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Repeating stable spatiotemporal patterns emerge in synchronized spontaneous activity

in neuronal networks. The repertoire of such patterns can serve as memory, or a

reservoir of information, in a neuronal network; moreover, the variety of patterns may

represent the network memory capacity. However, a neuronal substrate for producing

a repertoire of patterns in synchronization remains elusive. We herein hypothesize

that state-dependent propagation of a neuronal sub-population is the key mechanism.

By combining high-resolution measurement with a 4096-channel complementary

metal-oxide semiconductor (CMOS) microelectrode array (MEA) and dimensionality

reduction with non-negative matrix factorization (NMF), we investigated synchronized

bursts of dissociated rat cortical neurons at approximately 3 weeks in vitro. We found

that bursts had a repertoire of repeating spatiotemporal patterns, and different patterns

shared a partially similar sequence of sub-population, supporting the idea of sequential

structure of neuronal sub-populations during synchronized activity. We additionally found

that similar spatiotemporal patterns tended to appear successively and periodically,

suggesting a state-dependent fluctuation of propagation, which has been overlooked

in existing literature. Thus, such a state-dependent property within the sequential

sub-population structure is a plausible neural substrate for performing a repertoire of

stable patterns during synchronized activity.

Keywords: spontaneous synchronized burst, state-dependent activity, microelectrode array, dissociated culture,

metastable dynamics

INTRODUCTION

Repeating stable spatiotemporal patterns emerge in synchronized spontaneous activity in vivo (Lee
and Wilson, 2002; Ji and Wilson, 2007; Luczak et al., 2007; Villette et al., 2015), in vitro (Beggs and
Plenz, 2003, 2004; Ikegaya et al., 2004), and in dissociated cultures (Segev et al., 2004; van Pelt et al.,
2004; Eytan and Marom, 2006; Madhavan et al., 2007; Rolston et al., 2007; Schroeter et al., 2015).
The repertoire of such patterns can serve as memory, or a reservoir (Maass et al., 2002; Sussillo
and Abbott, 2009) of information, in a neuronal network; moreover, the variety of patterns may
represent the memory capacity in the network (Shew et al., 2011). Furthermore, spatiotemporal
patterns in spontaneous activity are often similar to those of evoked activity against external events

Abbreviations: BFM, Burst feature matrix; SPP, Sub-population pattern; SPAW, Sub-population activation weight.
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(Arieli et al., 1996; Tsodyks et al., 1999; Kenet et al., 2003; Luczak
et al., 2009), suggesting that the variety of spontaneous patterns
constrain the processing capacity of external inputs (Luczak
et al., 2009; Villette et al., 2015). Our present interest is therefore
the neural mechanism required to build a repertoire of stable
spatiotemporal patterns in synchronized spontaneous activities.

Both theoretical and experimental studies have demonstrated
that stable patterns emerge in a sequential structure of a neuronal
network, where each synaptic connection is unreliable, yet
synchronized activities of a particular sub-population reliably
elicit another sub-population activity (Abeles, 1991; Aertsen
et al., 1996; Diesmann et al., 1999; Ikegaya et al., 2004).
Nevertheless, the way in which the repertoire of patterns is built
in such a sequential structure remains elusive.

To address this problem, state-dependency of neuronal
activity is a plausible neural underpinning (Buonomano and
Maass, 2009). Recently, cortical spontaneous activities were
characterized as having multiple “metastable states” itinerating
in an activity dependent manner (Mazzucato et al., 2015).
A particular state should continue during a quiescent period
(Dranias et al., 2013, 2015; Ju et al., 2015) because cellular
and synaptic properties governing states are likely to last
without explicit spiking (Buonomano and Maass, 2009). Based
on these studies, we hypothesize that (i) stable spatiotemporal
patterns in synchronized spontaneous activity are generated
by sequential activation of sub-populations, and that (ii) these
patterns are generated in a state-dependent manner, whereby
multiple metastable states can be defined as a finite continuous
period.

