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Studies of the neuronal mechanisms of perisaccadic vision often lack the resolution
needed to determine important changes in receptive field (RF) structure. Such limited
analytical power can lead to inaccurate descriptions of visuomotor processing. To
address this issue, we developed a precise, probabilistic technique that uses a
generalized linear model (GLM) for mapping the visual RFs of frontal eye field (FEF)
neurons during stable fixation (Mayo et al., 2015). We previously found that full-
field RF maps could be obtained using 1–8 dot stimuli presented at frame rates
of 10–150 ms. FEF responses were generally robust to changes in the number of
stimuli presented or the rate of presentation, which allowed us to visualize RFs over
a range of spatial and temporal resolutions. Here, we compare the quality of RFs
obtained over different stimulus and GLM parameters to facilitate future work on
the detailed mapping of FEF RFs. We first evaluate the interactions between the
number of stimuli presented per trial, the total number of trials, and the quality of
RF mapping. Next, we vary the spatial resolution of our approach to illustrate the
tradeoff between visualizing RF sub-structure and sampling at high resolutions. We
then evaluate local smoothing as a possible correction for situations where under-
sampling occurs. Finally, we provide a preliminary demonstration of the usefulness
of a probabilistic approach for visualizing full-field perisaccadic RF shifts. Our results
present a powerful, and perhaps necessary, framework for studying perisaccadic
vision that is applicable to FEF and possibly other visuomotor regions of the
brain.

Keywords: frontal eye field, prefrontal cortex, vision, generalized linear model, saccade, oculomotor, remapping,
macaque

INTRODUCTION

The maintenance of a stable visual world despite frequent eye movements is a critical
function of the visual system. The brain must coordinate the processing of incoming
visual stimuli with updated motor plans and ongoing changes in internal state. The
neuronal mechanisms supporting this rapid and complex coordination are unclear.
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One way to investigate this process is to focus on changes
in the visual sensitivity of single neurons around the time of
an eye movement (Duhamel et al., 1992; Walker et al., 1995;
Kusunoki and Goldberg, 2003; Sommer and Wurtz, 2006). But
this approach is limited by the rate at which the visual field
is sampled; the finest discriminable changes in receptive field
(RF) structure correspond to the frequency with which RFs
are probed. Spatial visual sensitivity has typically been coarsely
measured in oculomotor regions of the brain (e.g., Goldberg
and Wurtz, 1972; Sommer and Wurtz, 2006) in contrast to the
detailed spatial characterizations of RFs in early visual cortex
(Jones and Palmer, 1987; Reid et al., 1997; Ringach et al.,
1997; Rust et al., 2005). As a result, our understanding of
perisaccadic vision and the underlying circuit mechanisms has
been limited.

To increase the resolution of RF measurements in the frontal
eye field (FEF), we developed a probabilistic approach for
quantifying and visualizing full-field RFs at timescales as fine
as tens of milliseconds (Mayo et al., 2015). We previously
visualized RF dynamics during stable fixation and found that: (1)
conventional and probabilistic measures of FEF RFs produced
similar results (cf., Churan et al., 2011); (2) we could track
the visual responsiveness of FEF neurons at rates up to every
10 ms; and (3) we could produce detailed maps of the entire RF,
including its size, approximate shape, and center. These results
suggest that probabilistic mapping is a promising avenue for
measuring perisaccadic RFs in FEF.

Although we previously demonstrated the usefulness of
probabilistic RF mapping and the relationship of this method
to conventional RF mapping, it is important to understand
the limitations of the approach in the context of particular
choices regarding the experimental design and visual stimulus
parameters. These practical concerns are crucial for any newly
developed technology, and we therefore detail the topics that
are likely relevant to researchers below. To help determine the
ideal stimulus parameters for measuring visual RFs in FEF, we
measure changes in the quality of RF model fits as a function
of number of trials and recording time. Although our prior
work (Mayo et al., 2015) found few differences in RF quality
between conditions and therefore suggested using dense and
rapid stimuli, our more robust analyses here find that it is
best to present a few stimuli (1 or 2 dot stimuli per video
frame) stochastically at relatively slow presentation rates (150 ms
per video frame). Because randomly presented stimuli unevenly
sample visual space when trials counts are low, we also evaluated
the effect of such biased sampling and present a straightforward
way of dealing with under-sampled stimulus locations in the
RF. We extend our approach to detail the fine spatial structure
of responsive FEF neurons and probe the limits of the spatial
resolution of probabilistic mapping. Finally, we illustrate the
potential of our approach by characterizing RF changes in an
example FEF neuron around the time of a saccade.

MATERIALS AND METHODS

Our methods and dataset are the same as those reported in
detail in Mayo et al. (2015), except for Figure 6 (see below).

Our prior work found similar results in two adult male rhesus
macaque monkeys (Macaca mulatta). But, we only tested a
broader range of stimulus parameters in one monkey and those
are the neurons which we analyze in more detail here (n = 61
neurons). It is important for future work to validate these results
in additional animals. All procedures were approved by the
Institutional Animal Care and Use Committee of the University
of Pittsburgh and complied with guidelines set forth in the
National Institutes of Health (NIH) Guide for the Care and Use
of Laboratory Animals.

