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The activity of ensembles of simultaneously recorded neurons can be represented as a

set of points in the space of firing rates. Even though the dimension of this space is equal

to the ensemble size, neural activity can be effectively localized on smaller subspaces.

The dimensionality of the neural space is an important determinant of the computational

tasks supported by the neural activity. Here, we investigate the dimensionality of

neural ensembles from the sensory cortex of alert rats during periods of ongoing

(inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with

ensemble size, and grows significantly faster during ongoing activity compared to evoked

activity. We explain these results using a spiking network model based on a clustered

architecture. The model captures the difference in growth rate between ongoing and

evoked activity and predicts a characteristic scaling with ensemble size that could be

tested in high-density multi-electrode recordings. Moreover, we present a simple theory

that predicts the existence of an upper bound on dimensionality. This upper bound

is inversely proportional to the amount of pair-wise correlations and, compared to a

homogeneous network without clusters, it is larger by a factor equal to the number of

clusters. The empirical estimation of such bounds depends on the number and duration

of trials and is well predicted by the theory. Together, these results provide a framework

to analyze neural dimensionality in alert animals, its behavior under stimulus presentation,

and its theoretical dependence on ensemble size, number of clusters, and correlations

in spiking network models.

Keywords: gustatory cortex, dimensionality, hidden markov models, ongoing activity, mean field theory, spiking

network model, metastable dynamics

INTRODUCTION

Understanding the dynamics of neural activity and how it is generated in cortical circuits is
a fundamental question in Neuroscience. The spiking activity of ensembles of simultaneously
recorded neurons can be represented in terms of sequences of firing rate vectors, as shown e.g.,
in frontal (Abeles et al., 1995; Seidemann et al., 1996; Durstewitz et al., 2010), gustatory (Jones
et al., 2007; Mazzucato et al., 2015), motor (Kemere et al., 2008), premotor and somatosensory
cortex (Ponce-Alvarez et al., 2012). The dimension of each firing rate vector is equal to the number
of ensemble neurons N and the collection of rate vectors across trials takes the form of a set
of points in the N-dimensional space of firing rates. Such points may not fill the whole space,
but be restricted to lie inside a lower-dimensional subspace (see Ganguli et al., 2008). Roughly,
dimensionality is the minimal number of dimensions necessary to provide an accurate description
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of the neural dynamics. If ensemble neurons are independent
of each other, neural activities at different times will scatter
around in the space of firing rate, filling a large portion of
the space. In this case, dimensionality will be maximal and
equal to the size of the ensemble N. At the other extreme, if
all neurons are strongly correlated, ensemble activity localizes
along a line. In this case, dimensionality is minimal and equal to
one. These simple examples suggest that dimensionality captures
information about the structure of a cortical circuit and the
functional relations among the simultaneously recorded neurons,
such as their firing rates correlation computed over timescales of
hundreds of milliseconds.

Different definitions of dimensionality have been introduced
for different tasks and across neural systems (Ganguli et al.,
2008; Churchland et al., 2010a; Abbott et al., 2011; Ganguli and
Sompolinsky, 2012; Cadieu et al., 2013; Rigotti et al., 2013; Gao
and Ganguli, 2015). Such measures of dimensionality can shed
light on the underlying neural computation; for example, they
can predict the onset of an error trial in a recall task (Rigotti et al.,
2013), or can allow the comparison of classification accuracy
between different brain areas (e.g., IT vs. V4) and synthetic
algorithms (Cadieu et al., 2013). Here, we investigate a measure
of dimensionality closely related to the firing rate correlations
of simultaneously recorded neurons (Abbott et al., 2011); such
correlations may provide a signature of feature-based attention
(Cohen and Maunsell, 2009) and other top-down cognitive
factors (Nienborg et al., 2012). We elucidate the dependence of
dimensionality on experimental parameters, such as ensemble
size and interval length, and we show that it varies across
experimental conditions. We address these issues by comparing
recordings of ensembles of neurons from the gustatory cortex
(GC) of alerts rats to a biologically plausible network model
based on neural clusters with recurrent connectivity. This model
captures neural activity in GC during periods of ongoing and
stimulus-evoked activity, explaining how the spatiotemporal
dynamics of ensemble activity is organized in sequences of
metastable states and how single-neuron firing rate distributions
are modulated by stimulus presentation (Mazzucato et al., 2015).
Here, we show that the same model expounds the observed
dependence of dimensionality on ensemble size and how such
dependence is reduced by the presentation of a stimulus. By
comparing the clustered network model with a homogeneous
network without clusters, we find that the clustered network has a
larger dimensionality that depends on the number of clusters and
the firing rate correlations among ensemble neurons. A simple
theory explains these results and allows extrapolating the scaling
of dimensionality to very large ensembles. Our theory shows
that recurrent networks with clustered connectivity provide a
substrate for high-dimensional neural representations, which
may lead to computational advantages.

METHODS

Experimental Procedures
Adult female Long Evans rats were used for this study (Samuelsen
et al., 2012; Mazzucato et al., 2015). Animals received ad lib.

access to food and water, unless otherwise mentioned. Movable
bundles of 16 microwires attached to a “mini-microdrive”
(Fontanini and Katz, 2006; Samuelsen et al., 2012) were
implanted in GC (AP 1.4, ML ± 5 from bregma, DV –4.5 from
dura). After electrode implantation, intra-oral cannulae (IOC)
were inserted bilaterally (Phillips and Norgren, 1970; Fontanini
and Katz, 2005). At the end of the surgery a positioning bolt
for restraint was cemented in the acrylic cap. Rats were given at
least 7 days for recovery before starting the behavioral procedures
outlined below. All experimental procedures were approved by
the Institutional Animal Care and Use Committee of Stony
BrookUniversity and complied with University, state, and federal
regulations on the care and use of laboratory animals. More
details can be found in Samuelsen et al. (2012).

Rats were habituated to being restrained and receiving fluids
through IOCs, and then trained to self-deliver water by pressing
a lever following a 75 dB auditory cue at a frequency of 4
KHz. The interval at which lever-pressing delivered water was
progressively increased to 40 ± 3 s (ITI). During experimental
sessions additional tastants were automatically delivered at
random times near the middle of the ITI, at random trials and
in the absence of the anticipatory cue. A computer-controlled,
pressurized, solenoid-based system delivered ∼40µl of fluids
(opening time ∼40ms) directly into the mouth through a
manifold of 4 polymide tubes slid into the IOC. The following
four tastants were delivered: 100mM NaCl, 100mM sucrose,
100mM citric acid, and 1mM quinine HCl. Water (∼50µl) was
delivered to rinse the mouth clean through a second IOC 5 s after
the delivery of each tastant. Each tastant was delivered for at least
6 trials in each condition. Upon termination of each recording
session the electrodes were lowered by at least 150µm so that a
new ensemble could be recorded.

Evoked activity periods were defined as the interval after
tastant delivery (time t = 0 in our figures) and before
water rinse (time t = 5 s). Only trials in which the tastants
were automatically delivered were considered for the analysis
of evoked activity, to minimize the effects of cue-related
expectations (Samuelsen et al., 2012). Ongoing activity periods
were defined as the 5 s-long intervals at the end of each inter-trial
period.

The behavioral state of the rat was monitored during the
experiment for signs of disengagement. Erratic lever pressing,
inconstant mouth movements and fluids dripping from the
mouth indicated disengagement and led to the termination of
the experiment. In addition, since disengagement from the task
is also reflected in the emergence of high power µ oscillations in
local field potentials, occurrences of such periods were removed
offline and not analyzed further (Fontanini and Katz, 2008).

Data Analysis
Single neuron action potentials were amplified, bandpass filtered
(at 300–8 KHz), digitized and recorded to a computer (Plexon,
Dallas, TX). Single units of at least 3:1 signal-to-noise ratio
were isolated using a template-matching algorithm, cluster
cutting techniques and examination of inter-spike interval
plots (Offline Sorter, Plexon, Dallas, TX). All data analyses
and model simulations were performed using custom software
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written in Matlab (Mathworks, Natick, MA, USA), Mathematica
(Wolfram Research, Champaign, IL), and C. Starting from a
pool of 299 single neurons in 37 sessions, neurons with peak
firing rate lower than 1Hz (defined as silent) were excluded
from further analysis, as well as neurons with a large peak
around the 6–10Hz in the spike power spectrum, which were
considered somatosensory (Katz et al., 2001; Samuelsen et al.,
2012; Horst and Laubach, 2013). Only ensembles with 3 or more
simultaneously recorded neurons were further analyzed (167
non-silent, non-somatosensory neurons from 27 ensembles). We
analyzed ongoing activity in the 5 s interval preceding either
the auditory cue or taste delivery, and evoked activity in the 5 s
interval following taste delivery in trials without anticipatory cue,
wherein significant taste-related information is present (Jezzini
et al., 2013).

Hidden Markov Model (HMM) Analysis
Here we briefly outline the procedure used in Mazzucato et al.
(2015), see this reference and (Jones et al., 2007; Escola et al.,
2011; Ponce-Alvarez et al., 2012) for further details. Under the
HMM, a system of N recorded neurons is assumed to be in one
of a predetermined number of hidden (or latent) states (Rabiner,
1989; Zucchini and MacDonald, 2009). Each statem is defined as
a vector of N firing rates νi (m) , i = 1, . . . , N, one for each
simultaneously recorded neuron. In each state, the neurons were
assumed to discharge as stationary Poisson processes (Poisson-
HMM). We matched the model to the data segmented in 1-ms
bins (see below). In such short bins, we found that typically at
most one spike was emitted across all simultaneously recorded
neurons. If more than one neuron fired an action potential in
a given bin, only one (randomly chosen) was kept for further
analysis (this only occurred in a handful of bins per trial; Escola
et al., 2011). We denote by yi (t) the spiking activity of the i-th
neuron in the interval [t, t + dt], yi (t) = 1 if the neuron emitted
a spike and yi (t) = 0 otherwise. Denoting with St the hidden
state of the ensemble at time t, the probability of having a spikes
from neuron i in a given statem in the interval [t, t+ dt] is given
by p

(
yi (t) = 1

∣∣ St = m
)
= 1− eνi(m)dt .

The firing rates νi (m) completely define the states and are also
called “emission probabilities” in HMM parlance. The emission
and transition probabilities were found by maximization of the
log-likelihood of the data given the model via the expectation-
maximization (EM), or Baum-Welch, algorithm (Rabiner, 1989),
a procedure known as “training the HMM.” For each session and
type of activity (ongoing vs. evoked), ensemble spiking activity
from all trials was binned at 1ms intervals prior to training
assuming a fixed number of hidden states M (Jones et al., 2007;
Escola et al., 2011). For each given number of states M, the
Baum-Welch algorithm was run 5 times, each time with random
initial conditions for the transition and emission probabilities.
The range of hidden states M for the HMM analyses were
Mmin = 10 and Mmax = 20 for spontaneous activity, and
Mmin = 10 and Mmax = 40 for evoked activity. Such numbers
were based on extensive exploration of the parameter space
and previous studies (Jones et al., 2007; Miller and Katz, 2010;
Escola et al., 2011; Ponce-Alvarez et al., 2012; Mazzucato et al.,
2015). For evoked activity, each HMM was trained on all four

tastes simultaneously. Of the models thus obtained, the one with
largest total likelihood M∗ was taken as the best HMM match
to the data, and then used to estimate the probability of the
states given the model and the observations in each bin of each
trial (a procedure known as “decoding”). During decoding, only
those hidden states with probability exceeding 80% in at least
50 consecutive bins were retained (henceforth denoted simply
as “states”). State durations were approximately exponentially
distributed with median duration 0.60 s (95% CIs: 0.07–4.70)
during ongoing activity and 0.30 s (0.06–2.80) during evoked
activity (Mazzucato et al., 2015).