In the present study, we test our hypotheses in dissociated
neuronal cultures. To date, spontaneous activities in neuronal
cultures have been well characterized with a microelectrode
array (MEA) (Beggs and Plenz, 2004; Eytan and Marom, 2006;
Madhavan et al., 2007). However, the spatial resolution of
conventional MEA is insufficient to capture the whole activity
in the neuronal network, potentially causing misestimation
of population properties (Gerhard et al., 2011; Ribeiro et al.,
2014). To overcome this technical pitfall, we use cutting-
edge complementary metal-oxide semiconductor (CMOS)
microelectrode arrays (MEAs) (Berdondini et al., 2009; Frey
et al., 2010; Obien et al., 2014; Müller et al., 2015), which
offer excellent spatiotemporal resolution for investigating
neuronal networks in vitro (Gandolfo et al., 2010; Bakkum
et al., 2013a; Panas et al., 2015). The CMOS MEA used in this
study can simultaneously measure neural activities from 4096
sites within 2.67 × 2.67mm2 at a sampling rate of 7 kHz. The
high-dimensional spatiotemporal activity patterns are then
characterized by non-negative matrix factorization (NMF) (Lee
and Seung, 1999; Leonard et al., 2015; Wei et al., 2015) in order
to visualize whether and how sub-populations are sequentially
activated in a state-dependent manner.

We demonstrate that cultured neurons obviously perform a
repertoire of multiple spatiotemporal patterns in spontaneous
synchronized activity, while different patterns share a partially
similar sequence of sub-populations. This supports the concept
that the network has invariant sequential structures of sub-
populations. Additionally, similar spatiotemporal patterns

appear consecutively, which suggests that pattern generation is
state-dependent. Our experimental results provide compelling
evidence that a repertoire of stable neural patterns is generated
in a state-dependent manner.

MATERIALS AND METHODS

Cell Culture
All experimental protocols were approved by the ethical
committee of the University of Tokyo and conducted in
accordance with the “Guiding Principles for the Care and Use
of Animals in the Field of Physiological Science” by the Japanese
Physiological Society. The cell culture procedure was based
on previous reports (Bakkum et al., 2013a) and was slightly
modified. Cortices were dissected from E18 Wistar rats and
dissociated by 0.25% trypsin-EDTA (Invitrogen) and trituration.
For cell adhesion, the electrode area of the high-density CMOS
MEA (3Brain, Biochip 4096S) was coated with a 20-ul drop
of 0.05% polyethylenimine (Sigma) and then a 20-ul drop of
0.02mg/ml laminin (Sigma). On the MEAs, 30,000–40,000 cells
were seeded with cell plating media: 850 ul of NeuroBasal
(Invitrogen) supplemented with 10% horse serum (HyClone),
2% B27 (Invitrogen), and 0.5mM GlutaMAX (Invitrogen). After
24 h, the media were replaced with cell growth media: 850 ul
of DMEM (Invitrogen) supplemented with 10% horse serum,
0.5mMGlutaMAX, and 10 ug of sodium pyruvate. Cultures were
maintained in an incubator at 37◦C and 5% CO2 humidified
atmosphere. Half the media were exchanged twice a week. For
avoidance of evaporation and infection, the well on the chip was
covered with a custom-made lid except for the period during the
medium exchange (Potter and DeMarse, 2001).

Recording with High-Density CMOS MEAs
Extracellular voltage was recorded using a commercialized high-
density CMOS MEA system (3Brain). Biochip 4096S (3Brain)
contains 4096 electrodes; the scale of the electrode is 21 × 21
um, and the distance of neighboring electrodes is also 21 um.
The electrodes are squarely located in the 2.67 × 2.67mm area.
Extracellular signals were simultaneously captured from the 4096
electrodes through the CMOS MEA interface, BioCAM4096
(3Brain), at a sampling rate of 7 kHz. They were recorded
using BrainWave (3Brain) computer software. Ten minutes
of spontaneous activities of five cultures at approximately 21
days in vitro (DIV) were recorded; their spontaneous activities
at approximately 10DIV were also recorded for comparison.
Recording was performed outside the incubator. The recording
space was shielded with a blackout curtain to avoid potential
effects of ambient light (Imfeld et al., 2008) and maintained at
35–36◦C atmosphere.