We used single electrodes to isolate visually-responsive
neurons in FEF, located in the anterior bank of the arcuate
sulcus, and functionally identified FEF by using electrical
microstimulation (Bruce et al., 1985). During probabilistic
mapping, the monkey maintained central fixation on a small
blue circle for 3 s during each trial while sparse, stochastic
stimuli (white dots on a black background) were presented.
The number of square dot stimuli (1, 2, or 8 dots per stimulus
presentation) or the frame rate of stimuli presentation (10, 30,
70, or 150 ms per frame) were varied across trials. Dot locations
were chosen randomly, and the dots were scaled to increase in
size with eccentricity to approximate the magnification factor
of V1 RFs (Dow et al., 1981). Monkeys were rewarded for
maintaining fixation until the fixation point was turned off at
the end of the trial. Aborted trials were excluded from the
analyses.

Spike trains recorded from individual neurons during
probabilistic RF mapping were related to the time and location
of visual stimuli using a generalized linear model (GLM;
Pillow et al., 2008) and the ‘‘glmnet’’ toolbox in MATLAB
(Friedman et al., 2010). Specifically, we used fivefold cross-
validated, L1-norm lasso regression. The predicted spiking of
the model was related to the beta values of the GLM by the
equation:

Yt = eβ0 + βi ∗ X(i,t)

where βi is the vector of coefficients fit by the GLM, β0 is
a baseline offset, X is a matrix of i pixel values (0 or 1) by
t image presentations, and Yt is the predicted spike count
of the model for image presentation t. GLM performance
was calculated as the correlation (Spearman’s rho; ρ) between
the predicted (Yt) and observed spike counts for each image
presentation across all trials, averaged across the five cross-
validated models. When averaging across cross-validations or
neurons, Spearman’s ρ values were converted to Z-scores
with the Fisher r to Z transformation prior to averaging,
and then converted back to ρ. Spike counts were calculated
in a time window with a latency and duration set to be
optimal for each neuron for each condition (mean latency:
47 ms; mean duration: 114 ms) as described in Mayo et al.
(2015).

In principle, we could run the GLM at the full resolution of
the video monitor (1024× 768 pixels), yielding 786,432 β values,
and rely on regularization to compensate for data limitations. In
practice, such a model is not realistic given current computing
limitations and is not necessary given the spatial resolution of
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FEF RFs. We dealt with this issue by down-sampling the screen
resolution to create ‘‘super-pixels’’, each of which contained
an equal number of actual screen pixels. Each super-pixel was
assigned a value of 1 on a given image presentation if it contained
an illuminated (white) pixel in the full image, and 0 if it did not
(Mayo et al., 2015). In our previous report, we down-sampled
the screen to a 32 × 24 resolution yielding 768 super-pixels,
each ∼1.9◦ square. We also set the degrees of freedom of the
GLM as 20% of the total number of superpixels, which restricted
the maximum proportion of non-zero β coefficients to 20%.
Adjusting this parameter in the glmnet package sparsifies the
resulting β coefficients.

In the current report, we systematically vary the down-
sampled resolution and the GLM degrees of freedom. These
two parameters were fixed values in our previous investigation.
First, we vary the amount of down-sampling from 12 to 49,
152 super-pixels (4 × 3, where each super-pixel is ∼14◦ square,
to 256 × 192, where each super-pixel is ∼0.2◦ square) and
evaluate model performance. The lowest end of this range results
in spatially coarse RFs and the upper end is computationally
taxing and exceeds the spatial resolution of FEF neurons.
The degrees of freedom of the GLM had little impact on
the computation time in the range we tested (0.01, or 1%
of β coefficients were permitted to be non-zero up to 0.5,
or 50%).

For one neuron recorded from a second adult male rhesus
macaque, we presented the stochastic dot stimulus in the context
of a visually-guided saccade task. The monkey was trained to
maintain fixation for 500 ms on a central blue circle, after
which the fixation point was extinguished and a peripheral
target simultaneously appeared. The monkey was rewarded
for making a saccade to the target and maintaining fixation
at the new location for an additional 500 ms. A single dot
stimulus was shown at a new, randomly selected location every
30 ms throughout the duration of the trial. Spike counts were
calculated in a time window from 60 to 140 ms after the onset
of each dot image. Three independent GLMs were fit to these
data, each with non-overlapping spiking activity: (1) the pre-
saccadic model was fit from the images and spikes prior to the
appearance of the saccade target; (2) the perisaccadic model
was fit from the images and spikes in a period starting at
the target appearance and ending 50 ms after the monkey’s
eyes reached the target; and (3) the post-saccadic model was
fit from the images and spikes in a period from the end of
the perisaccadic window until the end of fixation (i.e., the end
of the trial). The additional 50 ms after the saccade offset in
the perisaccadic period was less than the visual latency of this
neuron, and thus permitted the model to use the maximum
amount of data to measure perisaccadic RF structure. The
results were not qualitatively altered by ending the perisaccadic
window immediately when the animal reached the saccade
target.

