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Spontaneous neural activity has historically been viewed as task-irrelevant noise that

should be controlled for via experimental design, and removed through data analysis.

However, electrophysiology and functional MRI studies of spontaneous activity patterns,

which have greatly increased in number over the past decade, have revealed a close

correspondence between these intrinsic patterns and the structural network architecture

of functional brain circuits. In particular, by analyzing the large-scale covariation of

spontaneous hemodynamics, researchers are able to reliably identify functional networks

in the human brain. Subsequent work has sought to identify the corresponding

neural signatures via electrophysiological measurements, as this would elucidate the

neural origin of spontaneous hemodynamics and would reveal the temporal dynamics

of these processes across slower and faster timescales. Here we survey common

approaches to quantifying spontaneous neural activity, reviewing their empirical success,

and their correspondence with the findings of neuroimaging. We emphasize invasive

electrophysiological measurements, which are amenable to amplitude- and phase-

based analyses, and which can report variations in connectivity with high spatiotemporal

precision. After summarizing key findings from the human brain, we survey work in

animal models that display similar multi-scale properties. We highlight that, across many

spatiotemporal scales, the covariance structure of spontaneous neural activity reflects

structural properties of neural networks and dynamically tracks their functional repertoire.
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SPONTANEOUS BRAIN ACTIVITY

As an organ in perpetual action, the human brain consumes 20% of the body’s metabolic budget,
despite constituting only 2% of body weight (Raichle, 2010). This metabolic consumption supports
both spontaneous processes, which occur independent of the immediate environment, as well
as processes that are coupled to the external world. In systems neuroscience, the spontaneous
component of brain activity has often been viewed as a kind of noise: an uninformative
nuisance variable that should be controlled for in experimental design and removed during
data analysis. However, it is clear that the anatomical structure and physiological processes of
neurons and surrounding tissue impose constraints on the spatial and temporal properties of both
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spontaneous and task-related neural activity. Thus, spontaneous
activity patterns should reflect these spatiotemporal
constraints.

A wealth of empirical data across different levels of
investigation supports the notion that spontaneous neural
activity is functionally relevant. Most recently, studies of the
organization of spontaneous hemodynamic activity in the human
brain using functional magnetic resonance imaging (fMRI) have
provided reliable maps of covariation in cortical and subcortical
activity (Power et al., 2011, 2014; Yeo et al., 2011; Buckner et al.,
2013). This approach can extract and parcellate sets of covarying
regions (“functional networks”) that match the sets of regions
co-active during task conditions. For this reason, and because
the covariance analyses make novel predictions of previously
underappreciated functional divisions, there is now widespread
interest in the spatial organization and temporal dynamics of
spontaneous brain activity (Buckner et al., 2013; Hutchison et al.,
2013; Power et al., 2014).

In this Review, we outline existing evidence that brain
networks identified via resting-state fMRI (rsfMRI) have clear
electrophysiological correlates in the human brain. We highlight
the most popular techniques used to study correlated patterns of
spontaneous neuronal activity in the resting-state, and examine
the contribution of these techniques to understanding the
origin and implications of spontaneous cortical activity. Next
we discuss how similar conceptual and analytical methods
have previously been applied to neuronal and population scale
electrophysiology. We highlight similar observations across
studies of spontaneous connectivity (at the regional/macro scale)
and studies of spontaneous noise correlations (in activity at the
cellular/micro and circuit/meso-scale). Despite several orders
of magnitude of difference in spatial scale, recent empirical
work has highlighted that spontaneous brain activity can
capture important structural and functional properties of local
and global neural systems, consistent with the view that the
statistical properties of spontaneous activity reflect anatomical
and physiological constraints of organizational principles within
the central nervous system.

CORRELATED SPONTANEOUS
HEMODYNAMICS

Hemodynamic activity in the mammalian brain displays a
sensitive and complex relationship to local electrophysiological
activity (Logothetis, 2012). Utilizing the compensatory delivery
of oxygenated hemoglobin to sites of elevated neural activity,
blood oxygenation level dependent (BOLD) fMRI provides
an indirect and non-invasive whole brain measurement of
large-scale neural activity (Logothetis and Wandell, 2004). As
hemodynamic responses are often consequent to local neural
events, and modulated by cardio-vascular physiology, BOLD
fMRI activity is a delayed, and slow time varying (<1Hz) signal.
Despite these limiting properties, spontaneous BOLD fMRI
displays ongoing large amplitude signal variations, even when
subjects are not performing any explicit task (e.g., awake, with
eyes closed or fixating). Indeed, the spontaneous fluctuations in

BOLD activity can be larger in magnitude than sensory-evoked
responses (Raichle, 2010).

Beginning with observations by Biswal et al. (1995), empirical
studies of spontaneous BOLD fMRI have revealed spatial
covariance across cortical and subcortical structures that often
conforms to previously established functional brain networks.
For example, rsfMRI signal covariance can be used to parcellate
sensorimotor systems (van Den Heuvel and Hulshoff Pol, 2010;
Asemi et al., 2015), higher order associative fronto-parietal
networks (Vincent et al., 2006, 2008), thalamic nuclei (Zhang
et al., 2008; Fan et al., 2015), and cerebellar cortex (Buckner et al.,
2011). In particular, studies quantifying correlational structures
in spontaneous BOLD signals during non-task “resting-states”
have grown exponentially over the past 20 years, resulting in
detailed parcellations of functionally separated cortical networks
in the human brain (e.g., Yeo et al., 2011; Power et al., 2014).

A key factor in the continued and expanding interest in
studying spontaneous fMRI signals has been the striking
correspondence between resting-state functional networks
and previously established maps of functional co-activation
accumulated by cognitive neuroimaging (e.g., Smith et al.,
2009; Cole et al., 2014). This correspondence opens the exciting
possibility that correlational structures in spontaneous fMRI
data provide an economical and non-invasive assay of large-scale
functional network organization (Power et al., 2014). As noted
above, a key biological determinate/constraint of the structure
of spontaneous activity are the ontogenetic factors defining
anatomical structure in the human brain (Bressler and Tognoli,
2006). However, rsfMRI connectivity displays interesting
departures from anatomically prescribed organization (Honey
et al., 2009), as some regions, linked through poly-synaptic
pathways rather than direct connections, display strong
spontaneous correlation (e.g., Buckner et al., 2013). It is in
this regard that rsfMRI, and spontaneous neuronal activity in
general, reflects both constraints imposed by anatomy, and
constraints imposed by the context and history of neural events
that sculpt functional networks.

As a putative assay of functional brain network organization,
and as a non-invasive technique relying on basic physiological
properties of the nervous system, rsfMRI can also be employed
for comparative studies across mammalian species (Hutchison
and Everling, 2012; Buckner and Krienen, 2013), across clinical
populations (Buckner et al., 2013), and within subjects to assess
the influence of learning (Lewis et al., 2009; Guidotti et al., 2015).
However, rsfMRI investigations were met with initial skepticism
(Buckner and Vincent, 2007; Morcom and Fletcher, 2007) due to
technological challenges (Birn et al., 2006; Power et al., 2012; Van
Dijk et al., 2012), whose resolution defines important milestones
of the field (Power et al., 2014). Of particular note is that
several researchers have highlighted the uncertain interpretation
of rsfMRI because of the unstructured nature of resting-state
cognition (Morcom and Fletcher, 2007), as well as the complex
relationship between BOLD signal fluctuations and ongoing
electrophysiological activity (Leopold and Maier, 2012). Below,
we focus on the literature assessing the electrophysiological
correlates of rsfMRI in human and non-human primates. We
then highlight how spontaneous electrophysiological data from
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the micro- and meso-scopic (neurons and circuits) levels display
similar organizational principles found on the macroscopic
(whole brain) level.

ELECTROPHYSIOLOGY OF CORRELATED
SPONTANEOUS HEMODYNAMICS

Human and non-human primate rsfMRI has suggested that
networks of cortical and subcortical regions can be reliably
identified by examining the covariance structure of spontaneous
hemodynamics (e.g., Power et al., 2011; Yeo et al., 2011;
Hutchison and Everling, 2012; Power et al., 2014). Prior to
large-scale efforts to map human brain connectivity with rsfMRI
(Van Essen et al., 2013), a number of criticisms were raised
regarding the neural authenticity of slow (<1Hz) varying
hemodynamics (Snyder and Raichle, 2012). Identifying the
electrophysiological correlates of this hemodynamic activity is
therefore important; both for providing a neuronal basis to
rsfMRI-defined networks as well as for elucidating mechanisms
that may drive rsfMRI dynamics. As discussed below, although
experimentally challenging, invasive techniques provide rich
spatial, temporal, and spectral information for exploring rsfMRI
correlates (for reviews of non-invasive findings see Engel et al.,
2013; Schölvinck et al., 2013; Hall et al., 2014). We begin by
outlining the most common analytical techniques for quantifying
inter-regional coupling in spontaneous electrophysiological data.