Spike Detection
Spikes were detected from recorded data by using a precise
spike timing detection (PTSD) algorithm (Maccione et al., 2009)
installed in BrainWave. The parameters for the PTSD algorithm
were as follows: standard deviation factor, 10.0; peak life-time
period, 2.0ms; refractory period, 1.0ms. The timing of each spike
was assigned to the timing of its negative peak. The median of
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the peak amplitude of detected spikes was calculated at each
electrode; spikes detected at electrodes with lower median peaks
than the threshold were excluded from the following process. The
threshold was the third quartile of the median peaks, which was
qualified by manual inspection. Spike sorting was not performed
in this experiment.

Burst Detection
Synchronized bursts (Kamioka et al., 1996) were detected from
recorded spontaneous activity by a slightly modified version of
the existing adaptive algorithm (Bakkum et al., 2013b). If Nspike

spikes occurred at all electrodes in total within less than T ms,
the period was defined as a burst. The threshold time, T, is
adaptively determined from the inter-spike interval (ISI) of each
culture. The distribution of ISI typically forms bimodal shapes;
an interval that takes the minima at the valley of the distribution
is chosen as T. Here, we set Nspike as 200 because the number
of recording channels was larger than the setup used in the
original paper. Additionally, post-hoc processing was conducted
for avoidance of burst fragmentation. The original method has
excellent sensitivity in detecting small sizes of bursts; however, it
separated a large burst into several small bursts in some cases.
Thus, if an interval between two consecutive bursts was less than
100ms, the two bursts were merged into a single burst.

Evaluation of Burst Peak Amplitude
Distributions
The maximum number of array-wide spikes in a 10-ms time bin
during a burst was defined as the peak amplitude of the burst.
Distribution of spontaneous burst peak amplitude was evaluated
to check diversity of bursts. The distribution of bursts in dense-
plated cultures showed fixed-peak-amplitude bursts or “super
bursts” at approximately 10DIV, while they showed bimodal
or long-tailed ones at approximately 20DIV (Wagenaar et al.,
2006b). Kurtosis of the distribution,

k =
E[(x− E[x])4]

E[(x− E[x])2]
2
− 3,

where x is the value obeying the distribution, and the chi-square
goodness-of-fit test for normal distribution, were used to evaluate
unimodality of the distributions.

Sub-Population Pattern Extraction by
Non-Negative Matrix Factorization (NMF)
The number of spikes occurred in 10-ms time bins were counted
at all electrodes and a 4096 × 60,000 matrix was obtained. The
matrix was defined as an observed matrix, Y . The width of
the bin was chosen on the basis of the time step used in the
previous report that observed multiple recursive spatiotemporal
patterns in synchronized bursts (Madhavan et al., 2007). It was
hypothesized that a part of the neurons in a network constitute
a co-active sub-population in the temporal resolution; the
sequential activation of such sub-neuronal populations generates
repeatable spatiotemporal activity of neurons as synchronized
bursts. In this model, the activities of sub-populations are

captured as reproducible spatial patterns; we refer to them as
sub-population patterns (SPPs).

It was assumed that each element of the observation matrix,
yi,t (i= 1, 2,. . ., 4096; t= 1, 2,. . ., 60000) , was sampled from
the Poisson process with parameter si,t, which indicates an
instantaneous firing rate,

p
(

yi,t
)

= Poisson
(

yi,t|si,t
)

.

It was additionally assumed that the firing rate of all 4096
electrodes at each bin was generated by a linear combination
of D pieces of SPPs, where D is the dimension of network
activity. Consequently, the instantaneous firing rate matrix, S
(4096×60,000 matrix), was represented as the product of an
SPP matrix, H (4096×D matrix), which contains an SPP at each
column, and a sub-population activation weight (SPAW) matrix,
W (D×60, 000 matrix), which contains the coefficients for linear
combination,

S = H×W.

Notably, the SPPs could have overlapping electrodes in this
model. The element of the observed matrix is the number of
spikes and is thus non-negative. We thus define elements of the
SPP matrix and SPAW matrix as also being non-negative. With
this assumption, the SPP and SPAWmatrices can be derived from
the observed matrix using NMF (Lee and Seung, 1999). NMF
with the generalized Kullback–Leibler divergence cost function
actually assumes the Poisson generative model described above.
Thus, we implemented the following optimization:

minimize DKL (Y|HW)

s.t.∀i,∀d,hi,d ≥ 0; ∀d,∀t,wd,t ≥ 0,

where generalized Kullback–Leibler divergence DKL between
matrices is:

DKL (A|B) =
∑

m,n

(

Am,nlog
Am,n

Bm,n
− Am,n + Bm,n

)

.