RESULTS

We previously showed that sparse stimuli can be used to
comprehensively map the visual sensitivity of FEF neurons

during fixation (Mayo et al., 2015). This approach offers a
number of improvements over previous RF mapping efforts
in FEF and other visuomotor areas that presented one or two
stimuli per trial (e.g., Umeno and Goldberg, 1997; Sommer
and Wurtz, 2006). But improvements in spatial and temporal
resolution often trade off with practical considerations like
recording time and stable neuronal isolation. Below, we quantify
the power and limits of probabilistic RF mapping to elucidate the
issues researchers must address when measuring RF dynamics.
We find that, on average, FEF neurons struggle to maintain
spatial and temporal fidelity under very rapid (<100 ms) and
somewhat dense (eight dots per image) stimulus conditions.
As a result, the visual field may be improperly sampled
in certain scenarios, a potential problem in any stochastic
stimulus paradigm. We show that sampling issues can be
somewhat ameliorated by smoothing or down-sampling visual
space.

Stimulus Presentation Rate
Our first goal was to determine whether visual activity in
response to the presentation of many brief stimuli or fewer, long-
duration stimuli per trial yielded better RF models. Our previous
work (Mayo et al., 2015) evaluated RFs across conditions in
terms of the maximum beta value for each GLM map and
found no significant differences between conditions. Here, we
re-evaluated the RF models in terms of ‘‘GLM performance’’ (ρ),
which was the correlation between the cross-validated GLM’s
predicted spiking activity and the observed spike train for a given
neuron or neuron-condition combination (see ‘‘Materials and
Methods’’ Section). This metric provides a clear and objective
evaluation of the RF model—the best RF model is one which
does the best job of predicting the neuronal response. If the
temporal sensitivity of FEF neurons was unlimited, then clearly
it would be better to present stimuli as rapidly as possible
to densely sample visual space and minimize the number of
trials needed. However, the temporal sensitivity of FEF visual
responses is poorly understood. We recently found that we
could obtain RF maps across a range of stimulus presentation
rates, as high as 10 ms per frame (see Figure 5 in Mayo
et al., 2015). Thus, we previously established that FEF neurons
could, at a minimum, respond to rapidly presented visual
stimuli.

But it is still unclear if RF models built on responses
to fast presentation rates are better than those obtained at
slower rates. Comparisons of model-derived RFs across stimulus
presentation rates are complicated by the fact that we used a
fixed trial duration of 3 s regardless of the presentation rate.
Therefore different presentation rates led to differences in the
total number of stimuli presented per trial. Changes in GLM
performance across conditions could therefore be attributed to
the presentation rate itself (temporal factors), differences in the
density of spatial sampling (spatial factors), or a combination of
the two.

To determine which factor had the larger influence on GLM
performance, we focused on a subset of neurons in which
we varied the stimulus presentation rate on a trial-by-trial
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FIGURE 1 | Slower frame rates led to better generalized linear model (GLM) performance despite fewer stimulus presentations per trial. (A) GLM
performance over increasingly larger random subsets of trials for three different stimulus presentation rates in a single frontal eye field (FEF) neuron in 10 trial
increments. Left, all stimulus image presentations are included without regard to the total number of stimuli per trial, which differed between conditions. Right, an
equal number of stimulus image presentations (20, matched to the slowest stimulus presentation rate) was selected on each randomly sampled subset of 10 trials.
(B) Average GLM performance per condition across neurons. The increase in noise (wider shading) from left to right is because fewer neurons contributed to the
average at the higher trial counts. GLM performance for individual neurons decreased in noise with increasing trials (A). Right and left plots are same format as in (A).
In both (A,B), the first subsample (10 trials) is omitted for display purposes. In (B), the last five data points are omitted because there were less than 4 neurons with
more than ∼400 trials per condition. Horizontal lines at the top of the plots indicate significant differences (p < 0.05) between conditions based on paired t-tests at
each resolution. (C) Average GLM performance across all 61 neurons, using the best condition for each neuron (see Mayo et al., 2015). Dashed black line is a fitted
saturating exponential which summarizes the improvement in GLM performance as a function of the number of trials collected. Shading represents ± one SEM.

basis (n = 27 neurons). A single dot stimulus was presented
at 150, 70, or 30 ms per frame for the duration of a trial,
resulting in 20, 42, or 100 stimuli presented per trial. For each
neuron, we first fit a GLM to increasingly larger subsets of
randomly sampled trials (from zero to the maximum number
of trials collected, in increments of 10 trials). In a separate
analysis, we randomly sampled 20 stimulus presentations per
trial in each condition, again over an increasing number of sub-
selected trials. A comparable analysis using subsets of trials in
the order they were collected was used to test for changes in

neuronal isolation over time; the results did not meaningfully
differ from those obtained by random sampling presented
below.

For the 150-ms stimulus presentation condition, the two
analyses were identical by definition (e.g., the blue lines are
the same in Figures 1A,B, left and right) because there were
always 20 stimulus presentations per trial. For the 70 and 30-ms
presentation rates, the second ‘‘constant images per trial’’ analysis
controlled for the number of stimuli presented per trial and
allowed us to isolate the temporal factors that contributed to
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GLM performance. If the quality of GLM fits was based only
on the total number of stimuli presented (which correlates with
sampling density), then we would expect the 30-ms condition to
yield the best performance and the 150-ms condition to perform
the worst.

