior in upcoming trials (Mansouri et al.,
2009).

To examine the neural substrate and underlying neural
mechanisms of conflict-induced behavioral adjustment,
Mansouri et al. (2007, 2009) trained monkeys to perform a
version of the WCST in which the level of conflict changed
trial-by-trial. The monkeys’ behavior was modulated by
conflict in the current and following trials, and neuronal
activity in dorsolateral prefrontal and orbitofrontal cortices
encoded the existing conflict level. Another group of cells
in the dorsolateral prefrontal cortex modulated their activity
during the ITI depending on the conflict level in the previous
trial, but such neurons were not observed in the orbitofrontal
cortex (Mansouri et al., 2007, 2009, 2014; Figure 1B). This
activity modulation may represent a mnemonic process that
maintains information of conflict across trials. Modulation
of behavior by an error in an earlier trial might also require
such a mnemonic process during the ITI, and previous studies
have shown that the activity of dorsolateral prefrontal cortex
(Mansouri et al., 2006) and orbitofrontal cortex cells (Simmons
and Richmond, 2008) maintains information of errors during
the ITI.

These studies suggest that different compartments of the
prefrontal cortex make dissociable contributions to mnemonic
processes in the performance of the WCST. Compared to the
consequence of lesions in other prefrontal and medial frontal
regions, lesions in the principal sulcus led to the most significant
impairment of the mnemonic processes (Mansouri et al., 2007,
2014, 2015; Buckley et al., 2009), These findings suggest that the
dorsolateral prefrontal cortexmight bemore involved in working
memory processes in the WCST. Nieder et al. (2002) and Eiselt

and Nieder (2015), showed that neuronal activity in dorsolateral
prefrontal and parietal areas, but not in premotor or cingulate
motor areas, encodes numerosity information during sample and
working memory periods, suggesting that working memory of
numerosity is supported by the dorsolateral prefrontal cortex and
parietal cortex.

A BROADER PERSPECTIVE OF WORKING
MEMORY

Historically (Funahashi et al., 1989; Fuster, 1995; Goldman-
Rakic, 1995b; Miller and Cohen, 2001; Constantinidis and
Procyk, 2004; Deco and Rolls, 2005; Pasternak and Greenlee,
2005; Ranganath, 2006; Cowan, 2008; Baddeley, 2012), a number
of features have been described for working memory: (i) it has a
short duration, and fades as the delay period gets longer; (ii) it is
goal-oriented and its content is used to guide upcoming behavior;
(iii) it is limited to a trial, being updated in each subsequent
trial; (iv) it is highly vulnerable to distraction; (v) its content
is a discrete feature of an object or event such as a particular
color, shape or position in space; and (vi) subjects intentionally
store information in working memory to solve a problem and are
therefore aware of its content.

Recent studies suggest that prefrontal cortex also supports
a kind of memory that maintains information about task
context, in order to enable context-dependent executive control
adjustment in subsequent trials. This mnemonic process shares
some aspects of the concept of working memory defined in
delayed response tasks in that: (i) it maintains task-relevant
information for a short period; (ii) its content, which could be
an abstract variable such as conflict, is updated trial-by-trial; and
(iii) it is crucial for optimizing performance in a goal-directed
task. However, this memory also differs fromworkingmemory in
that maintaining the information is not intended and the subjects
can still perform the task, although not optimally, without such
information.

CONCLUSION

Working memory is essential for the organization of goal-
directed behavior, as it maintains task-relevant information.
Sustained delay period activities in prefrontal cortex have been
traditionally considered as neural mechanisms for encoding
the working memory. However, four decades of studies on
working memory indicate that this is not a unique property
of the prefrontal cortex neurocircuitry, and that distributed
networks including sensory systems and sub-cortical areas
are also involved in the short-term storage of information.
In addition, converging evidence from various experimental
approaches indicates that the prefrontal cortex might selectively
combine sustained representations of task-relevant events with
information such as task goal, behavioral rules, conflict and
actions to construct a representation of the goals and strategies
required to achieve these goals.

Recent studies suggest that various kinds of short-term
memories maintain task-relevant information such as errors
and conflict to enable adaptive adjustments in the executive
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control of behavior. These are mnemonic processes in the service
of executive control to optimize behavior, based on recent
experiences. Prefrontal cortex cells represent these mnemonic
processes, and lesions within the prefrontal cortex impair the
adaptive behaviors that are dependent on these processes. The
concept of working memory could be broadened to include
these short-term memories that are not directly necessary to
perform the task, but are used to optimize performance. During
the performance of goal-directed behaviors, parallel and diverse
mnemonic processes, distributed in multiple networks, might
actively maintain task-relevant information to enable a rich
representation of goals, actions, rules and strategies at different
levels of abstraction. The prefrontal cortex could therefore play
a unifying role in linking these diverse but relevant processes to

optimize the use of the cognitive resources that are necessary to
control the goal-directed behavior.
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