The algorithm proposed by Lee and Seung (2001) was adopted to
solve this problem. Open source MATLAB codes were used with
slight modification1. The number of SPPs, D, was empirically
determined to be 10 (d= 1, 2,. . ., 10). The initial values of the
matrix elements were randomly set, and the iteration loop was
implanted 500 times. The calculation was independently repeated
ten times. The result with the minimum cost function among all
trials was used for further analysis.

Burst Pattern Classification
Bursts were classified into several classes to identify multiple
recursive spatiotemporal patterns. In the present study, SPAWs
during a bursting period were used as a burst feature matrix
(BFM) to characterize the burst. First, however, time spans of
bursts were adjusted from detected burst periods to compare
spatiotemporal patterns. The initiation point of a burst was

1https://github.com/audiofilter/nmflib
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defined as the first bin where ten spikes or more were observed
in the whole network in a detected burst period.

All BFMs have the same length of time before the initiation
points (pre-initiation length) and the same length of time
after initiation pointsı (post-initiation length). Thus, the pre-
initiation length was determined to be 100ms to avoid inclusion
of previous bursts in a BFM. The post-initiation length was
adjusted depending on the cultures to include the burst with
the longest length from its initiation point. Then, BFMs were
classified by correlation-based hierarchical clustering with some
modifications from previous studies. Themaximumpeak of cross
correlation was defined as the similarity between BFM A and
BFM B to avoid the effects of the extraction of burst periods.

Corr(A,A) =

L
∑

l= 1

D
∑

d= 1

Ad,lAd,l

Similarity (A, B) = max
k

L
∑

l= 1

D
∑

d= 1

Ad,l

Corr (A,A)1/2

Bd,l−k

Corr (B,B)1/2

(

k = −L, L+ 1, . . .., 0, . . ., L−1, L
)

,

where L is the length of the BFMs, and zero is inserted into the
elements of BFMs if l − k< 0 or l− k > L. If BFM A and
BFM B are identical, Similarity (A,B)= 1. Similarities between
all pairs of the BFMs were calculated; the highest similar pair was
grouped. An averaged BFM of the group was then used as a new
BFM that represents the grouped bursts.

The above procedure was repeated until all BFMsweremerged
into one class group. Subsequently, the number of classes that
maximize the contrast function (Beggs and Plenz, 2004) was
determined as the optimal number of classes. However, if the
largest class occupied more than 90% of all bursts, the next peak
of the contrast function was selected as the number of the optimal
class because misdetected bursts could form a small fraction in
some cases.

Sub-Population Sequence Analysis
Sequences of sub-population activity between different classes of
bursts were compared. The comparison was conducted because
the sequences are assumed to be partially invariant regardless
of the classes of overall spatiotemporal patterns if there exists
stable sequential propagation between sub-populations. First, five
of the ten sub-populations with the largest peaks of SPAWs
in the averaged burst were selected. The other five small
SPAWs were excluded as burst-unrelated, or low contributing
sub-populations. Then, spatiotemporal patterns of bursts were
converted into a sequence of the timing when each sub-
population took the maximum SPAWs. One of the burst classes
with the largest summation of SPAWs was defined as a template
class. Moreover, the sub-population sequence calculated from
the averaged template-class bursts was defined as a template
sequence.

Here, partial similarity with respect to the template sequence
was evaluated for (i) sub-population sequences in template
classes, (ii) those in non-template classes, and (iii) randomized

sequences. The partial similarity was measured according to two
kinds of criteria, which were adopted with slight modification
from a previous study of memory replay in the hippocampus
(Lee and Wilson, 2002). The first criterion is the number
of times of permutation of a sub-population pair order to
perfectly match the template sequence. The proportion of sub-
population sequences that can match the template with the
same or less than N permutation was used as the index of
similarity, where N is a threshold value. The second criterion is
the reproducibility of the sub-population pair order (duplet) or
the sub-population trio order (triplet). A pair and a trio with
the highest order consistency in all synchronized bursts were
used as the duplet and triplet. The probability that the duplet
or triplet was replayed within sequences was used as the index
of similarity. Significance of partial similarity was statistically
tested according to the similarity indices of actual sub-population
sequences against those of randomized sequences. The number
of randomized sequences was identical to the number of total
(both the template class and non-template class) bursts. The
significance was evaluated by the Mann–Whitney U-test.