Figure 1A shows the performance of a GLM built using three
different stimulus presentation rates over the course ofmore than
200 trials for a single FEF neuron. Performance improved in all
conditions as the number of trials included increased, as expected
(Figure 1A, both panels). But, despite the fact that it probed
visual space the fewest number of times, the 150-ms condition
yielded the best performance after equating the number of
image presentations per trial (Figure 1A, right). When the faster
stimulus presentations were allowed to accumulate more images
(Figure 1A, left), GLM performance greatly improved for the
70 and 30-ms conditions (compare red and yellow lines from
Figure 1A, right vs. left). In the case of the 70-ms condition,
the GLM performance rose to a level nearly identical to the
150-ms condition. Thus, for this neuron, it was possible to
sample visual space as rapidly as every 70-ms, but a faster
sampling of every 30-ms led to a substantially worse estimate of
the RF.

In the population of FEF neurons recorded in this paradigm,
we found a similar overall trend (Figure 1B). Average GLM
performance improved as more trials contributed to the
construction of the models. More importantly, activity from the
150-ms condition led to better performance even after including
the increased number of stimuli presented with the faster 70
and 30-ms conditions (Figure 1B, left). Whereas the spiking
activity of the single neuron example in Figure 1A (left) was
similar for the 150 and 70-ms conditions, across the population
of neurons there was a more gradual improvement in GLM
performance from 30 to 70 to 150 ms (Figure 1B, right).
Although we could successfully construct predictive GLMs at all
presentation rates, the slowest rate that we used provided the best
RF models.

To better estimate the number of trials needed to reach
peak GLM performance, we performed a similar analysis on
all stimuli presented in the best condition from all 61 neurons
with a significant RF (Mayo et al., 2015) from the same monkey
(Figure 1C). These data were best fit, in the least squares
sense, with a saturating exponential function that had a trial
constant of 208, demonstrating that on average 200 trials were
sufficient to achieve more than 70% of the maximum GLM
performance we observed. The fact that GLM performance
tended to saturate in the trial ranges that we employed indicates
that under-sampling is not an insurmountable issue in this
regime.

Spatial Resolution and Sampling
Our prior work evaluated full-field RFs at a resolution of 32× 24
‘‘super-pixels’’ (Mayo et al., 2015) for computational expediency,
which down-sampled the resolution of our 1024 × 768 pixel
CRT video monitor. The middle panel labeled ‘‘32 × 24’’
in Figure 2A shows an example neuron from our previous
work (same neuron as Figure 1D from Mayo et al., 2015).

A strength of our probabilistic approach is that we can change
the resolution of our RF maps, depending on our interests
(e.g., RF sub-structure, computational expediency). Figure 2A
shows the same neuron’s RF at seven different resolutions.
The RF was clearly visible at resolutions up to and including
64 × 48 super-pixels and became faint at 128 × 96 super-
pixels (note that the color scale of the RFs is normalized
to the maximum β coefficient for each resolution, which
increased with resolution). Thus, although the RF is difficult
to visualize at higher resolutions and seemingly invisible at
256 × 192, some β coefficients remained, indicating large
spiking responses due to image presentations at very focal
locations. Our stochastic stimuli were presented at random
locations on the screen, not in a pre-defined grid (e.g., Joiner
et al., 2013). Therefore one drawback of this approach is
that some pixels may be under-sampled, either presented too
few times to contribute meaningfully to the GLM or never
presented at all. This is of minimal consequence at lower
resolutions where the neuronal responses to stimuli within a
super-pixel are combined. But as the resolutions of the RF
map increased, under-sampling was increasingly problematic
(Figure 2A).

Figure 2B illustrates the same tradeoff between GLM
performance and RF resolution in the population data.
Consistent with our results in Figure 1, the 150-ms presentation
rate yielded the best GLM performance across nearly all
resolutions. The resolution with the best performance for all
conditions was around 8 × 6 super-pixels, and performance
gradually declined as the resolutions increased. While GLM
performance was impaired at the highest resolutions by under-
sampling, we are not aware of any previous work that
measured full-field FEF RFs even at our lower resolutions
such as 16 × 12 super-pixels, where each super-pixel was 3.5◦

square.
The population average in Figure 2B obscures the fact

that we recorded a different number of trials for each neuron
(usually, as many trials as stable neuronal isolation would allow;
Mayo et al., 2015). If GLM performance decreased at higher
resolutions solely because of under-sampling, then we would
expect to see a smaller change in neurons where we recorded
many trials and a larger change in neurons with fewer trials
where under-sampling was greater. To investigate changes in
GLM performance across resolutions as a function of trials
collected, we calculated the difference in GLM performance
between the 8 × 6 (low) and 64 × 48 (high) resolutions
for each neuron. These resolutions were selected because they
captured a range of resolutions where GLM performance varied
but still resulted in reasonably precise fits (see Figures 2A,B).
Figure 2C illustrates the change in GLM performance from low
resolution to high resolution as a function of the number of
trials collected. Although the size of our dataset was relatively
small (n = 27), we identified a small negative correlation
(ρ = −0.38, p = 0.049) between the change in performance
and the number of trials per neuron. This result suggests
that high-resolution RF maps can be acquired provided that
sufficient numbers of trials are collected to offset under-
sampling. Figure 2C therefore provides an estimate of the
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FIGURE 2 | Greater down-sampling generally yielded better GLM performance. (A) An example neuron’s receptive field (RF) plotted using a range of screen
resolutions. Note that the color bar for each plot is scaled to its maximum and all plots use a degrees of freedom equal to 20% of the total number of superpixels.
(B) Population averaged GLM performance for each stimulus presentation rate (150, 70 or 30 ms) as a function of resolution. Shading represents ± one SEM.
Horizontal lines at the bottom of the plot indicate significant differences (p < 0.05) between conditions based on paired t-tests at each resolution. (C) Change in GLM
performance from low (8 × 6) to high (64 × 48) resolution (vertical axis) as a function of number of trials collected per neuron (horizontal axis). The black line is the
least squares fit to the data. Small dots are color-coded to represent the performance for each condition (color convention in B) for an individual neuron; large black
dots represent the average performance across conditions for each neuron.