Approaches to Measuring Coupling in
Spontaneous Brain Activity
A standard approach for characterizing the spatial organization
of spontaneous neural activity is to compute Pearson’s correlation
(r) between time series of activity, i.e.,

r =
1
n

∑n
t=1 (Xt − Xt) · (Yt − Y t)

√

1
n

∑n
t=1 (Xt − Xt)

2
·

√

1
n

∑n
t=1 (Yt − Y t)

2

where Xt and Yt are two times series of interest, with Xt

and Y t being their respective means. Thus, r measures the
covariance between two signals normalized by the individual
variance of each signal, a ratio that is bounded to the range
[−1, 1]. Algebraic reformulation also depicts r as the mean of the
dot product of standardized scores (z-score) for X and Y (i.e.,
the dot productmoment correlation coefficient; (Lee Rodgers and
Nicewander, 1988)). As a linear parametric statistic, r assumes X
and Y to be continuous variables that are normally distributed
and that, if related, share a linear association. In addition, X
and Y should not contain univariate or bivariate outliers, and
display homoscedasticity (i.e., homogeneous variance of least-
squares residuals; Pernet et al., 2012). For rsfMRI data, correlated
variables are typically the preprocessed fMRI BOLD time series
from regions of interest such as spatially separated voxels or
voxel-clusters. For electrophysiological data, which contains
greater temporal resolution, first and second order spectral
features, including amplitude and phase, are commonly studied.
For electrophysiological data, correlational analyses focus on

either the raw, broadband time series, band limited time series,
or the amplitude of band-limited time series.

Typically, correlation of broadband time series is not desirable
as this signal conflates, non-uniformly, the spectral content
of electrophysiological signals (i.e., due to their high power
relative to higher frequencies, the lowest frequencies dominate
the signal). A more common approach is to study correlations
within and across band limited frequency ranges. Studies of band
limited correlations typically focus on the amplitude or power
within the selected frequency band. While a number of different
time-frequency approaches can be employed toward this aim
(Engel et al., 2013), the procedure adopted by numerous studies
seeks to isolate a frequency range of interest through filtering or
convolution, and to extract the instantaneous (i.e., sample-wise)
time-varying amplitude of the band limited signal. For example,
an experimenter might seek to study the correlation between
two regions in the alpha band range between 7 and10Hz. First,
the spontaneous raw time series of interest is band pass filtered
between 7 and 10Hz, using an appropriately parameterized filter.
Next, one can obtain the instantaneous amplitude signal of this
band-limited data by applying a Hilbert transform to the filtered
time series to compute the analytic signal

ζt = Xt + iH(Xt).

The alpha band analytic signal (ζt) is a complex valued time
series (also obtainable via wavelet convolution (Bruns, 2004)),
where the real component (Xt) is the original band passed
signal, and the imaginary component (iH(Xt) is the Hilbert
transform of (Xt), which corresponds to a 90◦ rotation of (Xt).
It is important to note the time-frequency uncertainty produced
by time series filtering/convolution, which make instantaneous
time series only “estimates” of the band limited signal. Basic
trigonometric functions can then be applied to the analytic signal
to identify the instantaneous amplitude and phase of the band
passed signal. To obtain the instantaneous amplitude (at), also
termed the signal envelope, the absolute value of the complex
analytic signal is taken at each time point. For complex numbers,
the absolute value is the length of the vector between the origin
and the coordinate of the real and imaginary values in the
complex plane (following Pythagoras’ theorem, see Figure 1)

at =

√

X2
t +H(Xt)2.

Instantaneous amplitude at , in this example, reflects the sample-
wise estimate of alpha band amplitude, which can be squared
to obtain signal power. The resultant time series (i.e., the
time-varying amplitude or power from two separate recording
locations) can then be used as the signals to be correlated.
Importantly, the amplitude time series constitutes a signal with
its own spectral properties (Figure 2), which may contain both
slow and fast dynamics (Leopold et al., 2003; Foster and Parvizi,
2012; Honey et al., 2012). This observation is important when
considering the differences in time scale between hemodynamic
(∼0.01–1Hz) and electrophysiological (∼0.01–300+ Hz) data,
and the endeavor to capture electrical correlates of hemodynamic
activity. As detailed below, one approach is to extract the
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FIGURE 1 | Quantifying band limited amplitude for correlation analysis of spontaneous data. (A) Raw spontaneous ECoG time series (5 s). (B) Spontaneous

alpha band limited time series extracted from (A), by a 7–10Hz band pass filter. (C) Analytic signal of (B), obtained via a Hilbert transform, showing the real

component (blue), imaginary component (red), and amplitude/envelope (green). The real component is the original band pass signal from (B), and the imaginary

component is a 90◦ rotated instantiation of (B). The amplitude/envelope (green) is the absolute value of the analytic signal (i.e., a complex valued time series with real

and imaginary parts). (D) Complex plane showing the temporal evolution (yellow-green shading) of the analytic signal [data comes from window highlighted with gray

in (C)]. Over time, each observation (sample) takes a coordinate location in the complex plane given the real (x-axis) and imaginary (y-axis) values at that time point

[example time point with white fill color highlighted in (D,E)]. For any given time point, the amplitude/envelope of the signal in the complex plane is defined by the

vector length extending from the central zero axes to the real/imaginary coordinate (red line). For example, as time evolves in (D; progress toward dark green) the

trajectory of values spirals out radially, increasing the vector distance from the origin: this reflects an increase in alpha band amplitude as shown in (E). Phase can also

be obtained by identifying the angular position of the amplitude vector at each time point (red vector shown has a phase angle of 30◦). Other time frequency methods

(filter-Hilbert approach shown here) can be employed, such as Wavelet convolution to achieve comparable results (Bruns, 2004; Cohen, 2014).

amplitude of a higher frequency band-limited signal across time,
and to then measure slow-varying changes in this amplitude time
series. The resultant time scale of slow varying changes (<1Hz)
in higher frequency neuronal activity (>1Hz) matches that of
the fMRI BOLD response (Nir et al., 2008; Ko et al., 2011; Wang
et al., 2012; Foster et al., 2015), thus bridging hemodynamic and

electrophysiological data (Figure 2). Another approach is to use
the low-frequency raw-filtered electrophysiological signal (He
et al., 2008b; Pan et al., 2013).

In addition to a priori seed based analysis (i.e., correlation
between selected regions/electrodes), more data driven
approaches such as independent components analysis (ICA) are
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FIGURE 2 | Extracting slow time scale variability of rapid electrophysiological dynamics. (A) BOLD fMRI activity is a slow time varying signal, due to its

hemodynamic basis. Plot shows an example time course of BOLD fMRI activity (left) and the power spectrum of this signal (right). Together these plots highlight the

low frequency (<1Hz) content of BOLD fMRI. (B) In contrast, electrophysiological activity, such as ECoG, has a wide spectral content. However, standard ECoG

recordings apply a high-pass filter limiting the study of ultra slow time scales (but see Palva and Palva, 2012). Plots show a raw ECoG time series (left), with a band

pass range 0.5–300Hz, and its power spectrum (right). The power spectrum shows a lack of power at lower frequencies (<1Hz), owing to the recording filters, and a

progressive decrease in power for higher frequencies, as commonly observed. (C) To study frequency specific activity patterns and inter-regional correlations, raw

time series are filtered to isolate the frequency range of interest. Plots show an alpha range filtered time series (left), with a band pass of 7–10Hz, and its power

spectrum (right). The isolated alpha band activity is a rapid time varying signal, however the amplitude of alpha activity shows a slower rate of change. (D) Plots show

the amplitude (red, left) of the alpha band time series from (C) and its power spectrum (right). Because the alpha band amplitude time course is not subject to the

filtering of the recorded raw signal, it can contain lower frequency spectral content. (E) Typically, BOLD fMRI activity >1Hz is excluded because it contains a number

of non-hemodynamic artifacts (Power et al., 2014). To more closely align the time scales of hemodynamic and electrophysiological activity, the alpha band amplitude

signal can be low pass filtered <1Hz, to obtain a time series with similar spectral content as BOLD fMRI. Plots show the time course of alpha band amplitude (red)

and its low pass filtered form (black; left). The power spectrum (right) of the slow time varying alpha band amplitude shows similar spectral content as the BOLD

signal. As reviewed, this approach of focusing on slow time scale modulations of higher frequency activity provides a successful means of comparing hemodynamic

and electrophysiological activity. Importantly, this approach can be applied to any electrophysiological frequency range of interest, and allows comparison across

frequencies (Nir et al., 2008; Wang et al., 2012; Foster et al., 2015). All power spectra are calculated from extended time series from which example epochs are

shown, and are normalized to the spectral maxima, with frequency shown on a log scale.