The firing rate fits νi (m) in each trial were obtained from the
analytical solution of the maximization step of the Baum-Welch
algorithm,

νi (m) = − 1

dt
ln

(
1−

∑T
t= 1 rm (t) yi(t)∑T

t= 1 rm (t)

)
. (1)

Here, [yi(1), . . . , yi(T)] is the spike train of the i-th neuron in
the current trial, and T is the total duration of the trial. rm (t) =
P(St = m|y(1), . . . , y(T)) is the probability that the hidden state
St at time t ism, given the observations.

Dimensionality Measure
We defined the dimensionality of the neural activity as

d = 1
∑N

i=1 λ̃2
i

, (2)

where the λ̃i are the principal eigenvalues expressed as fractions
of the total amount of variance explained, i.e., λ̃i = λi/ (

∑
j λj),

where λj are the eigenvalues of the covariance matrix of the firing
rates (see below).

The dimensionality can be computed exactly in some relevant
special cases. The calculation is simplified by the observation that
Equation (2) is equivalent to

d =
[
Tr
(
Cf

)]2

Tr(C2
f
)

,

where Cf is the true covariance matrix of the firing rate vectors,

Tr (A) ≡
∑N

i=1 Aii is the trace of matrix A, and Tr
(
A2
)

=∑N
i,j=1 AijAji. We consider in the following only the case of firing

rates in equal bins, hence we can replace Cf with the covariance
matrix of the spike counts C in the definition of d:

d = [Tr (C)]2

Tr(C2)
= b2N

cN+aN
, (3)

where for later convenience we have introduced the notation

aN =
N∑

i=1

C2
ii, bN =

N∑

i=1

Cii, cN =
N∑

i6=j

CijCji. (4)

Note that d does not depend on the distribution of firing rates,
but only on their covariance, up to a common scaling factor.
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Dimensionality in the case of uniform pair-wise

correlations
When all the pair-wise correlations rijare identical, rij = ρ for all
i 6= j,

rij =




1 ρ . . . ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1




(5)

we have Cij = ρ
√

σ 2
i σ 2

j for i 6= j, where σ 2
i = Cii is the spike

count variance. In this case, we find from Equation (4) that

aN =
N∑

i=1

σ 4
i , bN =

N∑

i=1

σ 2
i , cN = ρ2(b2N−aN). (6)

and the dimensionality, Equation (3), is given by

d = 1

ρ2+
(
1−ρ2

)
g(N)

, (7)

where

gN = aN

b2N
=

∑N
i=1 σ 4

i(∑N
i=1 σ 2

i

)2 ,

Note that since both aN and bN scale as N when N is large, in
general gN ∼ 1

N for large N.
If all spike counts have equal variance, σi = σ , we find exactly

gN = 1
N :

d = 1

ρ2+ (1−ρ2)
N

= N

Nρ2+(1−ρ2)
, (8)

and the dependence of d on the variance drops out. Note that for
uncorrelated spike counts (ρ = 0) this formula gives d = N,
whereas for any finite correlation we find the upper bound d =
1/ρ2. For N > 1, the dimensionality is inversely related to the
amount of pair-wise correlation ρ.

Consider the case where spike counts have variances σ 2
i

drawn from a probability distribution with mean E
[
σ 2
i

]
= σ

2

and variance Var
[
σ 2
i

]
= δσ 4, and the pair-wise correlation

coefficients rij, for i 6= j, are drawn from a distribution with mean
E
[
rij
]
= ρ and variance Var

[
rij
]
= δρ2. In such a case one

can evaluate Equation (3) approximately by its Taylor expansion
around the mean values of the quantities in Equation (4). At
leading order in N one finds

E
[
d
]
≈

E
[
b2N
]

E [cN]+E [aN]
= Nσ 4+δσ 4

(N − 1) σ 4(ρ2+δρ2)+ σ 4+δσ 4
,

(9)
where E[.] denotes expectation. To obtain this result we have used
the definitions in Equation (4), from which

E[aN] = N(σ 4+δσ 4), E[b2N] =N2σ 4+Nδσ 4,

E [cN] = (N2 − N)σ
4
(ρ2+δρ2), (10)

and the fact that, given a random vector Xi with mean µi

and covariance Cij, and a constant symmetric matrix Aij, the
expectation value of the quadratic form

∑
i,j XiAijXj is

E[
∑

i,j

XiAijXj] =
∑

ij

(AijCji+µiAijµj). (11)

In the case of uncorrelated spike counts (ρ = 0, δρ = 0),
dimensionality still depends linearly on the ensemble size N, but

with a smaller slope σ 4

σ 4+δσ 4 < 1 compared to the case of equal

variances (Equation 8 with ρ = 0).

Dimensionality in the Case of Neural Clusters
Given an ensemble of N neurons arranged in Q clusters
(motivated by the model network described later in section
“Spiking neuron model”), we created ensembles of uncorrelated
spike trains for N ≤ Q and correlated within each cluster for
N > Q. Thus, if N ≤ Q the correlation matrix is the N × N
identity matrix. If N > Q, the (Q+1)th neuron was added to
the first cluster, with correlation ρ with the other neuron of
the cluster, and uncorrelated to the neurons in the remaining
clusters. The (Q+2)th neuron was added to the second cluster,
with correlation ρ with the other neuron of the second cluster,
and uncorrelated to the neurons in the remaining clusters, and
so on. Similarly, the (2Q+p)th neuron (p ≤ Q) was added to the
p-th cluster, with pair-wise correlation ρ with the other neurons
of the same cluster, but no correlation with the neurons in the
remaining clusters; and so on. In general, for N = mQ + p

neurons (where m =
[
N
Q

]
−

≥ 1 is the largest integer smaller

than N
Q ), the procedure picked m + 1 neurons per cluster for

the first p cluster and m neurons per cluster for the remaining
Q− p clusters, with uniform pair-wise correlations ρ in the same
cluster while neurons from different clusters were uncorrelated.
The resulting correlation matrix r was block diagonal

r = diag
(
R1, . . . ,RQ

)
,

where each of the Q blocks contains the correlations of neurons
from the same cluster. Inside each block Ri, the off-diagonal
terms are equal to the uniform within-cluster correlation ρ:

Ri =




1 ρ . . . ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1




The first p blocks have size (m+ 1) × (m + 1) and the last
Q− p blocks have size m×m, so that (m+ 1) p+m

(
Q− p

)
=

N. The remaining elements of matrix r (representing pair-wise
correlations of neurons belonging to different clusters) were
all zero. Recalling that Cij = rijσiσj, one finds Tr (C) =
pbm+1 +

(
Q− p

)
bm andTr

(
C2
)
= ρ2[pb2m+1 +

(
Q− p

)
b2m] +
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(1 − ρ2)[pam+1 +
(
Q− p

)
am], where an and bn are defined in

Equation (6), from which one obtains

d =
{

b2N/aN , N ≤ Q
[pbm+1+(Q−p)bm]

2

ρ2[pb2m+1+(Q−p)b2m]+(1−ρ2)[pam+1+(Q−p)am]
, N > Q

(12)

In the approximation where all neurons have the same variance
this simplifies to

d =
{

N , N ≤ Q
N

1+mρ2[1−(Q−p)/N]
, N > Q. (13)

Recall that in the formulae abovem and p depend onN. For finite
ρ, Equation (13) predicts the bound d ≤ Q/ρ2 for any N > 1,
with this value reached asymptotically for large N. When single
neuron variances σ 2

i are drawn from a distribution with mean

E
[
σ 2
i

]
= σ

2
and variance Var

[
σ 2
i

]
= δσ 4, an expression for the

dimensionality can be obtained from Equation (12) at leading
order in the expectation values of the quantities in Equation (4)
(not shown), with a procedure similar to that used to obtain
Equation (9).

Pair-Wise Correlations
Given neuron i and neuron j’s spike trains, we computed the spike
count correlation coefficient rij

rij =
Sij√
SiiSjj

,

where S is the sample covariance matrix of the spike counts
estimated as

Sij =
1

NbNT − 1

Nb,NT∑

b,s=1

(
ni
(
b, s
)
− < ni >

) (
nj
(
b, s
)
− < nj >

)
,

(14)
where ni(b, s) is the spike count of neuron i in bin b and trial s.
The sum goes over all Nb bins and over all NT trials in a session,
whereas < ni > is the average across trials and bins for neuron
i. In the main text and figures we present results obtained with
a bin size of 200ms, but have performed the same analyses with
bin sizes varying from 10ms to 5 s (see Results for details).

Significance of the correlation was estimated as follows
(Renart et al., 2010): Nshuffle = 200 trial-shuffled correlation

coefficients r
′
ij were computed, then a p-value was determined

as the fraction of shuffled coefficients r
′
ij whose absolute value

exceeded the absolute value of the experimental correlation, p =
#
(∣∣∣r′ij

∣∣∣>|rij|
)

Nshuffle
. For example, a correlation r was significant at p =

0.05 confidence level if no more than 10 shuffled correlation
coefficients out of 200 exceeded r.

The pair-wise correlations of firing rates vectors computed
in bins of fixed duration T were given by Equation (14) with
ni
(
b, s
)
replaced by ni

(
b, s
)
/T. Instead, correlations of firing

rates vectors inside hidden states (which have variable duration)
were estimated after replacing ni

(
b, s
)
in Equation (14) with

νi (m, s), the firing rate of neuron i in state m in trial s. For each
trial s, this quantity was computed according to Equation (1).

Estimation of Dimensionality
The eigenvalues λj in Equation (2) were found with a standard
Principal Component Analysis (PCA) of the set of all firing rate
vectors (Chapin and Nicolelis, 1999). The firing rate vectors were
obtained via the HMM analysis (see Equation 1); all data from
either ongoing or evoked activity were used. For the analysis of
Figure 3E, where the duration and number of trials were varied,
only the firing rate vectors of the HMM states present in the given
trial snippet were used (even if present for only a few ms). When
firing rate vectors in hidden states were not available (mainly, in
“shuffled” datasets and in asynchronous homogeneous networks,
see below for details), the firing rates were computed as spike
counts in T = 200 ms bins divided by T, ni

(
b, s
)
/T, where

ni
(
b, s
)
is as defined in Equation (14) (Figures 3F,G, 6E, 7D, 9A).

Dimensionality values were averaged across 20 simulated sessions
for each ensemble sizeN; in each session, 40 trials of 5 s duration,
resulting in NT = 1,000 bins, were used (using bin widths of 50–
500ms did not change the results). Note that for the purpose of
computing the dimensionality (Equation 3), it is equivalent to
use either the binned firing rate ni

(
b, s
)
/T or the spike count

ni
(
b, s
)
.

In our data, d roughly corresponded to the number of
principal components explaining between 80 and 90% of the
variance. However, note that all eigenvalues are retained in our
definition of dimensionality given in Equation (2) above.

Shuffled Datasets
The dimensionality of the data as a function of ensemble size N
was validated against surrogate datasets constructed by shuffling
neurons across different sessions while matching the empirical
distribution of ensemble sizes. Comparison analyses between
empirical and shuffled ensembles were trial-matched using the
minimal number of trials per condition across ensembles, and
then tested for significant difference with the Mann-Whitney test
on samples obtained from 20 bootstrapped ensembles. Neurons
whose firing rate variance exceeded the population average by
two standard deviations were excluded (8/167 of non-silent,
non-somatosensory neurons).