number of trials required to achieve the spatial resolution
desired.

Degrees of Freedom
GLMs are a powerful tool for measuring RFs in part because of
regularization, which helps models cope with a large parameter
space and limited data. In the lasso GLM employed here, the
regularization serves to sparsify the parameter space. Explicit
control over the sparsity of the β coefficients is achieved by
setting the maximum degrees of freedom of the model (i.e., the
maximum percentage of non-zero β coefficients). In the analyses
above and in previous work (Mayo et al., 2015), we fixed the
GLM degrees of freedom at 20% of the total number of super-
pixels. Here, we quantify changes in GLM performance over a
range of degrees of freedom while simultaneously considering
the spatial resolution, to determine which values yielded the best
performance.

Figure 3A shows the GLM performance as a function of
the degrees of freedom (vertical axis) and resolution (horizontal
axis). Our previous choice for GLM degrees of freedom, 0.2
or 20%, yields reasonable performance across all of the tested
resolutions (Figure 3A, white squares). However, a value of
0.1 (or 10% of the super-pixels allowed to have non-zero β
coefficients), yielded the best performance in all three conditions.
Reassuringly, the range of penalties yielded consistent results
within each resolution, and vertical slices of each condition’s

matrix supported the conclusion from Figures 1, 2 that lower
resolutions led to better performance. Thus, on average, the best
choice for GLM degrees of freedom was 10% of the super-pixels
across the population of neurons regardless of the stimulus
presentation rate.

Figure 3B illustrates the optimal choice (in the terms of
peak GLM performance) for degrees of freedom for each neuron
across all resolutions. The ‘‘preferred’’ degrees of freedom varied
widely and included all tested values. But the majority of neurons
yielded their best GLM performance when the model degrees of
freedom were relatively small. The diversity encountered here is
consistent with the other metrics of FEF visual sensitivity, which
tend to be heterogeneous across a given population (Sommer and
Wurtz, 2000; Mayo et al., 2015). Some of this heterogeneity may
stem from differences in the size of individual neurons’ RFs. The
optimal degrees of freedom in the model should, in principle, be
related to the proportion of the pixels occupied by the RF. This
implies that both the resolution and degrees of freedom need
to be adjusted to the characteristics of individual neurons for
optimal model performance.

Can Spatial Under-Sampling be Improved
by Local Smoothing?
We have shown that there is a tradeoff between the density of
sampling of visual space and the quality of a given RF map
(Figures 1C, 2C). Sampling is a fundamental concern given
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FIGURE 3 | Optimal GLM degrees of freedom. (A) Matrices of GLM degrees of freedom as a function of down-sampling resolution in terms of average GLM
performance for each of the three stimulus presentation rates. White squares represent the degrees of freedom (0.2) and resolution (32 × 24) used in our previous
work (Mayo et al., 2015). (B) Distribution of the best degrees of freedom for each neuron in each condition.

our stochastic approach to stimulus presentation, especially
when a large number of trials cannot be collected because
of neuronal isolation or other issues. Thus, as fewer data are
collected, the likelihood that a region of visual space is under-
sampled increases. Figure 1 shows that it is possible to obtain
sufficient RF measures in as few as 50 trials per condition
(Figure 1A), and Figure 2 illustrates that lower resolutions
yield the best results. However, one goal of the probabilistic
approach is to obtain spatially precise RF measurements to
evaluate models of perisaccadic circuitry. A spatially coarse RF,
while sufficient in the sense of optimizing GLM performance,
may be insufficient for such precision-dependent experimental
questions. One potential way to ‘‘rescue’’ the performance of a
high-resolution GLM is to use spatial smoothing.

We employed a Gaussian filter with a width proportional
to the resolution of the RF, which kept the amount of filtering
constant size in terms of visual space. The results of this filtering
for the example neuron from Figure 2A at the four highest
resolutions are shown in Figure 4 (32 × 24 resolution uses a
Gaussian with SD = 1 super-pixels, 64 × 48 resolutions uses
a Gaussian with SD = 2 super-pixels, etc.). By comparing the
rightmost plots in Figure 2A to their smoothed counterparts in
Figure 4A, it is clear that averaging beta values within a localized
region of space helps recover details of the RF that were otherwise
difficult to observe. This is particularly noticeable at the two
highest resolutions, where a dim (128 × 96 super-pixels) RF and
a nearly invisible (256× 192 super-pixels) RF were made clear by
the smoothing procedure.