commonly applied to spontaneous neural data (Cole et al., 2010).
These unsupervised approaches seek to quantitatively identify
unique spatio-temporal patterns of covariation, i.e., putative
networks, without a priori selection of brain anatomy. ICA has
been successfully applied to rsfMRI data (Cole et al., 2010), and

to resting-state MEG/EEG data (Schölvinck et al., 2013; Hall
et al., 2014). The variability and sparsity of spatial sampling in
most invasive electrophysiological studies has limited the utility
of ICA based methods, and they will not be discussed in detail
here.
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As noted above, instantaneous phase can also be extracted and
“correlated” between two regions of interest. From the analytic
signal calculated above, phase (φt) is defined as the inverse
tangent of the ratio between the imaginary and real values at each
time point

φt = tan−1(H(Xt)/Xt)

Phase values are expressed in radians (or degrees), and capture
the angular position (counter clockwise rotation), of the complex
valued coordinate, assuming the values of [−π < θ ≤ π] (see
Figure 1). By obtaining the instantaneous phase signal (7–10Hz
alpha band in this example) from two regions, one can test for the
consistency of their relative phase position over time (i.e., their
phase synchrony):

Cφ =
1

n

∣

∣

∣

∑n

t= 1
ei(△φt)

∣

∣

∣

Here, the estimated phase consistency Cφ between two regions
(e.g., regions X and Y) is the absolute circular mean value of
phase vectors reflecting the angular phase difference between
regions X and Y at each time point (△φt = φXt − φY t).
As each phase vector has unit length, Cφ will range from [0
to 1], where 1 is perfect phase consistency. This estimate has
been described as the phase locking value by Lachaux et al.
(1999). A number of similar approaches exist for estimating
phase correlation, with a varying nomenclature used by different
authors (Cohen and Gulbinaite, 2014). However, in most cases
the temporal consistency of phase signals is estimated via circular
statistics. Importantly, the estimation of phase consistency
requires careful consideration of type I errors, which may
arise due to low statistical power (e.g., limited sample size)
or contaminated measurements (e.g., volume conduction). A
number of methodological improvements have been suggested to
address these concerns (e.g., Stam et al., 2007; Vinck et al., 2010,
2011). While the example here focuses on the phase consistency
of an alpha band signal between two regions, coupling may also
occur at different frequencies between regions (e.g., 10 and 20Hz;
Tass et al., 1998).

Summary of Invasive Findings
Invasive cortical recordings in humans and non-human primates
provide direct insight into spontaneous neural activity at
the micro-, meso-, and macro-scopic scale. Using multisite
recordings, correlations of electrophysiological activity between
distant brain regions can be explored, and in many cases
compared directly to rsfMRI data. Using the analytical techniques
described in the previous section, several investigators have
sought to identify robust correlates of spontaneous covariation
in cortical activity.

Obtaining simultaneous intracranial electrophysiology and
fMRI data from the human brain poses a number of technical
challenges such as interference and induction currents caused by
MRI (Carmichael et al., 2012). As a consequence, most human
studies have instead focused on comparing non-simultaneous
electrophysiological and fMRI measurements within subjects
who are in a common task or state. For example, Mukamel et al.

(2005) recorded single units and local field potentials (LFPs) from
auditory cortex of human subjects whowere viewing amovie, and
compared electrophysiological responses against BOLD signals
recorded from auditory cortex of a separate group of subjects
watching the same movie. The authors found that slow changes
in spike rate and the amplitude of high-frequency (40–130Hz)
LFPs were both positively correlated with the BOLD signal,
while the amplitude of low frequencies in the 5–15Hz range
were anticorrelated with the BOLD signal. These findings are
broadly consistent with reports based on simultaneous BOLD-
LFP recordings in animals (Logothetis et al., 2001; Niessing et al.,
2005).

Knowledge of the electrophysiological correlates of BOLD
activity at a single brain location does not necessarily reveal
the electrophysiological processes underlying the spatially
distributed functional networks observed using fMRI. As one
of the first invasive electrophysiological investigations of the
neural bases of rsfMRI networks in the human brain, He
et al. (2008a) collected rsfMRI data in drug-resistant epilepsy
patients undergoing pre-surgical evaluation using intracranial
electrocorticogram (ECoG) electrodes (the main clinical setting
for human intracranial studies). Resting-state fMRI data were
collected either before the implantation of the ECoG electrodes
or after the electrodes were removed and the epileptogenic
zone resected. By co-registering the anatomical MRI with the
computer-aided tomography (CT) scan, which documented the
electrode locations, the authors spatially co-registered fMRI and
ECoG data in each patient (an approach common to most studies
reviewed here). In order to identify the neurophysiological
correlates of rsfMRI networks, the authors decomposed the
ECoG signal into different frequency bands, and evaluated both
the raw signal and the band-limited amplitude at different
frequencies. In addition, the authors compared the correlation
of ECoG signals obtained during normal wakefulness, slow-wave
sleep (SWS), and rapid-eye-movement (REM) sleep with rsfMRI
signals.

Looking across states of arousal and across frequency bands,
He et al. (2008a) observed that the ECoG signal in the low-
frequency range—i.e., the delta (1–5Hz) and sub-delta (<1Hz)
bands that constitute the so-called slow cortical potentials (SCPs),
provided the best correlate of the networks defined by rsfMRI
signals. This correspondence persisted regardless of whether the
ECoG data were collected during wakefulness, SWS or REM
sleep. The band-limited amplitude of the gamma frequency (50–
100Hz) range also demonstrated good correspondence with the
fMRI resting-state signals, but this relationship was weaker than
the SCPs, and it was abolished during SWS. These results revealed
the SCP as a theretofore unknown correlate of the spontaneous
fMRI signal. Based on these findings and previous research on the
physiology of SCP, the authors proposed that the SCP may also
be a good correlate of the fMRI signal more generally (He and
Raichle, 2009). This prediction has been borne out by two recent
animal studies employing simultaneous fMRI and DC-coupled
LFP recordings (Kahn et al., 2013; Pan et al., 2013).

The findings of He et al. (2008a) identified two temporally
different correlates of rsfMRI, the SCP and the (much faster)
gamma band. How might these different time scales of cortical
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dynamics be reconciled? Some insight into this question was
provided by Nir et al. (2008). In a similar investigation, Nir
et al. (2008) recorded spontaneous activity invasively from
both hemispheres of the human cortex and studied long-range
correlation between them. These authors focused their analyses
on unit spiking activity and band-limited LFP power (BLP)
changes, and, innovatively, the modulation of these signals at
fast (>1Hz), medium (0.1–1Hz), and slow (<0.1Hz) time scales.
As noted above in Figure 2, the amplitude/envelope of LFP BLP
has unique spectral properties, which can be low-pass filtered to
study slow fluctuations. In performing this analysis, the authors
were able to consider how rapid neural dynamics, like spiking or
gamma band activity, are modulated at slow time scales similar
to fMRI BOLD dynamics.

Nir et al. (2008) reported that across their measures, the best
correlate of long-range network activity was the slow (<0.1Hz)
modulation of spiking and gamma band (40–100Hz) activity.
For example, spatial selectivity and high correlation was found
between bilateral auditory cortices for slow modulations of
gamma band activity. These findings provide a link to the
observations of He et al. (2008a) by indicating that gamma
band correlations may be subject to slow modulations (like the
SCP) that are shared between distant regions (He and Raichle,
2009). Importantly, these long-range slow modulation gamma
band correlations differ from those alternatively proposed to be
coherent between functional regions (Fries, 2005; Engel et al.,
2013). Similar to He et al. (2008b), Nir et al. (2008) observed
that long range correlations in slow modulations of gamma BLP
were preserved across waking and sleep states. However, one
limitation in linking the findings of Nir et al. (2008) to rsfMRI
data is the lack of direct comparison to rsfMRI from the same
subjects.

More recent investigations have helped address this question
by applying similar data analyses to Nir et al. (2007) in subjects
for which both resting-state ECoG and fMRI data were available.
Keller et al. (2013) studied the spatial correlations observed
with resting ECoG recordings from the lateral cortical surface
(covering frontal, parietal, and temporal lobes) for fast (1–
10Hz) or slow (0.1–1Hz) modulations of high gamma-range
activity (50–150Hz). These authors report that slowmodulations
of high gamma power provided the strongest inter-regional
correlations, and the strongest similarity to rsfMRI interregional
correlations assessed within the same subjects. Keller et al.
(2013) also report that this similarity extends to anti-correlations
(discussed below) observed between regions, although the
BOLD-ECoG correspondence was substantially weaker for inter-
regional anti-correlations. While these findings provide support
for the identification of overlapping resting-state functional
networks with electrophysiology and fMRI techniques, it is
important to also directly confirm that regions showing putative
connectivity do share functional responses under specific task
conditions.