Dependence on the Number of Trials: Simulations

(Figures 7E, 8A)
The estimate of d from data depends on the number and duration
of the trials (Figure 3E and Equation 16 below). To investigate
this phenomenon in a simple numerical setting we generated
N × NT “nominal” firing rates, thought of as originating
from N neurons, each sampled NT times (trials). The single
firing rates were sampled according to a log-normal distribution
with equal means and covariance leading to Equation (7), i.e.,
Cij = ρσiσj(1− δij) + σ 2

i δij, with δij = 1 if i = j, and zero
otherwise (note that the actual distribution used is immaterial
since the dimensionality only depends on the covariance matrix,
see Equation 3). We considered the two cases of equal variance
for all ensemble neurons, σi = σ for all i (Figure 8A) or
variances σi sampled from a log-normal distribution (Figure 8A
and “+” in Figure 7E). The same N and NT as used for the
analysis of the model simulations in Figure 7D were used (where
the “trials” were NT bins of 200ms in 40 intervals of 5 second
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duration for each ensemble size N). The covariance of the data
thus generated was estimated according to Equation (14), based
on which the dimensionality Equation (3) was computed. The
estimated dimensionality depends onN andNT andwas averaged
across 100 values of d, each obtained as explained above. Note
that in this simplified setting increasing the duration of each trial
is equivalent to adding more trials, i.e., the effect of having a trial
400ms long producing 2 firing rates (one for each 200ms bin) is
equivalent to having two trials of 200ms duration. In the general
case, the effect of trial duration on d will depend on how trial
duration affects the variance and correlations of the firing rates.

Dependence on the Number of Trials: Theory
The dependence of dimensionality on the number of trials can
be computed analytically under the assumption that N ensemble
neurons generate spike counts ni, for i = 1, . . . ,N, distributed
according to a multivariate Gaussian. Since we are interested in
the spike-count covariance Equation (14), we can assume the
spike-count distribution to have zero mean and true covariance
Cij. The matrix M(NT ) = (NT − 1) · S(NT ), where S(NT ) is
the covariance matrix Equation (14) sampled from NT trials, is
distributed according to aWishart distributionWN

(
Cij,NT − 1

)

with NT − 1 degrees of freedom (Mardia et al., 1979). Since the
variance of the Wishart distribution,

Var
(
Mij

)
= (NT − 1)(C2

ij+CiiCjj),

is proportional to NT , we obtain the variance of the entries of the
sample covariance as

Var
(
S
(NT )
ij

)
=

C2
ij+CiiCjj

NT−1
, (15)

to be used in the estimator of d (from Equation 3)

d̂ = [Tr (S)]2

Tr(S2)
= b̂2N

ĉN+âN
,

where âN, ĉN, b̂2N are given by Equation (4) with C replaced by
S. With a calculation similar to that used to obtain Equation (9),
to leading order in N and NT one finds

E[d̂] ≈ E[b̂2N]

E[ĉN]+E[âN]
,

with

E[âN] =N
(
σ 4+δσ 4

)
+ 2Nσ 4

NT−1
,

E[b̂2N] =N2σ 4+Nδσ 4+ 2Nσ 4

NT−1
,

E [ĉN] =
(
N2−N

)
(ρ2+δρ2)σ 4+

(
N2−N

) 1+ρ2+δρ2

NT−1
σ 4,

where we also used Equations (10) and (11), withVar
[
σ 2
i

]
= δσ 4

and Var
[
rij
]
= δρ2, for i 6= j. In conclusion, one finds

E[d̂] =

(
N2+ 2N

NT−1

)
σ 4+Nδσ 4

(
N2−N

) (
ρ2+δρ2+ 1+ρ2+δρ2

NT−1

)
σ 4+N

(
1+ 2

NT−1

)
σ 4+Nδσ 4

.

(16)

Model Fitting
The dependence of the data’s dimensionality on ensemble size N
was fitted by a straight line via standard least-squares,

d = β1 · N+β0,

separately for ongoing and evoked activity (Figures 3B–D,
6B–D). Comparison between the dimensionality of evoked and
ongoing activity was carried out with a 2-way ANOVA with
condition (evoked vs. ongoing) and ensemble size (N) as factors.
Since d depends on the number and duration of the trials
used to estimate the covariance matrix (Figure 3E and Equation
16), we matched both the number of trials and trial length in
comparisons of ongoing and evoked dimensionality. If multiple
tastes were used, the evoked trials were eachmatched to a random
subset of an equal number of ongoing trials.

The dependence of dimensionality d on ensemble size N in
a surrogate dataset of Poisson spike trains with mean pairwise
correlation ρ (generated according to the algorithm described
in the next section) was modeled as Equation (16) with δρ2 =
αρ2 and δσ 4 = σ 4 = β (Figure 7D, dashed lines); NT

was fixed to 1000 (40 trials of 5 s each, segmented in 200ms
bins). The parameters α, β were tuned to fit all Poisson trains
simultaneously on datasets with N = 5, 10, . . . , 100 and
ρ = 0, 0.01, 0.05, 0.1, 0.2, with 20 ensembles for each value
(Figure 7D; only the fits for ρ = 0, 0.1, 0.2 are shown). A
standard non-linear least-squares procedure was used (Holland
and Welsch, 1977).

Generation of Correlated Poisson Spike
Trains
Ensembles of independent and correlated Poisson spike trains
were generated for the analysis of Figure 7. Ensembles of
independent stationary Poisson spike trains with given firing
rates νi were generated by producing their interspike intervals
according to an exponential distribution with parameter νi.
Stationary Poisson spike trains with fixed pairwise correlations
(but no temporal correlations) were generated according to the
method reported in Macke et al. (2009), that we briefly outline
below.

We split each trial into 1ms bins and consider the associated
binary random variable Xi (t) = 1 if the i-th neuron emitted a
spike in the t-th bin, and Xi (t) = 0 if no spike was emitted.
These samples were obtained by first drawing a sample from
an auxiliary N-dimensional Gaussian random variable U ∼
N (γ,3) and then thresholding it into 0 and 1: Xi = 1 if
Ui > 0, and Xi = 0 otherwise. Here, γ = {γ1, γ2, . . . , γN} is
the mean vector and 3 =

{
3ij

}
is the covariance matrix of the

N-dimensional Gaussian variable U . For appropriately chosen
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parameters γi and 3ij the method generates correlated spike
trains with the desired firing rates νi and pairwise spike count
correlation coefficients rij.

The prescription for γi and 3ij is most easily expressed as a
function of the desired probabilities µi of having a spike in a bin
of width dt, µi = P(Xi (t) = 1), and the pairwise covariance cij of
the random binary vectors Xi(t) and Xj(t), from which γi and 3ij

can be obtained by inverting the following relationships:

µi = 8(γi) ,

cii = 8(γi) 8 (−γi) ,

cij = 82

(
γi, γj,3ij

)
− 8(γi)8

(
γj
)
, i 6= j.

Here, 8(x) is the cumulative distribution of a univariate
Gaussian with mean 0 and variance 1 evaluated at x, and
82

(
x, y,3

)
is the cumulative distribution of a bivariate Gaussian

with means 0, variances 1 and covariance 3 evaluated at (x, y)
(note that the distributions 8 and 82 are unrelated to the N-
dimensional Gaussian U ∼ N (γ, 3)). Without loss of generality
we imposed unit variances for Ui, i.e., 3ii = 1.

We related the spike probabilities µi to the firing rates νi as
µi = 1 − e−νidt , with (1 − µi) being the probability of no spikes
in the same bin. When dt approaches zero, µi ≈ νidt and the
spike trains generated as vectors of binary random variables by
sampling U ∼ N (γ,3) will approximate Poisson spike trains
(dt = 1 ms bins were used). In order to have a fair comparison
with the data generated by the spiking network model (described
in the next section), the mean firing rates of the Poisson spike
trains were matched to the average firing rates obtained from the
simulated data.

Since γ and 3 were the same in all bins, values of Xi (t)
and Xi (s) were independent for t 6= s (i.e., the spike trains
had no temporal correlations). As a consequence, the random
binary vectors have the same pair-wise correlations as the spike
counts, and the cij are related to the desired rij by cij =
rij

√
µi (1− µi)µj

(
1− µj

)
, where µi (1− µi) is the variance of

Xi. See Macke et al. (2009) for further details.

Spiking Network Model
We modeled the data with a recurrent spiking network of N =
5000 randomly connected leaky integrate-and-fire (LIF) neurons,
of which 4000 excitatory (E) and 1000 inhibitory (I). Connection
probability pβα from neurons in population α ∈ E, I to neurons
in population β ∈ E, I were pEE = 0.2 and pEI = pIE = pII = 0.5;
a fraction f = 0.9 of excitatory neurons were arranged into
Q different clusters, with the remaining neurons belonging to
an unstructured (“background”) population (Amit and Brunel,
1997). Synaptic weights Jβα from neurons in population α ∈ E, I
to neurons in population β ∈ E, I scaled with N as Jβα =
jβα/

√
N, with jβα constants having the following values (units

ofmV): jEI = 3.18, jIE = 1.06, jII = 4.24, jEE = 1.77.
Within an excitatory cluster synaptic weights were potentiated,
i.e., they took average values of 〈J〉+ = J+jEE with J+ > 1, while
synaptic weights between units belonging to different clusters
were depressed to average values 〈J〉− = J−jEE, with J− = 1 −
γf (J+ − 1) < 1, with γ = 0.5. The latter relationship between

J+ and J− helps to maintain balance between overall potentiation
and depression in the network (Amit and Brunel, 1997).

Below spike threshold, the membrane potential V of each LIF
neuron evolved according to

τm
dV

dt
= −V+τm (Irec+Iext+Istim)

with a membrane time constant τm = 20 ms for excitatory and
10 ms for inhibitory units. The input current was the sum of
a recurrent input Irec, an external current Iext representing an
ongoing afferent input from other areas, and an external stimulus
Istim representing e.g., a delivered taste during evoked activity
only. In our units, a membrane capacitance of 1nF is set to 1.
A spike was said to be emitted when V crossed a threshold Vthr ,
after which V was reset to a potential Vreset = 0 for a refractory
period of τref = 5 ms. Spike thresholds were chosen so that,
in the unstructured network (i.e., with J+ = J− = 1), the E
and I populations had average firing rates of 3 and 5 spikes/s,
respectively (Amit and Brunel, 1997). The recurrent synaptic
input Iirec to unit i evolved according to the dynamical equation

τs
dIirec
dt

= −Iirec+
N∑

j=1

Jij
∑

k

δ
(
t−t

j

k

)
,

where t
j

k
was the arrival time of k-th spike from the j-th pre-

synaptic unit, and τs was the synaptic time constant (3 and 2 ms
for E and I units, respectively), resulting in an exponential post-

synaptic current in response to a single spike,
Jij
τs
exp(−t/τs)2(t),

where 2(t) = 1 for t ≥ 0, and 2(t) = 0 otherwise.
The ongoing external current to a neuron in population α was
constant and given by Iext = Nextpα0Jα0νext, where Next =
nEN, pα0 = pEE, Jα0 = jα0√

N
with jE0 = 0.3, jI0 = 0.1, and

νext = 7 spikes/s. During evoked activity, stimulus-selective
units received an additional input representing one of the four
incoming stimuli. The stimuli targeted combinations of neurons
as observed in the data. Specifically, the fractions of neurons
responsive to n = 1, 2, 3 or all 4 stimuli were 17% (27/162), 22%
(36/162), 26% (42/162), and 35% (57/162) (Jezzini et al., 2013;
Mazzucato et al., 2015). Each stimulus had constant amplitude
νstim ranging from 0 to 0.5 νext . In the following we measure the
stimulus amplitude as percentage of νext (e.g., “10%” corresponds
to νstim = 0.1 νext). The onset of each stimulus was always
t = 0, the time of taste delivery. The stimulus current to a unit in
population α was constant and given by Istim = Nextpα0Jα0νstim.