We evaluated the impact of this Gaussian filtering at a
resolution of 64 × 48 super-pixels, comparing the performance

of the smoothed and original, unfiltered GLMs (Figure 4B).
GLM performance was highly correlated between the smoothed
and unsmoothed models, but consistently better in the smoothed
case. This was especially apparent at the stimulus presentation
rate of 150 ms, where under-sampling is more likely to occur.
Thus, smoothing is helpful in cases where the RF is poorly
sampled. Smoothing, of course, also reduces the salience of the
features that the high-resolution sampling is intended to access.
While it remains unclear if this type of smoothing will improve
the ability of the experimenter to access these features, it is
certainly a useful tool that provides flexibility in the experimental
application of GLMs to RF mapping.

Simultaneously Sampling Multiple
Stimulus Locations
Except for Figure 1C, the results above focused on a sub-
population of neurons (n = 27) in which we varied the stimulus
presentation rate on each trial. These neurons were useful
because they allowed us to determine that stimuli presented at
a faster rate do not necessarily lead to better GLM performance.
On average, RF maps were best for the slowest presentation rate
tested (150 ms; Figure 1B). However, within each condition,
more trials (i.e., more sampling) improved the quality of the
GLM fits, as expected. These results demonstrate that the need
to sample visual space densely is limited by the relatively sluggish
temporal impulse response of FEF neurons.

Denser sampling of visual space can also be achieved by
presenting multiple stimuli on each frame, instead of presenting
a single stimulus at a faster rate. We previously recorded the
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FIGURE 4 | Smoothing can help ameliorate under-sampling. (A) Same example neuron from Figure 2A, here with Gaussian smoothing (SD = 2 super-pixels).
The standard deviation of the smoothing kernel (σ ) for each resolution is presented in parentheses. (B) Scatterplots of smoothed vs. original, unfiltered GLM
performance for each of the stimulus presentation conditions (n = 27). Thin gray lines are lines of unity and black lines are least squares fits to the data.

responses of single FEF neurons to 1, 2, and 8 dot-stimuli per
video frame (fixed within a trial) at a presentation rate of 70 ms
per frame in a separate subpopulation of neurons (n = 20; Mayo
et al., 2015). To determine if GLM performance improves when
spatial sampling is increased on each video frame, we compared
GLM performance across the population of neurons in each of
the ‘‘differing number of stimuli per frame’’ conditions. Like the
analyses in Figures 2B,C, 3A, these analyses did not use the
smoothing methods illustrated in Figure 4.

Figure 5A shows that the simultaneous presentation of
multiple stimuli on each video frame did not improve GLM
performance. Performance was actually poorest in the 8-dot
condition where spatial sampling was greatest (Figure 5A, orange
line). In contrast, one or two stimuli per video frame yielded
comparable population averaged GLM performance that was
better than that of the eight dots condition (Figure 5A, blue and
red lines). Thus, GLM performance was not simply dependent on
the spatial sampling. This result complements Figure 2B where
we also found that denser temporal sampling (achieved by faster
presentation rates) produced poorer model performance. We
conclude that using faster stimulus presentation (Figure 2B) or
more stimuli on each video frame (Figure 5A) does not lead to
better GLM performance, contrary to predictions based solely on
the density of RF sampling.

We next looked at the effect of the number of trials collected
per condition as a function of GLM performance across low
vs. high RF resolutions (same analysis as in Figure 2C). For
this analysis, we excluded the data for the eight-dot condition
because it was noisy and produced poor GLM performance (see
Figure 5A). Figure 5B demonstrates that GLM performance was
better at low resolutions than at high resolutions for neurons in

which we collected fewer trials (Figure 5B). This was presumably
because the high-resolution RF maps were under-sampled.

We also investigated whether changes in the GLM’s degrees
of freedom or its spatial resolution improved GLM performance
across the different-number-of-stimuli conditions (Figure 5C,
analogous to Figure 3A). The relationship between the GLM’s
degrees of freedom and its resolution was similar across
conditions and similar to our previous observations for varying
stimulus presentation rate (Figure 3A). But performance was
better overall in the 1-dot and 2-dot conditions than in the 8-dot
condition. Thus, as was the case in Figure 3A, the results were
not dependent on the specific GLM penalty or resolution chosen,
which were always kept constant across conditions. Overall, the
2-dot condition yielded the best GLM performance, followed
closely by the 1-dot condition, while the 8-dot condition’s
performance was noticeably diminished.

Perisaccadic RF Mapping
Figures 1–3 demonstrated that relatively slow stimulus
presentation rates (150 ms/frame) lead to better GLM
performance. Figure 4 suggests that some amount of under-
sampled data can be recovered by using local Gaussian
smoothing, and Figure 5 shows that fewer stimuli per video
frame (1–2 dots) yield better GLM performance that many dots
per frame. Taken together, these results place strong constraints
on the use of our probabilistic approach for perisaccadic RF
mapping, which requires dense sampling in relatively brief
epochs of visual activity. We tested the probabilistic approach’s
usefulness for perisaccadic RF mapping by presenting stochastic
sparse noise stimuli during a standard visually-guided saccade
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FIGURE 5 | Fewer stimuli per frame yielded better GLM performance than many stimuli. (A) Population averaged GLM performance as a function of
resolution (same format as Figure 2B). Each line represents the performance for a condition with a constant number of dot stimuli per video frame (1, 2 or 8).
Shading represents ± one SEM. Horizontal lines at the bottom of the plot indicate significant differences (p < 0.05) between conditions based on paired t-tests at
each resolution. No significant differences were observed between the 1 dot and 2 dots conditions at any resolution. (B) Change in GLM performance (same format
as Figure 2C) from low to high resolution (vertical axis) as a function of number of trials collected per neuron (horizontal axis). The 8-dots data were excluded
because of noisy fits across all resolutions (yellow line in A). The black line is the least squares fit to the data. (C) GLM degrees of freedom as a function of
down-sampling resolution in terms of average GLM performance for each of the three stimulus conditions (same format as Figure 3A). White squares represent the
degrees of freedom (20% of the number of superpixels) and resolution (32 × 24) used in our previous work (Mayo et al., 2015).