Addressing this question directly, Foster et al. (2015) recently
quantified the electrophysiological correlates of spontaneous
and task-based fMRI correlations in human parietal cortex.
Specifically, these authors focused on simultaneous ECoG
recordings from the medial and lateral parietal surface during an

explicit task, as well as rest and sleep states. Across these states,
Foster et al. (2015) quantified correlations across the parietal
lobe of the amplitude of high-frequency activity (70–180Hz).
During task conditions that required autobiographical retrieval,
the authors observed strong trial-wise correlations between
the medial retrosplenial/posterior cingulate (RSC/PCC) region
and the lateral angular gyrus (AG). These anatomical regions
are key nodes of the default network, which displays reliable
fMRI activation during episodic memory retrieval (Wagner
et al., 2005; Rugg and Vilberg, 2013). During resting and
sleeping states, the authors further quantified the correlation
between parietal regions in slow (<1Hz) fluctuations of
spontaneous high frequency amplitude (70–180Hz), analogous
to the approach employed by Nir et al. (2008) and (Keller
et al., 2013), and found correlation patterns that largely
resembled those observed during the retrieval task. Next,
Foster et al. (2015) compared ECoG resting-state connectivity
patterns (correlation matrices) with rsfMRI data acquired for
each subject, showing significant positive correlations between
both modalities. Together, these findings support the view
that slow time scale electrophysiological activity can exhibit
strong correspondence with rsfMRI connectivity patterns, and
that these slow fluctuations include the modulation of local
high-frequency dynamics. In addition, these data also support
the observation that spontaneous activity captures intrinsic
properties of functional networks across behavioral states (e.g.,
task, rest, and sleep; see also Ramot et al., 2013). However, future
work is required to better understand the cellular and circuit-
level mechanisms driving these inter-regional correlations. One
avenue for investigation toward this aim is the use of single
cell recordings in non-human primates combined with fMRI
imaging.

Cortical resting-state activity has been evaluated at the level
of single neurons using simultaneous fMRI and intracortical
neurophysiological recordings, typically in anesthetizedmacaque
monkeys. In one study focused on the primary visual cortex (V1),
macaques were either exposed to a uniform gray field or kept
in complete darkness (Shmuel and Leopold, 2008). Under these
conditions, the authors found that slow fluctuations in the BOLD
signal were correlated with local neuronal activity following
a (∼6 s) time lag that roughly resembled the hemodynamic
response function (i.e., the time it takes vascular tissue to respond
to local changes in metabolic demand). Activity in the gamma
frequency band (24–90Hz) as well as the local population spiking
showed high correlations with the BOLD response. When the
authors correlated the time-varying amplitude of these measures
of local neurophysiological activity with the fMRI time-courses of
voxels across the entire visual cortex, they found widespread co-
activation of visual cortical areas across both hemispheres. These
results suggest that, at least for the visual system, rsfMRI-based
networks might be linked to synchronization of slow fluctuations
in spiking activity across anatomically distinct, but functionally
related brain areas (see Logothetis et al., 2009 for caveats).
Although previous work suggests spontaneous correlations are
intrinsically preserved across different states of awareness (Liu
et al., 2015), the effect of anesthetic compounds likely influences
the covariation structure of spontaneous dynamics.
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More recently, simultaneous rsfMRI and neurophysiological
recordings have been performed in alert non-human primates
resting in a dark environment (Schölvinck et al., 2010). The
authors focused on widespread, positive correlations of fMRI
signals that are frequently excluded from resting-state functional
connectivity analyses to correct for motion artifacts. Strikingly,
the authors observed that the gamma-range activity (40–80Hz)
measured at a single cortical site was well-correlated with this
global rsfMRI signal (Schölvinck et al., 2010). More specifically,
the neuronal signal recorded at a single cortical site accounted
for up to 10% of the global BOLD signal variance, suggesting a
neuronal origin for these brain-wide BOLD correlations at rest.
Taken together, the findings from these two studies suggest that
fMRI fluctuations measured during the resting-state are closely
linked to neural activity.

The observation that spontaneous fluctuations in gamma
range activity correlates with rsfMRI signals in non-human
primates is consistent with studies observing a tight coupling
between local BOLD activation and gamma band activity
recorded from the same brain area in humans. As discussed
above, human ECoG studies have reported that inter-areal
correlations in gamma power are linked to BOLD correlations
between these areas (He et al., 2008a; Nir et al., 2008; Keller et al.,
2013; Ko et al., 2013; Foster et al., 2015). An important technical
qualification is that few studies use the same frequency range
to define gamma activity, or the same terminology to describe
frequencies between 40 and 200Hz (e.g., gamma, high-gamma,
broadband). Importantly, despite these differences, growing
evidence suggests that changes in high frequency activity >40Hz
recorded from the human cortex has a broadband spectral
representation, and the different subsampling of this frequency
range will approximately track the same temporal process (Miller
et al., 2014b). Importantly, high-frequency spectral changes also
track event-related cortical deactivations (Shmuel et al., 2006;
Lachaux et al., 2008; Ramot et al., 2012), particularly within
cortical regions comprising the default network, in both humans
(Miller et al., 2009; Jerbi et al., 2010; Dastjerdi et al., 2011;
Ossandón et al., 2011; Foster et al., 2012) and non-human
primates (Hayden et al., 2009). While debate still surrounds the
appropriate biophysical interpretation and statistical treatment
of this spectral range (Brunet et al., 2014; Hermes et al., 2015a,b;
Podvalny et al., 2015; Ray and Maunsell, 2015; Gao, 2016),
growing evidence suggests there are distinct neural processes that
generate spectrally isolated (oscillatory) gamma and spectrally
broad (asynchronous) high-frequency components that appear
in the >40Hz range (Buzsáki et al., 2012; Lachaux et al., 2012;
Ray and Maunsell, 2015).

In addition to correlated changes in the “gamma” range,
several studies reviewed above also showed significant, although
more spatially diffuse, correlations in the power of lower
frequency oscillations between brain areas. Electrodes on the
cortical surface used for ECoG studies most likely reflect activity
of neurons in the supra-granular cortical layers (Kajikawa and
Schroeder, 2011; Fukushima et al., 2012). In contrast, studies in
non-human primates (e.g., Katzner et al., 2009) measure activity
in superficial or deep cortical layers, depending on electrode
depth. There is growing evidence that different cortical layers

show different spectral profiles, for example, higher gamma
power in superficial layers, and more prominent low frequency
activity in the deep layers (Maier et al., 2010; Buffalo et al.,
2011; Xing et al., 2012; Smith et al., 2013; Godlove et al., 2014;
Ninomiya et al., 2015; but see Lakatos et al., 2005, 2008). Low
frequency oscillations (e.g., in the theta and alpha range) are
generated by certain neuronal populations in the deep layers of
cortex (Lopes Da Silva and Storm Van Leeuwen, 1977; Lopes
Da Silva, 1991; Silva et al., 1991; Bollimunta et al., 2008, 2011;
Sun and Dan, 2009) as well as in the thalamus (Hughes and
Crunelli, 2005; Lörincz et al., 2008), which projects to a subset
of cortical layers. Low-frequency contributions to the BOLD
signal thus may be more difficult to detect in studies that do not
independently sample form the different cortical layers.

To measure how much low-frequency activity contributes
to rsfMRI correlations, Wang et al. (2012) investigated a
higher-order thalamocortical network. To do so, Wang et al.
(2012) simultaneously recorded neuronal activity from four
distributed sites in visual cortex (V4), inferior temporal cortex
(TEO), posterior parietal cortex (LIP), and the thalamus
(pulvinar) of macaque monkeys during the resting-state. The
authors compared this electrophysiological network activity to
correlations in rsfMRI BOLD signals acquired under the same
conditions. Analyses of slow-varying changes in LFP BLP, as well
as the phase of LFPs, showed that low frequency activity (<20Hz)
predicted resting-state BOLD correlations between all pairs of
network sites. Specifically, on a fast time-scale, Wang et al.
(2012) showed the highest coherence between neural activity
from distant sites to be at theta/alpha frequencies. Similar to the
analyses described above for human ECoG data, the authors also
filtered time series of theta/alpha power into timescales matching
the slow fluctuations of the BOLD signal (0.01–0.1Hz), and
found that the highest correlations between these band limited
power time series also occurred at theta/alpha frequencies. Non-
invasive work in human subjects provides further support for a
broad range of frequencies, in addition to gamma, whose inter-
regional coupling is associated with the correlations observed in
rsfMRI (Laufs et al., 2003; Mantini et al., 2007; de Pasquale et al.,
2010; Brookes et al., 2011; Hipp et al., 2012; Marzetti et al., 2013;
Cabral et al., 2014; Hipp and Siegel, 2015).