Sequence Randomization
In sub-population sequence analysis, as well as in burst class
consecutiveness analysis, randomized sequences were used to test
the statistical significance of actual data. Random real numbers
between [0 1] were sampled from the uniform distribution and
assigned to all elements of the sequence. The elements of the
sequence were then sorted according to the assigned numbers,
and this sorted sequence was compared with actual data.

Evaluation of Burst Class Consecutiveness
Consecutiveness in sequences of burst classes was evaluated by
probability of burst class transition. The probability that the
same burst class was generated successively in actual data was
compared with that of randomized burst-class sequences. One
hundred randomized sequences were generated against each
culture. The statistical significance of actual data was evaluated
for each data, thereby testing the null hypothesis that the median
of the probabilities in the randomized sequences is equal to the
probability of the actual sequence by the one-sample Wilcoxon
signed-rank test.

Evaluation of Periodical Similarity in Burst
Patterns
To evaluate the periodical appearance of spatiotemporal patterns
in synchronized bursts, Fisher’s g-statistic was used to test
the significance of periodicity (Wichert et al., 2003). Fisher’s
g-statistic is defined as:

g =
maxiI (ωi)

∑

[

Nsample/2
]

i= 1 I (ωi)

,

where I (ωi) is the periodogram of the signal to evaluate, Nsample

is the sample size of the signal, and ωi is a discrete frequency
of the signal, ωi = 2π i/Nsample

(

i =0, 1, 2, . . .,
[

Nsample/2
])

. The
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significance level of Fisher’s g-statistic was determined from the
distribution:

P(g >g∗) =

M
∑

m= 1

(−1)m−1
[

Nsample
2

]Cm(1−mg∗)([Nsample/2]−1)
,

where M is the largest integer less than 1/g∗. Mean burst
similarity according to (i) the difference of burst indices, and
(ii) the difference of burst appearance time, from which linear
components were subtracted, were used as I (ωi) in this study.
For avoiding misestimation from small samples, the differences
of burst indices with more than 20 pair samples and pairs of
bursts appeared within 400 s were used.

RESULTS

High-density CMOS MEAs captured spontaneous neuronal
activity from five cortical networks. Ten-minute recording was
performed in each culture in two developmental conditions:
in a developed period–−20.8 ± 2.2 (mean ± SD) DIV—and
in a juvenile period— 9.8 ± 0.8DIV—for comparison. The
number of available electrodes that detected action potentials
with amplitude larger than the threshold was typically around
1000 channels. Synchronized bursts of cortical neurons were
observed from the juvenile periods and stably persisted through
development (Kamioka et al., 1996). The bursts were detected
with the adaptive algorithm (Bakkum et al., 2013b); the average
number of detected bursts was 139 ± 68 (mean ± SD) in a
developed period, whereas it was 88± 54 in a juvenile period.

Consistent with a previous study (Wagenaar et al., 2006b),
juvenile cultures exhibited fixed-peak-amplitude bursts, while
developed cultures exhibited variable-peak-amplitude bursts.
Representative 30-s spontaneous activities of juvenile and
developed cultures are shown in Figures 1A–D. A juvenile
network shows homogeneous spatiotemporal spiking activity
(Figures 1A,B). In a developed one, however, bursts show

heterogeneous activity (Figures 1C,D). The distributions of burst
peak amplitude—themaximum number of array-wide spikes in a
10-ms time bin during a bursting period—show a single peak in a
juvenile culture (Figure 1E), but a bimodal shape in a developed
culture (Figure 1F). Figure 1G shows kurtosis of the burst-peak-
amplitude distributions. Kurtosis tends to drop and become apart
from zero with development, except one culture (Culture #3),
which was excluded from further analysis.