Mean Field Analysis of the Model
The stationary states of the spiking network model in the limit of
large N were found with a mean field analysis (Amit and Brunel,
1997; Brunel and Hakim, 1999; Fusi andMattia, 1999; Curti et al.,
2004; Mazzucato et al., 2015). Under typical conditions, each
neuron of the network receives a large number of small post-
synaptic currents (PSCs) per integration time constant. In such
a case, the dynamics of the network can be analyzed under the
diffusion approximation within the population density approach.
The network has α = 1, . . . ,Q + 2 sub-populations, where the

Frontiers in Systems Neuroscience | www.frontiersin.org 7 February 2016 | Volume 10 | Article 11

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Mazzucato et al. Stimuli Reduce the Dimensionality of Cortical Activity

first Q indices label the Q excitatory clusters, α = Q + 1 labels
the “background” units, and α = Q + 2 labels the homogeneous
inhibitory population. In the diffusion approximation (Tuckwell,
1988; Lánský and Sato, 1999; Richardson, 2004), the input to each
neuron is completely characterized by the infinitesimal mean
µα and variance σ 2

α of the post-synaptic potential (see Mazzucato
et al., 2015 for the expressions of the infinitesimal mean and
variance for all subpopulations).

Parameters were chosen so that the network with J+ =
J− = 1 (where all E → E synaptic weights are equal) would
operate in the balanced asynchronous regime (van Vreeswijk and
Sompolinsky, 1996, 1998; Renart et al., 2010), where incoming
contributions from excitatory and inhibitory inputs balance
out, neurons fire irregular spike trains with weak pair-wise
correlations.

The unstructured network has only one dynamical state, i.e.,
a stationary point of activity where all E and I neurons have
constant firing rate νE and νI , respectively. In the structured
network (where J+ > 1), the network undergoes continuous
transitions among a repertoire of states, as shown in the main
text. To avoid confusion between network activity states and
HMM states, we refer to the former as network “configurations”
instead of states. Admissible networks configurationsmust satisfy
the Q+ 2 self-consistent mean field equations (Amit and Brunel,
1997)

να = Fα

(
µα(

−→
ν ), σ 2

α (
−→
ν )
)
,

where −→
ν =

[
ν1, . . . , νQ, ν

bg
E , νI

]
is the firing rate vector and

Fα

(
µα, σ

2
α

)
is the current-to-rate response function of the LIF

neurons. For fast synaptic times, i.e., τs
τm

≪ 1, Fα

(
µα, σ

2
α

)
is well

approximated by (Brunel and Sergi, 1998; Fourcaud and Brunel,
2002)

Fα (µα, σα) =
(

τref+τm,α

√
π

∫ 2eff ,α

Heff ,α

eu
2 [
1+erf (u)

]
)−1

,

where

2eff ,α = Vthr,α−µα

σα

+akα,

Heff ,α = Vreset,α−µα

σα

+akα,

where kα =
√

τs,α/τm,α is the square root of the ratio of
synaptic time constant to membrane time constant, and a =
|ζ(1/2)|√

2
∼ 1.03. This theoretical response function has been

fitted successfully to the firing rate of neocortical neurons in the
presence of in vivo-like fluctuations (Rauch et al., 2003; Giugliano
et al., 2004; La Camera et al., 2006, 2008).

The fixed points −→ν ∗
of the mean field equations were found

with Newton’s method (Press et al., 2007). The fixed points

can be either stable (attractors) or unstable depending on the
eigenvalues λα of the stability matrix

Sαβ = 1

τs,α

(
∂Fα

(
µα(

−→
ν ), σ 2

α (
−→
ν )
)

∂νβ

)

−
(

∂Fα

(
µα(

−→
ν ), σ 2

α (
−→
ν )
)

∂σ 2
α

∂σ 2
α

∂νβ

−δαβ

)
,

evaluated at the fixed point −→ν ∗
(Mascaro and Amit, 1999). If

all eigenvalues have negative real part, the fixed point is stable
(attractor). If at least one eigenvalue has positive real part, the
fixed point is unstable. Stability is meant with respect to an
approximate linearized dynamics of the mean and variance of the
input current:

τs,α
dmα

dt
= −mα+µα(

−→
ν )

τs,α

2

ds2α
dt

= −s2α+σ 2
α (
−→
ν )

να (t) = Fα

(
mα(

−→
ν ), s2α(

−→
ν )
)
,

where µα and σ 2
α are the stationary values for fixed −→

ν given
earlier. For fast synaptic dynamics in the asynchronous balanced
regime, these rate dynamics are in very good agreement with
simulations (La Camera et al., 2004—see Renart et al., 2004;
Giugliano et al., 2008 for more detailed discussions).

Metastable Configurations in the Network
Model
The stable configurations of a network with an infinite number
of neurons were obtained in the mean field approximation of the
previous section and are shown in Figure 4B for Q = 30 and a
range of values of the relative potentiation parameter J+. Above
the critical point J+ = 4.2, stable configurations characterized by
a finite number of active clusters emerge (gray lines; the number
of active clusters is reported next to each line). For a given J+,
the firing rate is the same in all active clusters and is inversely
proportional to the total number of active clusters. Stable patterns
of firing rates are also found in the inhibitory population (red
lines), in the inactive clusters (having low firing rates; gray dashed
lines), and in the unstructured excitatory population (dashed
blue lines). For a fixed value of J+, multiple stable configurations
coexist with different numbers of active clusters. For example, for
J+ = 5.3, configurations with up to 7 active clusters are stable,
each configuration with different firing rates. This generates
multistable firing rates in single neurons, i.e., the property, also
observed in the data, that single neurons can attain more than
2 firing rates across states (Mazzucato et al., 2015). Note that if
J+ ≤ 5.15 an alternative stable configuration of the network with
all clusters inactive (firing rates < 10 spikes/s) is also possible
(single brown line).
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Strictly speaking, the configurations in Figure 4B are stable
only in a network containing an infinite number of uncorrelated
neurons. In a finite network (or when neurons are strongly
correlated) these configurations can lose stability due to strong
fluctuations, which ignite transitions among the different
configurations. Full details are reported in Mazzucato et al.
(2015).

Model Simulations and Analysis of
Simulated Data
The dynamical equations of the LIF neurons were integrated
with the Euler algorithm with a time step of dt = 0.1 ms.
We simulated 20 different networks (referred to as “sessions”
in the following) during both ongoing and evoked activity. We
chose four different stimuli per session during evoked activity (to
mimic taste delivery). Trials were 5 s long. The HMM analyses
for Figures 2, 5 were performed on ensembles of randomly
selected excitatory neurons with the same procedure used for
the data (see previous section “Hidden Markov Model (HMM)
analysis”). The ensemble sizes were chosen so as to match the
empirical ensemble sizes (3–9 randomly selected neurons). For
the analysis of Figure 9A, ensembles of increasing size (from
5 to 100 neurons) were used from simulations with Q = 30
clusters. When the ensemble size was less than the number of
clusters (N ≤ Q), each neuron was selected randomly from a
different cluster; when ensemble size was larger than the number
of clusters, one neuron was added to each cluster until all clusters
were represented, and so on until allN neurons had been chosen.
To allow comparison with surrogate Poisson spike trains, the
dimensionality of the simulated data was computed from the
firing rate vectors in T = 200 ms bins as explained in section
“Dimensionality measure.” For control, the dimensionality was
also computed from the firing rate vectors in hidden states
obtained from an HMM analysis, obtaining qualitatively similar
results.

RESULTS

Dimensionality of the Neural Activity
We investigate the dimensionality of sequences of firing rate
vectors generated in the GC of alert rats during periods of
ongoing or evoked activity (seeMethods). To provide an intuitive
picture of the meaning of dimensionality adopted in this paper,
consider the firing rate vectors from N simultaneously recorded
neurons. These vectors can occupy, a priori, the entire N-
dimensional vector space minimally required to describe the
population activity of N independent neurons. However, the
sequence of firing rate vectors generated by the neural dynamics
may occupy a subspace that is spanned by a smaller number
m < N of coordinate axes. For example, the data obtained
by the ensemble of three simulated spike counts in Figure 1

mostly lie on a 2D space, the plane shaded in gray. Although 3
coordinates are still required to specify all data points, a reduced
representation of the data, such as that obtained from PCA,
would quantify the dimension of the relevant subspace as being
close to 2. To quantify this fact we use the following definition of

dimensionality (Abbott et al., 2011)

d =
(

N∑

i=1

λ̃2
i

)−1

,

where N is the ensemble size and λ̃i are the normalized
eigenvalues of the covariance matrix, each expressing the
fraction of the variance explained by the corresponding principal
component (see Methods for details). According to this formula,
if the first n eigenvalues express each a fraction 1/n of the variance
while the remaining eigenvalues vanish, the dimensionality is d =
n. In less symmetric situations, d reflects roughly the dimension
of the linear subspace explaining most variance about all data
points. In the example of the data on the gray plane of Figure 1,
d = 1.8, which is close to 2, as expected. Similarly, data points
lying mostly along the blue and red straight lines in Figure 1 have
a dimensionality of 0.9, close to 1. In all cases, d > 0 and d ≤ N,
where N is the ensemble size.

The blue and red data points in Figure 1 were obtained
from a fictitious scenario where neuron 1 and neuron 2 were
selective to surrogate stimuli A and B, respectively, and are
meant to mimic two possible evoked responses. The subspace
containing responses to both stimuli A and B would have
a dimensionality dA+B = 1.7, similar to the dimensionality
of the data points distributed on the gray plane (meant
instead to represent spike counts during ongoing activity in
the same fictitious scenario). Thus, a dimensionality close to
2 could originate from different patterns of activity, such as
occupying a plane or two straight lines. Other and more complex
scenarios are, of course, possible. In general, the dimensionality

FIGURE 1 | Dimensionality of the neural representation. Pictorial

representation of the firing rate activity of an ensemble of N = 3 neurons. Each

dot represents a three-dimensional vector of ensemble firing rates in one trial.

Ensemble ongoing activity localizes around a plane (black dots cloud

surrounding the shaded black plane), yielding a dimensionality of d = 1.8.

Activity evoked by each of two different stimuli localizes around a line (red and

blue dots clouds and lines), yielding a dimensionality of d = 0.9 in both cases.
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will reflect existing functional relationships among ensemble
neurons (such as pair-wise correlations) as well as the response
properties of the same neurons to external stimuli. The pictorial
example of Figure 1 caricatures a stimulus-induced reduction
of dimensionality, as found in the activity of simultaneously
recorded neurons from the GC of alert rats, as we show next.

Dimensionality is Proportional to Ensemble
Size
We computed the dimensionality of the neural activity of
ensembles of 3–9 simultaneously recorded neurons in the
gustatory cortex of alert rats during the 5 s inter-trial period
preceding (ongoing activity) and following (evoked activity) the
delivery of a taste stimulus (said to occur at time t = 0;
see Methods). Ensemble activity in single trials during both
ongoing (Figure 2A) and evoked activity (Figure 2B) could
be characterized in terms of sequences of metastable states,
where each state is defined as a collection of firing rates across
simultaneously recorded neurons (Jones et al., 2007; Mazzucato
et al., 2015). Transitions between consecutive states were detected
via a HiddenMarkovModel (HMM) analysis, which provides the
probability that the network is in a certain state at every 1ms
bin (Figure 2, color-coded lines superimposed to raster plots).
The ensemble of spike trains was considered to be in a given
state if the posterior probability of being in that state exceeded
80% in at least 50 consecutive 1-ms bins (Figure 2, color-coded
shaded areas). Transitions among states were triggered by the
co-modulation of a variable number of ensemble neurons and
occurred at seemingly random times (Mazzucato et al., 2015).
For this reason, the dimensionality of the neural activity was
computed based on the firing rate vectors in each HMM state
(one firing rate vector per state per trial; see Methods for details).