The prominent role of low frequency oscillations can be
reconciled with evidence of gamma contributions to BOLD
signals by considering cross-frequency coupling mechanisms
(i.e., modulation of higher frequency components by lower
frequencies). Wang et al. (2012) investigated this possibility by
first calculating the phase coherence between the phase of low
frequency (alpha-range 8–13Hz) oscillations between recordings
sites. Secondly, the authors calculated how the phase of this low
frequency oscillation modulated local high frequency gamma
activity within each recording site (Cohen, 2008). This cross-
frequency coupling analysis suggested that the phase of low
frequency oscillations was coherent between sites, and that it
locally modulated the amplitude of gamma oscillations within
sites (Wang et al., 2012). This suggests that the long-range
correlation of gamma power between brain areas may be driven
by lower frequency (e.g., alpha) coherence between regions,
which locally modulate ongoing gamma power.
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The findings reviewed above beg the question of how neurons
in different brain areas synchronize. There are extensive and
reciprocal anatomical connections between the thalamus and
cortex (Sherman and Guillery, 2006; Jones, 2007), supporting
the notion that thalamocortical interactions are important for
generating synchronous oscillatory activity across the brain. In
addition to the first-order sensory relay nuclei in the thalamus
(e.g., lateral geniculate, ventral posterior nuclei), which receive
input from cortical layer 6 only, there are also higher-order
thalamic nuclei (e.g., pulvinar, mediodorsal nucleus), which
constitute the major volume of the thalamus and receive
input from cortical layers 5 and 6. The higher-order thalamus
respectively projects to cortical layer 4 and more superficial
layers, providing indirect pathways between cortical areas,
which are well-positioned to influence functional connectivity
across the cortex (Shipp, 2003; Jones, 2009; Saalmann, 2014).
As mentioned above, the thalamus generates low frequency
oscillations, e.g., alpha (Hughes et al., 2004; Hughes and Crunelli,
2005; Lörincz et al., 2008), and thalamic lesions affect low
frequency oscillations in the cortex (Ohmoto et al., 1978). Other
studies have shown that the pulvinar regulates the degree of
alpha- and low-beta synchrony between visual cortical areas
based on behavioral demands (Saalmann et al., 2012). Consistent
with the idea of a closely coupled thalamocortical system, human
and monkey studies have reported robust resting-state networks
incorporating the thalamus (Zhang et al., 2008; Wang et al.,
2012). This suggests that the thalamus may be a vital node for
supporting resting-state networks.

In addition to low frequency subcortically mediated
synchrony, long-range coordination may also be achieved
through cortico-cortical high-frequency synchrony (Fries, 2015;
Bastos et al., 2015b). A number of investigations have specifically
highlighted the role of gamma range (40–80Hz) synchrony in
dynamic functional brain networks (e.g., Bastos et al., 2015a),
which provides an alternative mechanism for coordinating
intrinsic network patterns (Engel et al., 2013). While extant data
has chiefly focused on the role of gamma synchrony during task
conditions, it is of future interest to consider the spontaneous
organization of gamma synchrony patterns, and to see how these
rapid long-range dynamics may relate to the slower time scales
of modulation described above (Bressler and Richter, 2015;
Womelsdorf and Everling, 2015).

CORRELATED SPONTANEOUS ACTIVITY
ACROSS DIFFERENT SCALES OF BRAIN
ORGANIZATION

Invasive and non-invasive electrophysiological recordings
from both humans and non-human primates suggest
a number of, possibly related, neuronal correlates of
spontaneous hemodynamic activity observed with rsfMRI.
While comprehensive electrocortical mapping is challenging,
focused efforts on specific networks suggest a strong overlap
between the macro-scale areal parcellation of functional cortical
regions through covariance structures in spontaneous activity
using either modality (He et al., 2008b; Wang et al., 2012; Keller

et al., 2013; Foster et al., 2015). Given the striking correspondence
between spontaneous and task-based parcellations of large-scale
functional brain networks, it is of interest to consider the
extent to which spontaneous activity may also reveal meso-
and possibly micro-scale organization within brain regions. For
example, sensory cortices display robust long-range correlations,
such as spontaneous correlations between primary auditory or
visual areas (Nir et al., 2008; Yeo et al., 2011). However, within
these areas there is well-documented topological organization
(i.e., retinotopy or tonotopy). Does spontaneous activity, when
measured with sufficient spatial resolution, conform to this
within-region topology?

Recent electrophysiological investigations suggest that
spontaneous cortical activity on the mesoscopic scale also
captures local, within-region functional organization. A
useful bridging example between inter-areal and intra-areal
organization, is provided by Fukushima et al. (2012). Fukushima
et al. (2012) utilized micro-ECoG recordings from the plane
of the superior temporal sulcus in macaque monkeys to
study evoked and spontaneous electrocortical activity within
tonotopically organized auditory cortex. First, Fukushima et al.
(2012) established the ability to identify tonotopic cortical
organization using task-evoked responses. Importantly, the
authors focused on changes in the high-gamma range (50–
150Hz), analogous to the studies reviewed above. Using these
task-based tonotopic maps as functional templates; the authors
studied the spatial organization of spontaneous activity, again
focusing on changes in high-gamma amplitude. Following this
approach, the authors found high similarity between the spatial
configuration of spontaneous and task-based activity patterns,
such that spontaneous data could be used to estimate the
predominant tonotopic organizational structure within auditory
cortex.

Analogous to the human ECoG work reviewed above, the
findings of Fukushima et al. (2012) suggest a pivotal role for
spontaneous high-frequency activity (high-gamma, 50–150Hz).
Importantly, these authors focused on the direct changes in
high-frequency amplitude, rather than slower fluctuations of
high-frequency amplitude/power (Nir et al., 2008; Wang et al.,
2012; Keller et al., 2013; Foster et al., 2015). This difference
in time-scale likely influences efforts to study different spatial
scales of covariation, as low-pass filtering of the high-frequency
amplitudes removes more localized activity, and instead favors
slower, more diffusely correlated modulation of distant regions.
Under this view, there are likely heterogeneous time scales of
modulation present within spontaneous activity patterns, which
relate to the different spatial and temporal constraints of local
and distal network organization. This “nesting” of temporal
dynamics across spatial scales is an important area for future
investigation, however, there is some evidence suggesting infra-
slow EEG activity appears to modulate higher frequency activity,
and also correlate with rsfMRI networks (Monto et al., 2008;
Palva and Palva, 2012; Hiltunen et al., 2014).

While both human ECoG and micro-ECoG measurements
in macaques provide clear evidence for strong correspondence
between local spontaneous and task-related patterns on the
level of neuronal population activity, such correspondence
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has also been documented at the level of single neurons. In a
series of seminal investigations, Arieli et al. reported a striking
correspondence between the spatial organization of spontaneous
and task-evoked activity by triggering optical imaging data
of the primary visual cortex in the cat to the spiking activity
of isolated neurons (Arieli et al., 1995, 1996), Specifically,
they found that “snapshots” of local cortical activation at the
time of elicited spikes were nearly indistinguishable between
spontaneous and task-related responses. This correspondence
between ongoing spontaneous activity and evoked responses,
has been extended and replicated in visual (Tsodyks et al., 1999;
Kenet et al., 2003) as well as in somatosensory cortices (Wang
et al., 2013). These studies, combined, suggest that the influence
of spontaneous activity on task-evoked responses is a critical
factor for the variability of neural responses across repeated
stimulus presentations (see discussion below). Interestingly,
these studies show that the similarity between spontaneous
activity patterns and task-evoked functional organization
progressively increases over early development, indicating
shared sensitivity to anatomical and functional sculpting of the
underlying neural tissue (Fiser et al., 2004; Berkes et al., 2011).
Therefore, in the developed brain, spontaneous activity reflects
basic organizational properties of local neural populations,
and at the same time influences the response properties of
that population. This influence exerted by spontaneous activity
can be a non-trivial factor on the computational properties of
neural populations. Indeed a large body of work has focused
on studying the influence of “noise-correlations” on population
coding (Averbeck et al., 2006).