task. We illustrate the results in a single FEF neuron below (for
details, see ‘‘Materials and Methods’’ Section).

Figure 6 shows the RF of an example FEF neuron around
the time of a 15◦ upward saccade. The top row (Figure 6A)
shows the unfiltered predictions of three independent GLMs at
a resolution of 32 × 24 super-pixels. The left plot illustrates
the size and location of the RF before the onset of the saccade
(‘‘pre-saccadic RF’’). Compared to the RF from a different neuron
plotted at the same resolution in Figure 2A (middle panel), the
current RF was smaller, consistent with its position closer to the
fovea.

The middle plot in Figure 6A shows the RF calculated from
data taken after the saccade target was turned on to just after
the eye reached the target (‘‘peri-saccadic RF’’). This epoch was
chosen to maximize the number of perisaccadic spikes included
in the GLM. The RF was divided between its pre-saccadic
location yoked to the initial fixation point (black cross), and
its post-saccadic location yoked to the saccade endpoint (white
cross).

After the saccade target was acquired, the RF was measured
again while the monkey fixated the white cross (Figure 6A, right;
‘‘post-saccadic RF’’). During this epoch, the RF was no longer
divided and it returned to its conventional retinal position, just
below the fixation point. The size and location were comparable
in the pre- and post-saccadic epochs, as expected. Data from
the same epochs but smoothed using a Gaussian with SD = 1
are shown in the bottom row of Figure 6B. The smoothing
highlights the perisaccadic RF dynamics found in the unfiltered
GLM predictions in Figure 6A.

We found no evidence of increased visual sensitivity in the
spatial region between the pre- and post-saccadic RF locations
for this neuron (green values on the color map). Such a divided
perisaccadic RF is consistent with previous work in FEF showing
a discrete ‘‘jump’’ between pre- and post-saccadic stimulus
locations (Sommer andWurtz, 2006). This result did not depend
on the GLM parameters selected (resolution, degrees of freedom)
and it was also present when the pre-, peri-, and post-saccadic
epochs were made equal in duration. More work is needed to

Frontiers in Systems Neuroscience | www.frontiersin.org 9 March 2016 | Volume 10 | Article 25

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Mayo et al. Probabilistic Receptive Fields in FEF

FIGURE 6 | Probabilistic perisaccadic RF mapping. (A) A single FEF neuron’s RF before (left), around the time of (middle), and after (right) an upwards 15◦

saccade. The black cross indicates the initial fixation point and the white cross indicates the saccade endpoint. Note that each plot is scaled to its maximum beta
value (cmax value). (B) Same data and format as (A) but smoothed using a Gaussian of SD = 1 super-pixel.

validate this method, but this example suggests that probabilistic
RF mapping is a viable option for measuring full-field RF
perisaccadic dynamics in FEF, and possibly other visuomotor
brain regions.

DISCUSSION

Because neuronal RFs are often considered the fundamental
processing unit of visual perception, a common approach for
investigating perisaccadic vision is to measure single RFs before,
during, and after an eye movement. Conventional methods
present one stimulus per trial and therefore probe one location
in visual space every few seconds. Averaging activity over
these long periods of time complicates studies of the neuronal
mechanisms of perisaccadic perception. In this report, we further
elucidated a new probabilistic approach for measuring FEF RF
dynamics.

In Figure 1, we showed that the predictions of cross-
validated GLMs built on FEF visual responses were best when
the rate of stimulus presentation was slow (150 ms per frame;
Figure 1B, left). This effect was even more striking when the
total number of stimuli presented per trial was balanced between
conditions (Figure 1B, right). Figures 2, 3 extend this result by
showing that it remains true regardless of the amount of down-
sampling used to build the RF (Figure 2B) and regardless of the
amount of RF map ‘‘sparseness’’ built into the GLM construction
(Figure 3A). Figure 4 illustrates that local smoothing of the
GLM’s beta values helps improve RF maps, especially at high
spatial resolutions. Figure 5 shows that increasing the number
of dots presented per stimulus frame did not improve the
quality of GLM RFs. Despite these physiological limitations

on our ability to densely sample visual space with a high
frame rate, we were able to obtain a remarkably precise spatial
measurement of an FEF neuron’s RF in the ∼200 ms period
around the time of a saccade (Figure 6, middle column). This
result is an encouraging preliminary step toward more precise
and reliable estimation of RF structure around the time of eye
movements.