The average dimensionality of ongoing activity across sessions
was dongoing = 2.6 ± 1.2 (mean±SD; range: [1.2, 5.0]; 27
sessions). An example of the eigenvalues for a representative
ensemble of eight neurons is shown in Figure 3A, where d =
4.42. The dimensionality of ongoing activity was approximately
linearly related to ensemble size (Figure 3B, linear regression,
r = 0.4, slope bongoing = 0.26 ± 0.12, p = 0.04). During
evoked activity dimensionality did not differ across stimuli (one-
way ANOVA, no significant difference across tastants, p > 0.8),
hence all evoked data points were combined for further analysis.
An example of the eigenvalue distribution of the ensemble in
Figure 2B is shown in Figure 3C, where devoked = 1.3 ∼ 1.7
across 4 different taste stimuli. Across all sessions, dimensionality
was overall smaller (devoked = 2.0 ± 0.6, mean±SD, range:
[1.1, 3.9]) and had a reduced slope as a function of N compared
to ongoing activity (Figure 3D, linear regression, r = 0.39, slope
bevoked = 0.13± 0.03, p < 10−4). However, since dimensionality
depends on the number and duration of the trials used for its
estimation (Figure 3E), a proper comparison requires matching
trial number and duration for each data point, as described next.

Stimulus-Induced Reduction of
Dimensionality
We matched the number and duration of the trials for each
data point and ran a two-way ANOVA with condition (ongoing

vs. evoked) and ensemble size as factors. Both the main
dimensionality [F(1, 202) = 11.93, p < 0.001] and the slope were
significantly smaller during evoked activity [test of interaction,
F(6, 202) = 5.09, p < 10−4]. There was also a significant effect
of ensemble size [F(6, 202) = 18.72, p < 10−14], confirming
the results obtained with the separate regression analyses. These
results suggest that stimuli induce a reduction of the effective
space visited by the firing rate vector during evoked activity.
This was confirmed by a paired sample analysis of the individual
dimensionalities across all 27 × 4=108 ensembles (27 ensemble
times 4 gustatory stimuli; p < 0.002, Wilcoxon signed-rank test).

Dimensionality is larger in Ensembles of
Independent Neurons
The dimensionality depends on the pair-wise correlations of
simultaneously recorded neurons. Shuffling neurons across
ensembles would destroy the correlations (beyond those expected
by chance), and would give a measure of how different the
dimensionality of our datasets would be compared to sets
of independent neurons. We measured the dimensionality of
surrogate datasets obtained by shuffling neurons across sessions;
because shuffling destroys the structure of the hidden states,
firing rates in bins of fixed duration (200ms) were used
to estimate the dimensionality (see Methods for details). As
expected, the slope of d vs. N was larger in the shuffled datasets
compared to the simultaneously recorded ensembles (not shown)
during both ongoing activity (bshuff = 0.67 ± 0.06 vs. bdata =
0.60 ± 0.01; mean ± SD, Mann-Whitney test, p < 0.001,
20 bootstraps), and evoked activity (bshuff = 0.36 ± 0.07 vs.
bdata = 0.29 ± 0.01; p < 0.001). Especially during ongoing
activity, this result was accompanied by a narrower distribution
of pair-wise correlations in the shuffled datasets compared
to the simultaneously recorded datasets (Figure 3G), and is
consistent with an inverse relationship between dimensionality
and pair-wise correlations (see Equation 9).

Time Course of Dimensionality as a
Function of Ensemble Size
Unlike ongoing activity, the dependence of dimensionality on
ensemble size (the slope of the linear regression of d vs. N) was
modulated during different epochs of the post-stimulus period
[Figure 3F, full lines; two-way ANOVA; main effect of time
F(4, 495) = 3.80, p < 0.005; interaction time x condition:
F(4, 495) = 4.76, p < 0.001]. In particular, the dependence of
d on the ensemble size N almost disappeared immediately after
stimulus presentation in the simultaneously recorded, but not in
the shuffled ensembles (trial-matched slope in the first evoked
second: bevoked = 0.07 ± 0.01 vs bshuff = 0.19 ± 0.07) and
converged to a stable value after approximately 1 second (slope
after the first second bevoked = 0.38± 0.01; compare with a stable
average slope during ongoing activity of bongoing = 0.57 ± 0.01,
Figure 3F).

Note that the dimensionality is larger when the firing rate is
computed in bins (as in Figure 3F) rather than in HMM states
(as in Figures 3B–D, where the slopes are about half than in
Figure 3F). The reason is that firing rates and correlations are
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FIGURE 2 | Ensemble neural activity is characterized by sequences of states. (A) Upper panels: Representative trials from one ensemble of nine

simultaneously recorded neurons during ongoing activity, segmented according to their ensemble states (HMM analysis, thin black vertical lines are action potentials;

states are color-coded; smooth colored lines represent the probability for each state; shaded colored areas indicate intervals where the probability of a state exceeds

80%). Lower panels: Average firing rates across simultaneously recorded neurons (states are color-coded as in the upper panels). In total, 6 hidden states were found

in this example session (only 5 states shown). X-axis for population rasters: time preceding the next event at (0 = stimulus delivery); Y-axis for population rasters: left,

ensemble neuron index, right, probability of HMM states; X-axis for average firing rates panels: firing rates (spks/s); Y-axis for firing rate panels: ensemble neuron

index. (B) Ensemble rasters and firing rates during evoked activity for four different tastes delivered at t = 0: sucrose, sodium chloride, citric acid, and quinine

(notations as in panel A). In total, eight hidden states were found in this session during evoked activity.

approximately constant during the same HMM state, whereas
they may change when estimated in bins of fixed duration that
include transitions among hidden states. These changes tend
to dilute the correlations resulting in higher dimensionality as
predicted e.g., by Equation (9). A comparison of the pair-wise
correlations of binned firing rates (Figure 3G) vs. those of firing
rates in HMM states (Figure 3H) confirmed this hypothesis.
Also, if the argument above is correct, one would expect a
dependence of dimensionality on (fixed) bin duration. We
computed the correlations and dimensionality of binned firing
rates for various bin durations and found that r increases and d
decreases for increasing bin durations (not shown). However, the
slope of d vs.N is always larger in ongoing than in evoked activity
regardless of bin size (ranging from 10ms to 5 s; not shown).
This confirms the generality of the results of Figures 3B–D,
which were obtained using firing rate vectors in hidden
states.

To summarize our main results so far, we found that
dimensionality depends on ensemble size during both ongoing
and evoked activity, and such dependence is significantly reduced
in the post-stimulus period. This suggests that while state
sequences during ongoing activity explore a large portion of
the available firing rate space, the presentation of a stimulus
initially collapses the state sequence along amore stereotyped and

lower-dimensional response (Katz et al., 2001; Jezzini et al., 2013).
During both ongoing and evoked activity, the dimensionality is
also different than expected by chance in a set of independent
neurons (shuffled datasets).

Clustered Spiking Network Model of
Dimensionality
To gain a mechanistic understanding of the different
dimensionality of ongoing and evoked activity, we have
analyzed a spiking network model with clustered connectivity
which has been shown to capture many essential features of the
data (Mazzucato et al., 2015). In particular, the model reproduces
the transitions among latent states in both ongoing and evoked
activity. The network (see Methods for details) comprises Q
clusters of excitatory neurons characterized by stronger synaptic
connections within each cluster and weaker connections between
neurons in different clusters. All neurons receive recurrent input
from a pool of inhibitory neurons that keeps the network in
a balanced regime of excitation and inhibition in the absence
of external stimulation (Figure 4A). In very large networks
(technically, in networks with an infinite number of neurons),
the stable configurations of the neural activity are characterized
by a finite number of active clusters whose firing rates depend
on the number clusters active at any given moment, as shown
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FIGURE 3 | Dependence of dimensionality on ensemble size (data). (A) Fraction of variance explained by each principal eigenvalue for an ensemble of 8

neurons during ongoing activity (corresponding to the filled dot in panel B) in the empirical dataset. The dashed vertical line represents the value of the dimensionality

for this ensemble (d = 4.4). X-axis, eigenvalue number; Y-axis, fraction of variance explained by each eigenvalue. (B) Dimensionality of neural activity across all

ensembles in the empirical dataset during ongoing activity (circles, linear regression fit, d = b ·N+ a, b = 0.26± 0.12, a = 1.07± 0.74, r = 0.4), estimated from HMM

firing rate fits on all ongoing trials in each session (varying from 73 to 129). X-axis: ensemble size; Y-axis: dimensionality. (C) Fraction of variance explained by each

principal eigenvalue for the ensemble in (A) during evoked activity. Principal eigenvalues for sucrose (S, orange), sodium chloride (N, yellow), citric acid (C, cyan), and

quinine (Q, blue) are presented (corresponding to the color-coded dots in panel D). X-axis, eigenvalue number; Y-axis, percentage of variance explained by each

eigenvalue. (D) Dimensionality of neural activity across all ensembles in the empirical dataset during evoked activity (notations as in panel B, linear regression:

d = b · N+ a, b = 0.13± 0.03, a = 1.27± 0.19, r = 0.39), estimated from HMM firing rate fits on evoked trials in each condition (varying from 7 to 11 trials across

sessions for each tastant). (E) The slope of the linear regression of dimensionality (d) vs. ensemble size (N) as a function of the length of the trial interval and the

number of trials used to estimate the dimensionality. X-axis, length of trial interval [s]; Y-axis, number of trials. (F) Time course of the trial-matched slopes of d vs. N,

evaluated with 200ms bins in consecutive 1 s intervals during ongoing (black curve, t < 0) and evoked periods (red curve, t > 0; error bars represent SD). A significant

time course is triggered by stimulus presentation (see Results for details). The slopes of the empirical dataset (thick curves) were smaller than the slope of the shuffled

dataset (dashed curves) during ongoing activity. X-axis, time from stimulus onset at t = 0 [s]; Y-axis, slope of d vs. N. (G) Distribution of pair-wise correlations in

simultaneously recorded ensembles (black and red histograms for ongoing and evoked activity, respectively) and shuffled ensembles (brown and pink dashed

histograms for ongoing and evoked activity, respectively) from 200ms bins. X-axis, correlation; Y-axis, frequency. (H) Distribution of pair-wise correlations from HMM

states during ongoing (black) and evoked activity (red) for all simultaneously recorded pairs of neurons. X-axis, correlation; Y-axis, frequency.

in Figure 4B (where Q = 30). In a finite network, however,
finite size effects ignite transitions among these configurations,
inducing network states (firing rate vectors) on randomly chosen
subsets of neurons that resemble the HMM states found in the
data (Figure 5; see Mazzucato et al., 2015 for details).