The fact that spontaneous and task-elicited dynamics exhibit
common patterns of covariance would not be especially
surprising if one were to consider both as being determined by
a common underlying anatomical connectivity. However, it can
be more useful to think of monosynaptic anatomy as shaping and
constraining, but not determining, the covariation in population
activity (Honey et al., 2009). A clear example of this principle is
provided in the visual cortex, where task-driven and spontaneous
BOLD fluctuations are generally correlated among regions and
subregions that are known to be anatomically connected (Nir
et al., 2006; Yeo et al., 2011). At the same time, however,
there are departures from a direct correspondence: inter-regional
correlations are stronger among subpopulations that represent
the same visual eccentricity, more so than sites that represent
the same polar angle (Yeo et al., 2011; Arcaro et al., 2015). For
example, the functional connectivity between circuits in human
V2 and V3 reflect much more than the presumed monosynaptic
reciprocal connections between neurons with common receptive
fields. Similarly, as noted by Genç et al. (2015), the fact that foveal
and peripheral sites within V1 are correlated despite lacking
monosynaptic connections, again argues against monosynaptic
links as the only driver of covariance, even within brain areas.
Thus, anatomy shapes covariance, but does not constrain it
to immediate first order interactions, allowing local and global
network covariance. Indeed, for slow hemodynamic signals such
as BOLD fMRI, there is ample room for covariance to be
shaped by multi-synaptic causal paths, by common input to
causally unconnected sites (e.g., from subcortical modulators),

and, finally, as we discuss elsewhere in this review, by multi-scale
emergent dynamical processes in the primate brain.

Neural Noise Correlations
One striking property of neuronal responses is the degree of
variability in spiking activity across repeated presentations of a
sensory stimulus. This trial-by-trial response variability is shared
across specific members of the neuronal population (Cohen and
Kohn, 2011). The degree of shared variability (around the mean
response) across trials between neurons is typically referred to
as noise correlation (Averbeck et al., 2006; Cohen and Kohn,
2011). The somewhat pejorative use of the term noise to describe
these correlations has an historical explanation, as inter-regional
and inter-neuronal correlations were originally studied from the
perspective of the information capacity of population codes. In
the language of Shannon’s theory of information, a high level
of independent spiking across a population of neurons carries a
high amount of information (Zohary et al., 1994). Conversely,
as the level of noise correlation increases across a population,
the informational content that could theoretically be decoded
at the next stage of processing (which receives this population
activity readout as sole input) is reduced as similarly firing
neurons become redundant (Averbeck et al., 2006). Experimental
and computational work has extended this simplistic view to a
more nuanced account of how noise correlations relate to the
functional repertoire of neuronal populations and their relative
size (Kohn et al., 2009). Importantly, it has become clear that
the degree of noise correlations during experimental stimulation
provides insight into the shared interactions and inputs between
members of local populations (Ringach, 2009). In addition, more
recent evidence suggests that these properties are present outside
of task performance (Okun et al., 2015), and show important
sensitivities to the context of behavioral states (Ecker et al., 2014;
Schölvinck et al., 2015).

Above, we reviewed work that identified topographical
organization in patterns of spontaneous activity at the surface of
sensory cortex. It is of great interest whether or not spontaneous
activity covariation may inform functional organization of non-
sensory, associative cortical areas. A key challenge here is the
uncertainty that functional organization conforms to cortical
topography. Consideration of noise correlations has shown to be
useful in this regard. For example, Kiani et al. (2015) recently
addressed these questions directly by studying the statistical
grouping of neurons in frontal cortex of the macaque. Kiani
et al. (2015) studied the correlation of spiking activity between
isolated pairs of neurons recorded across a high-density electrode
array (Utah array) implanted in the prearcuate gyrus. Using
unsupervised data clustering methods, the authors found that
neuronal spiking during a visual task was functionally clustered
within the prearcuate gyrus. Functional clustering was defined
by the similarity of spiking responses across units. There were
approximately two clusters of neurons showing dissociable
response properties, which were also spatially dissociated across
the recording array over the prearcuate gyrus. Importantly, the
authors observe this clustering structure across all periods of the
task, collectively (i.e., entire task) and in isolation (i.e., different
trial periods).
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Neuronal response similarity across different task periods
supports the view that the correlations driving clustering
were due to shared “noise correlations” between neurons. To
quantitatively confirm this inference, Kiani et al. (2015) analyzed
the data focused only on the residual responses across trials, by
subtracting the mean normalized activity during the task. This
approach follows analytical approaches outlined above, where
response variability across trials is correlated between neurons
to estimate their shared “noise.” The authors emphasized
the analytical similarities between their work and common
methods employed for large-scale parcellation of functional
regions using rsfMRI. Importantly, the findings of Kiani et al.
(2015) suggest that spontaneous activity is informative for
functional grouping at the level of single neurons within higher
order associative cortices for which topographical organizational
principles are challenging to elucidate. It is of importance
to understand how these local observations can be linked to
the large-scale parcellations/networks observed with fMRI and
electrophysiology. However, one promising observation was that
similar parcellation across the recording array could be achieved
using low frequency activity (Kiani et al., 2015).

DYNAMIC STRUCTURE OF CORRELATED
SPONTANEOUS ACTIVITY

As reviewed above, spontaneous neural activity at multiple scales
of cortical organization contains spatial patterns of covariant
activity that reflect functional and anatomic constraints. Given
this correspondence, and the reliability of topological cortical
organization, it is worth considering whether the correlated time
courses and ongoing dynamics of spontaneous activity also reflect
other properties of neuronal networks. Following the intuition
promoted here, spontaneous activity is determined, or at the very
least constrained, by anatomical and physiological properties.
Therefore, it is possible that spontaneous activity will conform
to certain types of dynamics permissible by neural tissue.

As noted above, several investigations have reported
topographically organized spontaneous activity patterns that
recapitulate sensory maps across the cortical surface. A more
striking question is whether spontaneous neural activity at the
spiking/ensemble level, e.g., within an orientation column of
visual cortex, displays dynamical motifs of temporal behavior.
This question has been addressed in a series of important
studies by Yuste and colleagues, who utilized calcium-imaging
methods to record and compare ensemble-spiking activity
during spontaneous and evoked states (Cossart et al., 2003;
MacLean et al., 2005; Miller et al., 2014a; Carrillo-Reid et al.,
2015).

A foundational question for quantifying structures in
spontaneous ensemble activity is whether ongoing spiking
displays repeating patterns of ensemble activity. Using two-
photon calcium imaging, Cossart et al. (2003) studied the
patterns of ensemble spiking in slice preparations of rodent
visual cortex. During periods of spontaneous upstates, the
authors observed repeating stereotyped ensemble activity, which
reflected a “core” of regularly activated neurons. Given these

stereotyped responses during spontaneous states, it is of interest
to compare how the responses of single neurons relate to
functional activation of the ensemble. To study this question,
MacLean et al. (2005) employed two-photon calcium imaging in
thalamocortical slices that covered somatosensory cortex. Using
this preparation, the authors were able to quantify ensemble-
spiking activity triggered by both spontaneous activity and
thalamic stimulation. Following previous observations, MacLean
et al. (2005) identified consistent ensemble patterns of activity
during spontaneous upstates. Stereotyped patterns of ensemble
activity in somatosensory cortex were also observed during
activation via electrical stimulation of the ventral thalamus,
which also reflected a local depolarizing upstate. Strikingly,
MacLean et al. (2005) observed no discernable difference between
the ensemble patterns identified during spontaneous or thalamic
triggered upstates, which was confirmed electrophysiologically
via intracellular recordings of target cells. This similarity
between conditions more generally supports the conclusion that
spontaneous dynamics were not driven by thalamic inputs, as
tested with this preparation. These observations lead the authors
to speculate that thalamic feed-forward excitation works to
release dynamic “trajectories” of activity that are intrinsic to
cortex (MacLean et al., 2005). Again, this conclusion suggests
that spontaneous dynamics follow patterns of network activity
that conform to the predominant causal pathways of circuit
interaction. Such claims, however, are limited by the fact that
in vitro sampling of network activity lacks many aspects of
neural activity in vivo, such as cortico-cortical feedback and
neuromodulation from nuclei in the brain stem.

More recently, Miller et al. (2014a) addressed this technical
limitation by studying ensemble population activity using two-
photon calcium imaging of visual cortex in awake rodents
during spontaneous and visually stimulated conditions. These
experimental conditions provide important challenges for
previous observations, as the in vivo setting presents a far
richer neural context of causal influence, and therefore the
possibility for divergence of ensemble activity patterns between
spontaneous and task evoked states. Comparing spontaneous
periods to the presentation of visual gratings and naturalistic
movies, Miller et al. (2014a) observed that the same ensembles of
neurons were coactivated across conditions. This experimental
preparation did not include electrophysiological recordings,
and so explicit temporal similarity of spiking activity was not
captured. However, consistent with the slice work reviewed
above, these observations suggest that coactivation of a “core”
ensemble of neurons is key to the intrinsic functional state of
a cortical region. Indeed, Miller et al. (2014a) speculate that
evoked functional responses sample from a “lexicon” of intrinsic
functional ensemble configurations that are transiently expressed
in spontaneous activity, in the absence of sensory events.
Importantly, while this work focused on the identification of
spatial ensembles, recent analysis of these data, focused on time-
resolved extraction of ensemble similarities, further supports the
view that canonical sequences of ensemble engagement during
visual stimulation also occur during spontaneous states (Carrillo-
Reid et al., 2015). Endogenous patterns of neural activity
therefore provide a strong prediction of the possibility space
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of functional states during stimulation, even under conditions
where animals are naïve to the experimental stimuli—excluding
related phenomena such as preplay or replay of firing sequences
(Carrillo-Reid et al., 2015).