Although our experiment was designed in part to optimize the
stochastic stimuli, the limitations of GLM performance provide
some insight into the limitations of FEF visual responses. Given a
theoretically instantaneous impulse response, the ideal stimulus
presentation rate for deriving a RF would be as fast as our
hardware allowed. In practice, however, visual responses are
less able to track fast stimulus changes as the distance from
the sensory periphery increases. While retinal ganglion cells
and LGN neurons respond briskly to a grating flickering at
10–20 Hz (Derrington and Lennie, 1982, 1984), the low-pass
temporal frequency tuning of V1 is even sharper. V1 neurons
exhibit greatly reduced responses to stimuli drifting at rates
greater than 10 Hz (Hawken et al., 1996). This decrease in the
low-pass cutoff continues in area V2 (Foster et al., 1985) and
V3 (Gegenfurtner et al., 1997), but has been rarely measured
outside of striate and early extrastriate cortex. Although it is
difficult to directly compare our results to those using drifting
gratings, our finding of peak model performance with stimulus
presentation rates of 150 ms (6.7 Hz) likely reflects continued
downward pressure in the low-pass cutoff as visual stimuli are
processed beyond striate cortex. A recent investigation of the
temporal characteristics of spiking activity across cortical regions
supports the notion of a hierarchy of intrinsic timescale, with
prefrontal cortex ranking as the slowest (Murray et al., 2014).
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However, the relatively rapid latencies of FEF neurons (Pouget
et al., 2005; Mayo and Sommer, 2013), along with our finding
of robust responses for some neurons to stimuli updating as
fast as every 10 ms, is evidence that FEF may have a faster
intrinsic timescale than the rest of prefrontal cortex. Anatomical
connectivity of FEF to other cortical regions like V4 also defies
the traditional hierarchical placement for FEF (Anderson et al.,
2011).

Even within the temporal constraints of FEF responses,
a dense spatial sampling of the RF with the stochastic
noise stimulus would still be ideal for a linear RF. But
we found that even a modest increase in the number of
stimuli (8 dots per frame) greatly reduced the efficacy of
the GLM in predicting spiking responses. This result strongly
implicates nonlinearities in the spatial summation of FEF
neurons. There are some hints of this effect in the literature.
Schall et al. (2004) as well as Cavanaugh et al. (2012)
reported suppressive effects beyond the classical RF. Although
our experiments were not directly aimed at studying this
phenomenon, the results suggest nonlinear spatial summation in
FEF RFs.

In broader terms, the apparent limits of FEF visual processing
are consistent with FEF’s presumed role in cognitive control.
One hypothesis, supported by our previous work (Mayo et al.,
2015), is that FEF neurons may not be suited for ultra-
rapid and multi-focused stimulus tracking. This ‘‘limitation’’
may therefore, instead, be a useful feature for maintaining or
updating a salient visual stimulus (Thompson and Bichot, 2005;
Joiner et al., 2011). It is also consistent with the relatively
long timescale required to change the locus of spatial attention
(Posner, 1980; Carlson et al., 2006; Herrington and Assad, 2010),
which is important given FEF’s postulated role in attentional
control (Schall, 1995; Clark et al., 2015). Our task did not
manipulate the saliency of any particular visual stimuli, but
our paradigm can be adapted to test this hypothesis in future
work.

Our initial goal was to sample visual space in an even
and minimally biased fashion, covering the largest possible
area. While the manipulation of our stochastic dot stimulus
was limited in its ability to improve RF estimation, there
are a number of extensions that could prove fruitful.
One direction would be to reduce the area over which the
stochastic stimuli are shown, and thus sample a smaller
spatial region. Another possibility is to manipulate the
temporal structure of the dots such that spatially adjacent
regions are not sampled close together in time. Finally, our
chosen stimulus was a white dot on a black background,
which was high contrast but otherwise not distinctive.
Other shapes or combinations of contrasts may be more

effective in different experimental contexts (Churan et al.,
2011).

Regardless of the specific stimulus parameters used, our
probabilistic approach provides a new way to classify previously
overlooked properties of visually-responsive FEF neurons. FEF
neurons have long been characterized by properties such as their
relative visual and saccadic responsiveness (Bruce and Goldberg,
1985), their delay activity (Funahashi et al., 1989; Lawrence
et al., 2005), and their response latencies (Pouget et al., 2005;
Mayo and Sommer, 2013). These basic measures are undoubtedly
important for understanding FEF. But other properties of
FEF neurons (e.g., their preferred stimulus presentation rate
or optimal degrees of freedom) may also help reveal how
populations of FEF functions coordinate their activity. For
example, even though our neuronal sampling was too sparse
for such an analysis, it is possible that a larger, systematic
sampling of neurons would reveal a relationship between
neuronal properties and anatomical location. Such clustering of
neuronal features, seen in primary visual cortex and in other
visual areas (Mayo and Verhoef, 2014; Nienborg and Cumming,
2014), place important constraints on read-out mechanisms and
suggest organized cortical or subcortical connections (Stanton
et al., 1995; Sommer and Wurtz, 2000; Pouget et al., 2009).
A comprehensive understanding of the spatial and temporal
properties of individual neurons, and their interrelationships,
may be needed to resolve the role of FEF in visual and cognitive
processing.
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