The dimensionality of the simulated sequences during
ongoing and evoked activity was computed as done for the
data, finding similar results. For the examples in Figure 5, we
found dongoing = 4.0 for ongoing activity (Figure 6A) between
devoked = 2.2 and devoked = 3.2 across tastes during evoked
activity (Figure 6C). Across all simulated sessions, we found an
average dongoing = 2.9 ± 0.9 (mean ± SD) for ongoing activity
and devoked = 2.4 ± 0.7 for evoked activity. The model captured
the essential properties of dimensionality observed in the data:
the dimensionality did not differ across different tastes (one-way
ANOVA, p > 0.2) and depended on ensemble size during both

ongoing (Figure 6B; slope = 0.36 ± 0.07, r = 0.77, p < 10−4)
and evoked periods (Figure 6D; slope = 0.12 ± 0.04, r =
0.29, p = 0.01). As for the data, the dependency on ensemble
size was smaller for evoked compared to ongoing activity. We
performed a trial-matched two-way ANOVA as done on the data
and found, also in the model, a main effect of condition [ongoing
vs. evoked: F(1, 146) = 22.1, p < 10−5], a main effect of ensemble
size [F(6, 146) = 14.1, p < 10−11], and a significant interaction
[F(6, 146) = 3.8, p = 0.001]. These results were accompanied by
patterns of correlations among themodel neurons (Figures 6E,F)
very similar to those found in the data (Figures 3G,H; see section
“Dimensionality is larger in the presence of clusters” for statistics
of correlation values). As in the data, narrower distributions
of correlations were found for binned firing rates (Figure 6E)
compared to firing rates in hidden states (Figure 6F; compare
with Figures 3G,H, respectively). Moreover, shuffling neurons
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FIGURE 4 | Recurrent network model. (A) Schematic recurrent network architecture. Triangles and squares represent excitatory and inhibitory LIF neurons

respectively. Darker disks indicate excitatory clusters with potentiated intra-cluster synaptic weights. (B) Mean field solution of the recurrent network. Firing rates of the

stable states for each subpopulation are shown as function of the intra-cluster synaptic potentiation parameter J+: firing rate activity in the active clusters (solid gray

lines), firing rate in the inactive clusters (dashed gray lines), activity of the background excitatory population (dashed blue lines), activity of the inhibitory population

(solid red lines). In each case, darker colors represent configurations with larger number of active clusters. Numbers denote how many clusters are active in each

stable configuration. Configurations with 1–8 active clusters are stable in the limit of infinite network size. A global configuration where all clusters are inactive (brown

line) becomes unstable at the value J+ = 5.15. The vertical green line represents the value of J+ = 5.3 chosen for the simulations. X-axis, intra-cluster potentiation

parameter J+ in units of JEE ; Y-axis, Firing rate (spks/s).

FIGURE 5 | Ensemble activity in the recurrent network model is characterized by sequences of states. Representative trials from one ensemble of nine

simultaneously recorded neurons sampled from the recurrent network, segmented according to their ensemble states (notations as in Figure 1). (A) ongoing activity.

(B) Ensemble activity evoked by four different stimuli, modeled as an increase in the external current to stimulus-selective clusters (see Methods for details).

across datasets reduced the correlations (Figure 6E, dashed),
resulting in a larger slope of d vs.N (not shown). Finally, d during
ongoing activity was always larger than during evoked activity
also when computed on binned firing rates (not shown), as found

in the data (see section “Dependence of dimensionality on bin
size”).

Since the model was not fine-tuned to find these results, the
different dimensionalities of ongoing and evoked activity, and

Frontiers in Systems Neuroscience | www.frontiersin.org 13 February 2016 | Volume 10 | Article 11

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Mazzucato et al. Stimuli Reduce the Dimensionality of Cortical Activity

FIGURE 6 | Dependence of dimensionality on ensemble size (model). (A) Fraction of variance explained by each principal eigenvalue for an ensemble of 9

neurons during ongoing activity (corresponding to the filled dot in panel B) in the model network of Figure 5 (notations as in Figure 3A). (B) Dimensionality of neural

activity across all ensembles in the model during ongoing activity (linear regression fit, d = b · N + a, b = 0.36± 0.07, a = 0.80± 0.43, r = 0.77), estimated from

HMM firing rate fits. X-axis, ensemble size; Y-axis, dimensionality. (C) Fraction of variance explained by each principal eigenvalue for the ensemble in panel A during

evoked activity. Principal eigenvalues for four tastes are presented (corresponding to the color-coded dots in panel D). X-axis, eigenvalue number; Y-axis, percentage

of variance explained by each eigenvalue. (D) Dimensionality of neural activity across all ensembles in the model during evoked activity (notations as in panel B, linear

regression: d = b · N+ a, b = 0.12± 0.04, a = 1.70± 0.26, r = 0.29). (E) Distribution of pair-wise correlations in simultaneously recorded ensembles from the

clustered network model (black and red histograms for ongoing and evoked activity, respectively) and in shuffled ensembles (brown and pink dashed histograms for

ongoing and evoked activity, respectively) from 200ms bins. X-axis, correlation; Y-axis, frequency. (F) Distribution of pair-wise correlations from HMM states during

ongoing (black) and evoked activity (red) for all simultaneously recorded pairs of neurons. X-axis, correlation; Y-axis, frequency.

their associated patterns of pair-wise correlations, are likely the
consequence of the organization in clusters and of the ensuing
dynamics during ongoing and evoked activity.

Scaling of Dimensionality with Ensemble
Size and Pair-Wise Correlations
The dependence of dimensionality on ensemble size observed
in the data (Figure 3B) and in the model (Figure 6B) raises the
question of whether or not the dimensionality would converge to
an upper bound as one increases the number of simultaneously
recorded neurons. In general, this question is important in
a number of settings, related e.g., to coding in motor cortex
(Ganguli et al., 2008; Gao and Ganguli, 2015), performance in
a discrimination task (Rigotti et al., 2013), or coding of visual
stimuli (Cadieu et al., 2013). We can attack this question aided
by the model of Figure 4, where we can study the effect of large
numbers of neurons, but also the impact on dimensionality of a

clustered network architecture compared to a homogeneous one,
at parity of correlations and ensemble size.

We consider first the case of a homogeneous network of
neurons having no clusters and low pair-wise correlations,
but having the same firing rates distributions (which were
approximately log-normal, Figure 7A) and the same mean pair-
wise correlations as found in the data (ρ ∼ 0.01 − 0.2).
This would require solving a homogeneous recurrent network
self-consistently for the desired firing rates and correlations. As
a proxy for this scenario, we generated 20 sessions of 40 Poisson
spike trains having exactly the desired properties (including the
case of independent neurons for which ρ = 0). Two examples
with ρ = 0 and ρ = 0.1, respectively, are shown in Figures 7B,C.
Since in the asynchronous homogeneous network there are no
transitions and hence no hidden states, the dimensionality was
estimated based on the rate vectors in bins of 200ms duration
(using bin widths of 50–500ms did not change the results; see
Methods for details).
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We found that the dimensionality grows linearly with
ensemble size in the absence of correlations, but is a concave
function of N in the presence of pair-wise correlations (circles
in Figure 7D). Thus, as expected, the presence of correlations
reduces the dimensionality and suggests the possibility of an
upper bound. A simple theoretical calculation mimicking this
scenario shows that d in this case converges indeed to an upper
bound that depends on the inverse of the square of the pair-wise
correlations. For example, in the case of uniform correlations (ρ)
and equal variances of the spike counts, Equation (8) of Methods,
d (N, ρ) = 1

ρ2+(1−ρ2)/N
, shows that d = N in the absence of

correlations, but d < 1/ρ2 in the presence of correlations. These
properties remain approximately true if the variances σ 2

i of the
firing rates are drawn from a distribution with mean E

[
σ 2
i

]
= σ 2

and variance Var
[
σ 2
i

]
= δσ 4. As Equation (9) shows, in such

a case dimensionality is reduced compared to the case of equal

variances, for example d ≈ σ 4

σ 4+δσ 4N < N for large N when

ρ = 0, δρ = 0.
The analytical results are shown in Figure 7E (full lines

correspond to Equation 8), together with their estimates (“+”)
based on 1000 data points (same number as trials in Figure 7D;
see Methods). The estimates are based on surrogate datasets

FIGURE 7 | Dimensionality and correlation. (A) Empirical single neuron firing rate distributions in the data (left) and in the model (right), for ongoing (black), and

evoked activity (red). The distributions are approximately lognormal. X-axis, Firing rate (spks/s); Y-axis, frequency. (B) Example of independent Poisson spike trains

with firing rates matched to the firing rates obtained in simulations of the spiking network model. (C) Example of correlated Poisson spike trains with firing rates

matched to the firing rates obtained in simulations of the spiking network model. Pair-wise correlations of ρ = 0.1 were used (see Methods). X-axis, time [s]; Y-axis,

neuron index. (D) Dimensionality as a function of ensemble size N in an ensemble of Poisson spike trains with spike count correlations ρ = 0, 0.1, 0.2 and firing rates

matched to the model simulations of Figure 6. Dashed lines represent the fit of Equation (16) to the data (with δρ2 = αρ2, σ4 = δσ4 = β), with best-fit parameters

(mean ± s.e.m.) α = 0.22± 10−5, β = 340± 8. Filled circles (from top to bottom): dimensionality of the data (raster plots) shown in (B,C) (shaded areas represent

SD). X-axis, ensemble size; Y-axis, dimensionality. (E) Theoretical prediction for the dependence of dimensionality on ensemble size N and firing rate correlation ρ for

the case of uniform correlation, Equation (8) (thick lines; green to cyan to blue shades represent increasing correlations). “+” are dimensionality estimates from

NT = 1,000 trials for each N (same NT as in panel D, each trial providing a firing rate value sampled from a log-normal distribution), in the case of log-normally

distributed firing rate variances σ2
i
with mean σ2 = 40 (spk/s)∧2 and standard deviation 0.5 σ2. Theoretical predictions from Equation (16) match the estimated values

in all cases (dashed black lines). X-axis, ensemble size N; Y-axis, dimensionality.
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with lognormal-distributed variances σ 2
i to mimic the empirical

distribution of variances found in GC (not shown).

Estimation Bias
Comparison of Figures 7D,E shows that the dimensionality of
the homogeneous network is underestimated compared to the
theoretical value given by Equation (8). This is due to a finite
number of trials and the presence of unequal variances with
spread δσ 4 (“+” in Figure 7E). As Figure 7E shows, taking
this into account will reduce the dimensionality to values
comparable to those of the homogeneous network of Figure 7D.
The dimensionality in that case is well predicted by Equation
(16) (broken lines in Figure 7E). The same Equation (16) was
fitted successfully to the data in Figure 7D (dashed) by tuning 2
parameters to account for the unknown variance and correlation
width of the firing rates (see Methods for details).

Empirically, estimates of the dimensionality Equation (2)
based on a finite number NT of trials tend to underestimate d
(Figure 3E). The approximate estimator Equation (16) confirms
that, for any ensemble size N, d is a monotonically increasing
function of the number of trials (Figure 8A). Note that this holds
for the mean value of the estimator (Equation 16) over many
datasets, not for single estimates, which could overestimate the
true d (not shown). Equation (16) also provides an excellent
description of dimensionality as a function of firing rates’
variance δσ 4 (Figure 8B) and pair-wise correlations width δρ2

(Figure 8C). In particular, the mean and the variance of the
pair-wise correlations have an interchangeable effect on d (see
Equation 16); they both decrease the dimensionality and so does
the firing rate variance δσ 4 (Figure 8B).

Scaling of Dimensionality in the Presence
of Clusters
We next compared the dimensionality of the homogeneous
network’s activity to that predicted by the clustered network
model of Figure 4. To allow comparison with the homogeneous
network, dimensionality was computed based on the spike counts
in 200ms bins rather than the HMM’s firing rate vectors as in
Figure 6 (see Methods for details).