The hypothesis that neuronal task and spontaneous dynamics
explore a common state space requires further support from
studies with high-temporal resolution. Using tetrode recordings
from rodent primary auditory cortex, Luczak et al. (2009) studied
similarities of spontaneous and sensory-evoked population
spiking activity. The authors first characterized the responses
of neurons to tones and naturalistic stimuli. Although neurons
differed in their stimulus-triggered spiking responses, each
isolated neuron displayed stereotyped consistency of spiking
activity for tones of differing frequency and naturalistic stimuli.
Next, Luczak et al. (2009) studied the spiking activity of the
same neurons during spontaneous upstate periods. Strikingly,
the authors observed a strong correspondence between the
stereotyped responses of a given neuron across tones, naturalistic
sounds and spontaneous upstates. Importantly, the authors also
confirmed that this similarity between evoked and spontaneous
events is observed regardless of whether the animals are awake or
anesthetized.

Luczak et al. (2009) interpret the similarity of spiking
sequences across states to reflect a set of constraints imposed
on the population that greatly limit the repertoire of neural
responses. To further explore this conjecture, the authors
studied population spiking as multi-dimensional vectors of time-
integrated firing rates for each recorded neuron. In considering
the simplest case of two neurons, Luczak et al. (2009) observed
a strong overlap in responses of the two neurons during
evoked auditory stimuli and spontaneous events, whereby
spontaneous events occupied a large, structured 2-dimensional
space that included the evoked events. Importantly, spontaneous
activity did not occupy all of the response space uniformly,
and was geometrically different from the space occupied by
randomly shuffled data. This observation was extended to
a multi-dimensional space across multiple neurons. When
visualized in a 2-dimensional projection, the population vectors
of spiking responses for different stimuli all occupied small
clusters within the space formed by spontaneous activity, which
itself was topologically distinct from randomly shuffled data.
From this observation, the authors inferred that spontaneous
activity explores and therefore conveys the boundary conditions
of population dynamics, which form the shared constraints
imposed on evoked responses. Given these limits, the authors
suggest that functional responses of a local circuit population are
constituted by a limited set, or “vocabulary,” of activity patterns,
from within a neural response space outlined by spontaneous
neural dynamics.

What might be the sources of these shared constraints?
A classical interpretation is to view local circuits as physio-
anatomic ensembles sculpted through maturation by shared
statistical history of activation (Hebb, 1949; Fuster and Bressler,
2012). Consistent with the general intuition advocated in this
review, the Hebbian formation of local and global cell assemblies
suggests that these spatio-temporal attributes, or constraints, will
be expressed in ongoing spontaneous activity. Partial empirical

support for this view, where ontogenetic and environmental
factors sculpt circuit formation, is derived from work reviewed
earlier, which shows that the similarity of topographic patterns
in visual cortex during spontaneous and evoked states increases
across maturation (Fiser et al., 2004; Berkes et al., 2011). As
discussed below, acute changes in neural dynamics, such as
ensemble firing sequences, can occur via learning. These findings,
combined, lead to interesting predictions about the factors
influencing the similarity between spontaneous and evoked
activity patterns, and the possibility of intervening in circuit
organization to compare the reconfiguration of population
dynamics during spontaneous and stimulated events.

Preplay/Replay Spike Sequences
The electrophysiological and optical imaging data reviewed
above suggest that neural populations display patterns of
spontaneous activity that relate closely to evoked responses.
This relationship suggests that using appropriate multivariate
methods, functional response patterns of neuronal populations
can be predicted from the statistical attributes observed during
spontaneous non-task states (Luczak et al., 2009; Okun et al.,
2015). How might these observations from sensory cortical
regions relate to similar phenomena of spike sequence preplay
and replay in the hippocampus?

Place cells within the hippocampal subfields display spatial
receptive fields, which modulate their firing rate as the animal
traverses a preferred topological location (i.e., a place field).
Recording multiple place cells with overlapping receptive fields
will therefore display a progressive sequence of spiking activity
as the animal moves through each successive place field (Lisman
and Redish, 2009). Strikingly, it has been repeatedly observed
that both prior to, and after, a learned locomotor trajectory is
taken, the unique firing sequence across mapped placed cells
is repeated (Diba and Buzsáki, 2007; Pastalkova et al., 2008).
For both preplay (repeated spike sequence prior to locomotion)
and replay (repeated spike sequence post locomotion), firing
patterns are triggered by transient high-frequency activity
called “ripples” (Buzsáki, 2015). Interestingly, these spiking
sequences can run in the forward direction, matching locomotion
sequence, or backward direction (Diba and Buzsáki, 2007),
with the proportion of forward/backward sequences modulated
by behavioral state (Wikenheiser and Redish, 2013). More
recent experimental work has shown that preplay sequences
not only reflect learned sequences, but also express sequences
reflecting novel trajectories of navigation and planned behavior
(Wikenheiser and Redish, 2015; but see Silva et al., 2015). Given
that these events happen outside of explicit behavioral events, to
what extent do they mirror the relationship between spontaneous
and evoked activity patterns?

Preplay and replay spike sequences differ in their relationship
to task performance. While these sequences do occur during
passive states, these states occur within a specific temporal
context of task performance. In this fashion, they likely reflect
a clear behavioral purpose related to the consolidation and
learning of behavior, as well as to support planned action and
decision-making. Making similar inferences about spontaneous
data is difficult given the lack of explicit behavioral controls.
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However, preplay/replay phenomena in the hippocampus may
be thought of as a well-documented case of how ensemble
dynamics are strongly constrained by anatomical and biophysical
factors, whereby local excitable events (e.g., ripples) trigger a
limited set of spiking activity. In the case of preplay/replay, recent
learning, and therefore activation of specific firing sequences,
will bias the population to an even smaller response space when
subject to excitatory drive. These general predictions suggest
spontaneous activity may be biased by recent modulations of
ensemble physiology, following a Hebbian rule, and that specific
sequences can be released through acute learning and controlled
excitation (Luczak et al., 2009; Lewis et al., 2016). Consistent with
this prediction, Xu et al. (2012) have previously shown that V1
ensemble firing sequences to a learned trajectory of a visual target
can be reproduced by presenting a transient visual stimulus at the
starting location of the sequence.

FUTURE DIRECTIONS

As reviewed above, spontaneous neural dynamics at multiple
scales conform to basic anatomical and physiological
constraints. Given this relationship, quantitative consideration
of spontaneous activity patterns can provide provisional insight
into the anatomical and dynamical properties of neural networks
at the micro-, meso-, and macro scale. However, these inferences
need to bemade cautiously, as themeasurement of neural activity
is often confined to a limited spatial and temporal scale, and each
measurement technique is biased to detect different domains
of the underlying neuronal circuit functions. In addition,
correlation and other statistical treatments of spontaneous data
provide uncertain descriptions of underlying causal interaction.
As briefly discussed below, these challenges can be addressed
through improved statistical methods and causal experimental
manipulations.

Correlation, Connectivity, and Causal
Inference
The challenges posed by the complexity of brain data are
pervasive in neuroscience, and are particularly salient when
investigating the neuronal basis of spontaneous brain activity
across multiple scales. In many experimental settings, only
restricted observations of interacting neural elements (e.g.,
cells/circuits/regions) can be achieved, often without the ability
to causally intervene. These technical limitations highlight two
important constraints of correlational methods for evaluating
spontaneous brain activity.

First, incomplete measurements of neural interactions limit
the inferential power of observed correlations, as hidden factors
may shape covariance. Indeed, a wide-ranging set of causal
interactions can explain the same correlational structure. For
example, regions A and B may exhibit correlated activity because
they are directly connected, but this can also arise because
of an indirect connection from A to B via a third region
C, or from a common feed forward source, such as when C
projects to both A and B. These alternative scenarios cannot
be distinguished using correlation-based data analysis alone
(when C is not observed). Thus, although at an aggregate level,

rsfMRI covariance tends to follow anatomical connectivity, it
does present some departure from tractographic connectivity
estimates (Honey et al., 2009).

Secondly, correlation quantifies an undirected non-
causal relationship between two variables. For example,
correlations between two brain structures, A and B, may
reflect a unidirectional or bidirectional causal interaction, or
alternatively reflect no causal influence between elements, but
rather a shared causal input from C. In this respect, causal
information is essential to elucidating the actual structure of
functional network topology. Ideally, casual inference is made
through carefully controlled intervention of network/element
interaction.

The precision required for causal experimentation is often
limited to invasive animal model systems, and some rare settings
in humans (Keller et al., 2011, 2014). However, there are
several analytical methods that can be employed to partially
deal with the limitations of the correlational approach. To
address the degeneracy of coupling models that account for
neural observations, it is necessary to employ methods that
leverage additional assumptions (Yatsenko et al., 2015). Going
beyond simple bivariate covariance measures, available methods
range from relatively simple inverse covariance models (Smith
et al., 2011), auto-regressive causal models (Seth et al., 2015),
Bayesian networks (Mumford and Ramsey, 2014), lagged-
coordinate embedding approaches (Sugihara et al., 2012), as well
as brain-specific approaches such as dynamic causal modeling
(Friston et al., 2003); each trade off inferential power with added
assumptions. Within many of these frameworks, assumptions
of sparsity are used to mitigate the problem of false-positive
connectivity that can arise from indirect influences (Bolstad et al.,
2011). Put more simply, it is generally assumed that a correlation
matrix of measured elements likely overestimates the underlying
statistical relationships. In turn, many data driven approaches
seek to reduce complexity (dimensionality) by considering each
pair-wise correlation relative to all other correlation pairs to help
identify redundancy (e.g., partial correlation). Such approaches
reflect a blind method for correcting overestimation, where
correlation (regression) estimates are penalized (regularized)
with respect to the remaining observed data (Tibshirani, 1996).
However, with knowledge about the system under investigation
and the statistical attributes of the measurement technique, more
explicit forms of penalization can be applied to correlation
matrices to eliminate false positives (Yatsenko et al., 2015).
Improvements in these methods are becoming increasingly
important as neuroscientific data sets grow exponentially in size.
Finally, given the common use of linear methods, the influence of
non-stationarity must be carefully considered, particularly given
the growing focus on temporally resolved analyses (Hutchison
et al., 2013).

Although, analysis techniques can be used in cases where
causal experiments are challenging, some progress has been
made for invasively studying casual connectivity in the human
brain. Using intracranial recordings (ECoG), Keller et al. (2011)
measured causal interactions between recording sites using
cortico-cortical evoked potentials (CCEPs). To measure CCEPs,
cortex is stimulated at one cortical region (by running current
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between a pair of overlying electrodes) and stimulation-locked
responses are measured at electrodes located at other sites on
the cortical surface. Keller et al. (2011) measured resting BOLD
functional connectivity in a group of six patients, and mapped
CCEPs across the lateral cortical surface of the same individuals.
They found that the magnitude of the CCEPs between sites was
correlated with the strength of BOLD functional connectivity
between those sites. This relationship between spontaneous
BOLD correlations and CCEPs was specific to positive BOLD
correlations; regions with anticorrelated BOLD signals (discussed
below) showed unreliable CCEPs.

In a follow-up study with a larger patient sample, Keller et al.
(2014) mapped the large-scale causal network composed of inter-
regional CCEPs. They observed that, while short-range (<5 cm
distance) causal links were often reciprocal, the reciprocity over
longer distances (>5 cm) was no more than expected by chance,
indicating that long-range connections are often unidirectional.
Peri-rolandic circuits exhibited surprisingly widespread and
powerful connections in these analyses, in contrast with their
typically sparse BOLD correlations. Although causal stimulation
analyses are still a developing field, findings of connection
reciprocity and density constrain models of functional brain
architectures. The ability of CCEPs to resolve the directionality of
neural information flow in the human brain makes them crucial
for understanding large-scale spontaneous neural dynamics
(David et al., 2010).

Anti-correlation?
Electrophysiological measurements will assist us in moving
beyond the question of whether two regions are functionally
connected to a description of how two regions are interacting.
More specifically, electrophysiological data will be crucial in
transitioning from static to dynamic accounts of large-scale
network configuration (Hutchison et al., 2013). For example, it
is crucial to determine whether the information transmission
between cortical regions is primarily feed forward (i.e., driving)
or feedback (i.e.,modulatory) in nature. Similarly, it is important
to distinguish which inter-regional interactions are effectively
excitatory and which are effectively inhibitory (suppressive). It
has proven difficult to resolve these questions using functional
neuroimaging. The literature harbors a decade of debate over
whether functional antagonism can be inferred from BOLD anti-
correlation (i.e., from the fact that increased BOLD signal in
one site is associated with decreased BOLD signal at another
site). On the one hand, the pattern of BOLD anti-correlations
has been put forward as a powerful principle of large-scale
neural organization (Fox et al., 2005) with clinical implications
(Kelly et al., 2008; Fox et al., 2014). On the other hand, BOLD
fMRI anti-correlations may arise from artifacts of acquisition,
physiology or signal processing (Chang and Glover, 2009;
Murphy et al., 2009; Weissenbacher et al., 2009; Saad et al.,
2012).

Electrophysiological investigations can help resolve
uncertainties associated with interpreting BOLD anti-
correlations. Keller et al. (2011) observed that positive BOLD
correlations were consistently associated with causal CCEPs,
while negative BOLD correlations were not. Subsequently,

Keller et al. (2013) observed that, while most negative BOLD
correlations do not correspond to negative correlations
in electrophysiologically measured population activity, a
subset of BOLD anti-correlations matches anti-correlations
of 50–150Hz power measured electrophysiologically. Thus,
a minority of anticorrelated rsfMRI networks may reflect
suppressive interaction at the population level. In addition,
electrophysiological measures allow us to resolve how
rsfMRI correlations vary over time, which may reveal further
antagonistic relationships. For example, a link with zero
aggregate correlation may in fact be due to rapid switching
between antagonistic and supportive modes of interactions.
Although the interpretation of BOLD anti-correlations remains
difficult, it is clear that electrophysiological methods with high
temporal resolution and broad fields of view will be important
in resolving these and related questions. Importantly, under task
conditions, human intracranial data provides strong support
for dynamic anticorrelated activity. For example, Ossandón
et al. (2011) reported brain-wide anti-correlation patterns in
human intracranial recordings closely matching prior fMRI
findings. Ossandón et al. (2011) observed these anti-correlations
in broadband 60–140Hz activity during an active visual search
task. Such data provide a clear electrophysiological basis for
the correlation and anti-correlation patterns typically seen with
fMRI within and between the “task-positive” and “task-negative”
networks.

Pathological Spontaneous Activity
There is now a large literature that applies rsfMRI network
analyses to different neurological and psychiatric patient
populations. This literature has been extensively reviewed
elsewhere (He et al., 2007; Fox and Greicius, 2010; Zhang
and Raichle, 2010; Fornito et al., 2015). Importantly, while
neurological disease is often typified by explicit brain pathology
and injury, such explicit causes have not been as readily
identified in psychiatric illness. Rather, psychiatric illness can
be viewed as perturbations in the functional organization or
temporal dynamics of otherwise superficially healthy neural
tissue (Bassett and Bullmore, 2009). Clinically, this presents
a challenge for identifying pathological network structure and
dynamics as biomarkers for treatment. Initial applications of
rsfMRI have provided promising results in psychiatric disorders
ranging from schizophrenia (Yang et al., 2014) and autism
(Gotts et al., 2013) to depression (Ressler and Mayberg,
2007). In addition, a bold, contemporary initiative seeks to
elucidate the functional-anatomical markers that correlate with
emotional, perceptual and cognitive symptoms common to
different psychiatric disorders, and to use these neural correlates
as therapeutic targets (Insel, 2012; Fox et al., 2014). As part of
this endeavor, consideration of spontaneous neural dynamics
can help contribute to functional brain network identification
and the quantification of underlying differences in network
organization across psychiatric conditions (Fornito et al., 2015).
Studies focused on spontaneous dynamics may also help
support alternative accounts of differences in functional network
dynamics associated with psychiatric disease (e.g., Uhlhaas and
Singer, 2006, 2010).
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CONCLUSION

Evidence from multiple scales of neural organization suggests
that consideration of spontaneous neural dynamics can provide
insight into the basic organization of functional neural systems.
Importantly, the recent interest in rsfMRI investigation of large-
scale brain networks is supported by a clear correspondence
to invasively recorded neural activity in humans and non-
human primates. These invasive recordings have further revealed
important neural organizational principles at the mesoscopic
and microscopic scales. As we gather more information
about the electrophysiological basis of large-scale neural
connectivity and dynamics, a major goal should be moving
from descriptive to more mechanistic models of neural dynamics
and network organization. This progress is a necessary step
toward harnessing the power of spontaneous brain dynamics
for more effective treatments of psychiatric and neurological
disorders.
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