We found that the dependence of d on N in the clustered
network depends on how the neurons are sampled. If the
sampling is completely random, so that any neuron has the same
probability of being added to the ensemble regardless of cluster
membership, a concave dependence on N will appear, much like
the case of the homogeneous network (Figure 9A, dashed lines).
However, if neurons are selected one from each cluster until all
clusters have been sampled once, then one neuron from each
cluster until all clusters have been sampled twice, and so on,
until all the neurons in the network have been sampled, then
the dependence of d on N shows an abrupt transition when
N = Q, i.e., when the number of sampled neurons reaches
the number of clusters in the network (Figure 9A, full lines;
see Figure 9B for raster plots with Q = 30 and N = 50). In
the following, we refer to this sampling procedure as “ordered
sampling,” as a reminder that neurons are selected randomly
from each cluster, but the clusters are selected in serial order.
For N ≤ Q, the dimensionality grows linearly with ensemble
size in both ongoing (slope 0.24 ± 0.01, r = 0.79, p <

10−10, black line) and evoked periods (slope 0.19 ± 0.01, r =
0.84, p < 10−10; red line), and was larger during ongoing than
evoked activity [trial-matched two-way ANOVA, main effect:

FIGURE 8 | Dimensionality estimation. (A) Dependence of dimensionality on the number of trials for variable ensemble size N, for fixed correlations ρ = 0.1 and

firing rates variances σ2
i
with mean σ2 and standard deviation δσ2 = 0.4 σ2. Dashed lines: theoretical prediction, Equation (16); dots: mean values from simulations of

20 surrogate datasets containing 10–1000 trials each (shaded areas: SD), with darker shades representing increasing number of trials. X-axis: ensemble size; Y-axis,

dimensionality. (B) Dependence of dimensionality on the spread δσ2 of the firing rates variances for fixed correlations ρ = 0.1 and firing rate variance with mean σ2.

Dashed lines: theoretical prediction, Equation (16); dots: mean values from simulations of 20 surrogate datasets containing 1000 trial each (shaded areas: SD), with

lighter shades representing increasing values of δσ2/σ2). X-axis, ensemble size; Y-axis, dimensionality. (C) Dependence of dimensionality on the width δρ =
√
Var(ρ) of

pair-wise firing rate correlations (with zero mean, ρ = 0), for firing rates variances σ2
i
with mean σ2 and standard deviation δσ2 = 0.4 σ2. Dashed lines: theoretical

prediction, Equation (16); dots: mean values from simulations of 20 surrogate datasets containing 1000 trials each (shaded areas: SD), with darker shades

representing increasing values of δρ. Inset: distribution of correlation coefficients used in the main figure. X-axis, ensemble size; Y-axis, dimensionality. In all panels,

σ2 = 40 (spk/s)∧2.
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FIGURE 9 | Dimensionality in a clustered network. (A) Trial-matched dimensionality as a function of ensemble size in the recurrent network model (ongoing and

evoked activity in black and red, respectively, with shaded areas representing s.e.m.). Filled lines represent ordered sampling, where ensembles to the left of the green

vertical line (N = Q = 30) contain at most one neuron per cluster, while to the right of the line they contain one or more neurons from all clusters (filled circles indicate

representative trials in panel B). Dashed lines represent random sampling of neurons, regardless of cluster membership. X-axis, ensemble size; Y-axis, dimensionality.

(B) Representative trial of an ensemble of 50 neurons sampled from the recurrent network in Figure 4 during ongoing activity (upper plot, in black) or evoked activity

(lower plot, in red) for the case of “ordered sampling” (full lines in panel A). Neurons are sorted according to their cluster membership (adjacent neuron pairs with

similar activity belong to the same cluster, for neurons #1 up to #40; the last 10 neurons are sampled from the remaining clusters). X-axis, time to stimulus

presentation at t = 0 (s); Y-axis, neuron index. (C) Average correlation matrix for 20 ensembles of N = 50 neurons from the clustered network model with Q = 30

clusters. For the first 40 neurons, adjacent pairs belong to the same cluster; the last 10 neurons (delimited by a dashed white square) belong to the remaining clusters

(neurons are ordered as in panel B). Thus, neurons 1, 3, 5, …, 39 (20 neurons) belong to the first 20 clusters; neurons 2, 4, 6, …, 40 (20 neurons) belong also the first

20 clusters; and neurons 41, 42, 43, …, 50 (10 neurons) belong to the remaining 10 clusters. X-axis, Y-axis: neuron index. (D) Plot of Equation (12) giving d vs. N and

ρ (uniform within-cluster correlations) for the sampling procedure of panel (B). X-axis, ensemble size N; Y-axis, dimensionality.

F(1, 948) = 168, p < 10−30; interaction: F(5, 948) = 4.1, p <

0.001].
These results are in keeping with the empirical and model

results based on the HMM analysis (Figures 3, 6). However, in
the case of ordered sampling, the dependence of dimensionality
on ensemble size tends to disappear for N ≥ Q both during

ongoing (slope 0.010 ± 0.003, r = 0.1, p < 0.001) and evoked
periods (slope 0.009± 0.002, r = 0.13, p < 10−4; Figure 9A, full
lines). The average dimensionality over the range 30 ≤ N ≤ 100
was significantly larger for ongoing, dongoing = 8.74 ± 0.06, than
for evoked activity, devoked = 7.15±0.04 [trial-matched two-way
ANOVA, main effect: F(1,2212) = 488, p < 10−30], confirming
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that dimensionality during ongoing is larger than during evoked
activity also in this case. The difference in dimensionality between
ongoing and evoked activity also holds in the case of random
sampling on the entire range of N values (Figure 9A, dashed
lines), confirming the generality of this finding.

Dimensionality is Larger in the Presence of
Clusters
Intuitively, the dimensionality saturates atN = Q in the clustered
network because additional neurons will be highly correlated
with already sampled ones. For N ≤ Q, each new neuron’s
activity adds an independent degree of freedom to the neural
dynamics and thus increases its dimensionality. For Q > N,
additional neurons are highly correlated with an existing neuron,
adding little or no additional contribution to d. Indeed, compared
to the low overall correlations found across all neuron pairs in
the data (and used as desiderata for the homogeneous network),
neurons belonging to the same model cluster had a much higher
correlation of ρ = 0.92 [0.56, 0.96] (median and [25, 75]-
percentile), while neurons belonging to different clusters had
negligible correlation (ρ ≈ 0, [−0.10, 0.06]). A negligible
median correlation was typical: for example, negligible was the
overall median correlation regardless of clustermembership (ρ ≈
0 [−0.109, 0.083]); and the empirical correlation both during
ongoing ([−0.047, 0.051] ,with rare maximal values of ρ ∼ 0.5),
and evoked activity ([−0.085, 0.113], with raremaximal values of
ρ ∼ 0.9). While we note the qualitative agreement of model and
empirical correlations, we emphasize that these numbers were
obtained using 200ms bins and that they were quite sensitive to
bin duration. In particular, the maximal correlations (regardless
of sign) were substantially reduced for smaller bin durations (not
shown).

Plugging these values into a correlation matrix reflecting the
clustered architecture and the “ordered” sampling procedure
used in Figure 9B, we obtained the matrix shown in Figure 9C,
where pairwise correlations depend on whether or not the
neurons belong to the same cluster (for the first 40 neurons,
adjacent pairs belong to the same cluster; the last 10 neurons
belong to the remaining clusters). It is natural to interpret
such correlation matrix as the noisy observation of a block-
diagonal matrix such that neurons in the same cluster have
uniform correlation while neurons from different clusters are
uncorrelated. For such a correlation matrix the dimensionality
can be evaluated exactly (see Equation 12 of Methods). In the
approximation where all neurons have the same variance, this
reduces to Equation (13), i.e.,

d(N, ρ) =
{

N , N ≤ Q

N
1+mρ2[1−(Q−p)/N],

, N > Q
,

where N = mQ + p. This formula is plotted in Figure 9D

for relevant values of ρ and N and it explains the origin of
the abrupt transition in dimensionality at Q = N. (The reasons
for a dimensionality lower than N for N ≤ Q in the data–see
Figure 9A–are, also in this case, the finite number of data points
(250) used for its estimation and the non-uniform distributions
of firing rate variances and correlations).

Note that the formula also predicts cusps in dimensionality
(which become local maxima for large ρ) whenever the ensemble
size is an exact multiple of the number of clusters. This is also
visible in the simulated data of Figure 9A, where local maxima
seem to appear at N = 30, 60, 90 with Q = 30 clusters. It is
also worth mentioning that, for low intra-cluster correlations, the
dependence on N predicted by Equation (13) becomes smoother
and the cusps harder to detect (not shown), suggesting that
the behavior of a clustered network with weak clusters tends
to converge to the behavior of a homogeneous asynchronous
network—therefore lacking sequences of hidden states. Thus,
the complexity of the network dynamics is reflected in how its
dimensionality scales with N, assuming that one may sample one
neuron per cluster (i.e., via “ordered sampling”).

Even though it is not clear how to perform ordered sampling
empirically (see Discussion), this result is nevertheless useful
since it represents an upper bound also in the case of random
sampling (see Figure 9A, dashed lines). Equation (13) predicts
that d ≤ Q/ρ2, with this value reached asymptotically for large
N. In the case of random sampling, growth to this bound is even
slower (Figure 9A). For comparison, in a homogeneous network
d ≤ 1/ρ2 from Equation (8), a bound that is smaller by a
factor of Q. Finally, homogeneous dimensionality is dominated
by clustered dimensionality also in the more realistic case of non-
uniform variances and correlations, where similar bounds are
found in both cases (see Methods for details).

DISCUSSION

In this paper we have investigated the dimensionality of
the neural activity in the gustatory cortex of alert rats.
Dimensionality was defined as a collective property of ensembles
of simultaneously recorded neurons that reflects the effective
space occupied by the ensemble activity during either ongoing
or evoked activity. If one represents ensemble activity in terms of
firing rate vectors, whose dimension is the number of ensemble
neurons N, then the collection of rate vectors across trials takes
the form of a set of points in the N-dimensional space of
firing rates. Roughly, dimensionality is the minimal number of
dimensions necessary to provide an accurate description of such
set of points, which may be localized on a lower-dimensional
subspace inside the whole firing rate space.

One of the main results of this paper is that the dimensionality
of evoked activity is smaller than that of ongoing activity,
i.e., stimulus presentation quenches dimensionality. More
specifically, the dimensionality is linearly related to the ensemble
size, with a significantly larger slope during ongoing activity
compared to evoked activity (compare Figures 3B,D). We
explained this phenomenon using a biologically plausible,
mechanistic spiking network model based on recurrent
connectivity with clustered architecture. The model was recently
introduced in Mazzucato et al. (2015) to account for the
observed dynamics of ensembles of GC neurons as sequences
of metastable states, where each state is defined as a vector
of firing rates across simultaneously recorded neurons. The
model captures the reduction in trial-to-trial variability and the
multiple firing rates attained by single neurons across different
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states observed in GC upon stimulus presentation. Here, the
same model was found to capture also the stimulus-induced
reduction of dimensionality. While the set of active clusters
during ongoing activity varies randomly, allowing the ensemble
dynamics to explore a large portion of firing rate space, the
evoked set of active clusters is limited mostly to the stimulus-
selective clusters only (see Mazzucato et al., 2015 for a detailed
analysis). The dynamics of cluster activation in the model thus
explains the more pronounced dependence of dimensionality
on ensemble size found during ongoing compared to
evoked activity.

We presented a simple theory of how dimensionality depends
on the number of simultaneously recorded neuronsN, their firing
rate correlations, their variance, and the number and duration
of recording trials. We found that dimensionality increases with
N and decreases with the amount of pair-wise correlations
among the neurons (e.g., Figure 8C). At parity of correlations,
dimensionality is maximal when all neurons have the same
firing rate variance, and it decreases as the distribution of count
variances becomes more heterogeneous (e.g., Figure 8B). The
estimation of dimensionality based on a finite dataset is an
increasing function of the number of trials (Figure 8A). Finally,
introducing clustered correlations in the theory, and sampling
one neuron per cluster as in Figure 9B, results in cusps at values
of N that are multiples of the number of clusters (Figure 9D),
in agreement with the predictions of the spiking network model
(Figure 9A, full lines).

Dimensionality Scaling with Ensemble Size
The increased dimensionality with sample size, especially during
ongoing activity, was found empirically in datasets with 3–9
neurons per ensemble, but could be extrapolated for larger N
in a spiking network model with homogeneous or clustered
architecture. In homogeneous networks with finite correlations
the dimensionality is predicted to increase sub-linearly with N
(Equation 8), whereas in the clustered network it may exhibit
cusps at multiple values of the number of clusters (Figure 9A),
and would saturate quickly to a value that depends on the
ratio of the number of clusters Q and the amount of pair-wise
correlations, d ≤ Q/ρ2. Testing this prediction requires the
ability to sample neurons one from each cluster, until all clusters
are sampled, and seems beyond the current recording techniques.
However, looking for natural groupings of neurons based on
response similarities could uncover spatial segregation of clusters
(Kiani et al., 2015) and could perhaps allow sampling neurons
according to this procedure. Moreover, the model predicts a
slower approach to a similar bound also in the case of random
sampling.

Dimensionality in a homogeneous network is instead
bounded by 1/ρ2, and hence it is a factor Q smaller than in the
clustered network. Dimensionality is maximal in a population
of independent neurons (ρ = 0), where it grows linearly with
N; however, neurons of recurrent networks have wide-ranging
correlations (see e.g., Figures 6E,F and its empirical counterpart,
Figures 3G,H). Since the presence of even low correlations can
dramatically reduce the dimensionality (see Figure 7D), the
neural activity in a clustered architecture can reach much higher

values at parity of correlations, representing an intermediate
case between a homogeneous network and a population of
independent neurons.

Evidence for the presence of spatial clusters has been recently
reported in the prefrontal cortex based on correlations analyses
(Kiani et al., 2015). An alternative possibility is that neural
clusters are not spatially but functionally arranged, and cluster
memberships vary with time and task complexity (Rickert et al.,
2009). Can our model provide indirect tools to help uncover
the presence of clusters? A closer look at Figures 6E,F reveal
a small peak at large correlations due to the contribution of
highly correlated neurons belonging to the same cluster. This
peak would be absent in a homogenous network and thus
is the signature of a clustered architecture. However, such
peak is populated by only small fraction (1/Q) of the total
number of neuron pairs, which hinders its empirical detection
(no peak at large correlations is clearly visible in our data,
see Figures 3G,H).

Dimensionality and Trial-to-Trial Variability
Cortical recordings from alert animals show that neurons
produce irregular spike trains with variable spike counts across
trials (Shadlen and Newsome, 1994; Fontanini and Katz, 2008;
Moreno-Bote, 2014). Despite many efforts, it remains a key issue
to establish whether variability is detrimental (Gur et al., 1997;
White et al., 2012) or useful (McDonnell and Ward, 2011) for
neural computation.

Trial-to-trial variability is reduced during preparatory activity
(Churchland et al., 2006), during the presentation of a stimulus
(Churchland, 2010b), or when stimuli are expected (Samuelsen
et al., 2012), a phenomenon that would not occur in a population
of independent or homogeneously connected neurons (Litwin-
Kumar and Doiron, 2012). Recent work has shown that the
stimulus-induced reduction of trial-to-trial variability can be due
to spike-frequency adaptation in balanced networks (Farkhooi
et al., 2013) or to slow dynamic fluctuations generated in a
recurrent spiking networks with clustered connectivity (Deco
and Hugues, 2012; Litwin-Kumar and Doiron, 2012; Mazzucato
et al., 2015). In clustered network models, slow fluctuations in
firing rates across neurons can ignite metastable sequences of
neural activity, closely resemblingmetastable sequences observed
experimentally (Abeles et al., 1995; Seidemann et al., 1996; Jones
et al., 2007; Kemere et al., 2008; Durstewitz et al., 2010; Ponce-
Alvarez et al., 2012; Mazzucato et al., 2015). The slow, metastable
dynamics of cluster activation produces high variability in the
spike count during ongoing activity. While cluster activations
occur at random times during ongoing activity periods, stimulus
presentation locks cluster activation at its onset, leading to a
decrease in trial-to-trial variability.

Similarly, a stimulus-induced reduction of dimensionality is
obtained in the same model. In this case, preferred cluster
activation due to stimulus onset generates an increase in pair-
wise correlations that reduce dimensionality. Note that the
two properties (trial-to-trial variability and dimensionality) are
conceptually distinct. An ensemble of Poisson spike trains can
be highly correlated (hence have low dimensionality), yet the
Fano Factor of each spike train will still be 1 (hence high),
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independently of the correlations among neurons. In a recurrent
network, however, dimensionality and trial-to-trial variability
may become intertwined and exhibit similar properties, such
as the stimulus-induced reduction observed in a model with
clustered connectivity. A deeper investigation of the link between
dimensionality and trial-to-trial variability in recurrent networks
is left for future studies.

Alternative Definitions of Dimensionality
Following (Abbott et al., 2011) we have defined dimensionality
(Equation 2) as the dimension of an effective linear subspace of
firing rate vectors containing the most variance of the neural
activity. It differs somewhat from the typical dimensionality
reduction based on PCA that retains only the number of
eigenvectors explaining a predefined amount of variance (see
Broome et al., 2006; Geffen et al., 2009), because Equation (2)
includes contribution from all eigenvalues. Moreover, we have
computed the firing rate correlations in bins of variable width
that match the duration of the HMM states. Although, our
main results do no depend on bin size (see Results’ section
“Time course of dimensionality as a function of ensemble size”),
the actual value of dimensionality decreases with increasing
bin duration. Thus, any choice of bin size (e.g., 200ms in
Figures 3F,G) remains somewhat arbitrary. A better method is to
use a variable bin size as dictated by the HMM analysis, as done
in Figures 3B–D. This method also prevents diluting correlations
among firing rates that would occur if one neuron were to change
state inside the current bin, because during a hidden state the
firing rates of the neurons are constant (by definition). Thus, this
provides a principled adaptive procedure for selecting the bin
size and eliminates the dependence of dimensionality on the bin
width used for the analysis.

Other definitions of neural dimensionality have been
proposed in the literature, which aim at capturing different
properties of the neural activity, typically during stimulus-evoked
activity. Ameasure of dimensionality related to ours, and referred
to as “complexity,” was introduced in Cadieu et al. (2013).
According to their definition, population firing rate vectors from
all evoked conditions were first decomposed along their kernel
Principal Components (Montavon et al., 2011). A linear classifier
was then trained on an increasing number of leading PCs in order
to perform a discrimination task, where the number of PCs used
was defined as the complexity of the representation. In general,
the classification accuracy improves with increasing complexity,
and it may saturate when all PCs containing relevant features are
used—with the remaining PCs representing noise or information
irrelevant to the task. Reaching high accuracy at low complexity
implies good generalization performance, i.e., the ability to
classify novel variations of a stimulus in the correct category.
Neural representations in monkey inferotemporal cortex (IT)
were found to require lower complexity than in area V4,
confirming IT’s premier role in classifying visual objects despite
large variations in shape, orientation and background (Cadieu
et al., 2013). Complexity relies on a supervised algorithm and is
an efficient tool to capture the generalization properties of evoked
representations (see DiCarlo et al., 2012) for its relevance to visual
object recognition).

A second definition of dimensionality, sometimes referred
to as “shattering dimensionality” in the Machine Learning
literature, has been used to assess the discrimination properties
of the neural representation (Rigotti et al., 2013). Given a set of p
firing rate vectors, one can split them into two classes (e.g., white
and black colorings) in 2p different ways, and train a classifier to
learn as many of those binary classification labels as possible. The
shattering dimensionality is then defined as (the logarithm of) the
largest number of binary classifications that can be implemented.
Thismeasure of dimensionality was found to drop significantly in
monkey prefrontal cortex during the error trials of a recall task,
and thus predicts the ability of the monkey to correctly perform
the task (Rigotti et al., 2013).

A flexible and informative neural representation is one that
achieves a large shattering dimensionality (good discrimination)
while keeping a low complexity (good generalization). Note
that both complexity and shattering dimensionality represent
measures of classification performance in task-related paradigms,
and their definition requires a set of evoked conditions to
be classified via a supervised learning algorithm. While both
definitions could be applied to neural activity in our stimulus-
evoked data, their interpretation is not readily extended to
periods of ongoing activity, as the latter is not associated
to desired targets in a way that can be learned by a
classification algorithm. Since our main aim was to compare the
dimensionality of ongoing and evoked activity, the unsupervised
approach of Abbott et al. (2011) and their notion of “effective”
dimensionality was better suited for our analysis. A related
definition of dimensionality has been used by Gao and Ganguli
(2015) to investigate neural representations of movements in
motor cortex.

Many measures of dimensionality used in the literature
(including ours and some of those discussed above) are based on
pair-wise correlations. However, neural activity is known to give
rise also to higher-order correlations (Martignon et al., 2000).
Given that the extent and relevance of higher-order correlations
is actively debated (Schneidman et al., 2006; Staude et al., 2010),
it would be useful to include them in measures of dimensionality.
This is left for a future study.

Ongoing Activity and Task Complexity
The relationship between ongoing and stimulus-evoked activity
has been linked to the functional connectivity of local cortical
circuits, and their mutual relationship has been the object of
both theoretical and experimental investigations, often with
contrasting conclusions (e.g., Arieli et al., 1996; Tsodyks et al.,
1999; Kenet et al., 2003; Luczak et al., 2009; Tkacik et al., 2010;
Berkes et al., 2011; Mazzucato et al., 2015). Here, we have focused
on the dimensionality of ongoing and evoked activity and have
shown that neural activity during ongoing periods occupies
a space of larger dimensionality compared to evoked activity.
Although, based on a different measure of dimensionality, recent
results on the relation between the dimensionality of evoked
activity and task complexity suggest that evoked dimensionality
is roughly equal to the number of task conditions (Rigotti et al.,
2013). It is natural to ask whether the dimensionality of ongoing
activity provides an estimate of the complexity of the hardest task
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that can be supported by the neural activity. Moreover, based on
the clustered network model, the presence of clusters imposes
an upper value d ≤ Q/ρ2 during ongoing activity, suggesting
that a discrimination task with up to ∝ Q different conditions
may be supported. The experience of taste consumption is
by itself multidimensional, including chemo- and oro-sensory
aspects (i.e., taste identity Jezzini et al., 2013, and concentration
Sadacca et al., 2012, texture, temperature, Yamamoto et al.,
1981, 1988) as well as psychological aspects (hedonic value Katz
et al., 2001; Grossman et al., 2008, anticipation Samuelsen et al.,
2012; Gardner and Fontanini, 2014, novelty Inberg et al., 2013;
Bermudez-Rattoni, 2014, and satiety effects de Araujo et al.,
2006). It is tempting to speculate that neural activity during
ongoing periods explores all these different dimensions, while
evoked activity is confined to the features of the particular taste
being delivered or attended in a specific context.

Establishing a precise experimental and theoretical link
between the number of clusters and task complexity is an
important question left for future studies.
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