The chi-square goodness-of-fit test was performed for
testing whether the burst-peak-amplitude distributions
were represented with normal distribution. The developed-
period distributions disobeyed normal distribution (Culture
#1, p = 3.215×10−8, mean ± SD: 484.8 ± 225.1;
Culture #2, p = 4.656×10−10, mean ± SD: 250.7 ±

176.2; Culture #4, p= 0.005357, mean ± SD: 198.7 ± 88.1;
Culture #5, p = 3.775×10−16, mean ± SD: 1437 ± 631),
while juvenile-periods ones were characterized with normal
distributions (Culture #1, p= 0.7668, mean ± SD: 46.36 ± 6.92;
Culture #2, p= 0.5175, mean ± SD: 46.65 ± 7.34; Culture #4,
p= 0.9448, mean ± SD: 137.1 ± 41.5; Culture #5, p= 0.09618,
mean ± SD: 91.02 ± 18.23). These results demonstrate that
bursts in a developed period differ from those in a juvenile
period in terms of characteristic peak amplitude. We thus
hypothesize that the developed cultures recruit variable neuronal
sub-populations to produce different patterns.

Spontaneous spiking activity of the cultured neurons was
decomposed into SPPs and SPAWs. First, the frequency of
spikes occurring in 10-ms bins were calculated at each electrode.
Then, the NMF algorithm (Lee and Seung, 2001) decomposed a
4096-dimensional spike frequency matrix into ten SPPs, which
represented the spatial patterns of reproducibly co-activated
electrodes and ten-dimensional SPAWs. The number of spikes
detected at each electrode at each time bin was modeled as
generated by the Poisson process with a latent parameter, which
corresponded to a firing probability at the time. The Kullback–
Leibler divergence NMF hypothesizes that the latent parameters
of the Poisson process are a linear combination of the SPPs.

FIGURE 1 | Spontaneous spiking activities of cultured cortical neurons recorded on CMOS MEAs and distributions of burst peak amplitude. (A,B) A

representative raster plot (A) and the number of array-wide spikes (B) from 30 s of spontaneous activity recorded from a culture at 10DIV. (C,D) A raster plot (C) and

the number of array-wide spikes (D) from recorded data from a culture at 18DIV. (E) Histogram of burst peak amplitude (the maximum number of array-wide spikes in

10-ms bins during synchronized bursts) from the same recorded data shown in (A,B). (F) Histogram of burst peak amplitude from the same recorded data shown in

(C,D). (G) Kurtosis of the burst-peak-amplitude distribution from spontaneous activities at 9–11DIV and those at 18–24DIV.
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Non-monotonic repeating spatiotemporal patterns of
synchronized bursts were observed from dimension-reduced
activity obtained by NMF. The representative data in Figure 1A

are decomposed into the temporal pattern of SPAW (Figure 2A)
and SPPs (Figure 2B). The spatial distributions of co-activated
electrodes in the SPPs did not always localized; some sub-
populations had spatially localized activity patterns, while others
had rather dispersed distributions, as illustrated in Figure 2B.
Overall SPAW confirmed that synchronized burst patterns
were reproducible both spatially and temporally. This finding
is consistent with the previous study that demonstrated the
stability of synchronized burst patterns in dissociated cultures
(Eytan and Marom, 2006). However, the bursts in the first half
(before 15 s) and those in the second half in Figure 2A appear to
have different spatiotemporal patterns. For example, SPP #1 was
recruited in the second half, but not in the first. Nevertheless,

other SPPs seemed to be activated similarly in all synchronized
bursts.

Spatiotemporal patterns of bursts were hierarchically
clustered according to similarity of BFM and classified into
several classes, as shown in the dendrogram in Figure 2C.
The similarity matrix of bursts in Figure 2D, where indices of
bursts are sorted according to the dendrogram in Figure 2C,
suggests that temporal activation patterns of sub-populations
in bursts are repeated. The number of classes was chosen to
maximize the contrast function (Figure 2E) (Beggs and Plenz,
2004). The horizontal dotted line across the dendrogram in
Figure 2C indicates the selected level of cut for the classes.
Mean trajectories of SPAWs for each class are then illustrated
in Figures 2F,G. Remarkably, temporal patterns of SPAWs in
different classes seemed to be partially similar; spatiotemporal
patterns in both classes were likely characterized as having

FIGURE 2 | Decomposition of high-dimensional neuronal activity and classification of synchronized burst patterns. (A) Low-dimensional activity of the

neuronal network represented with sub-population activation weights (SPAWs). The same period of Figures 1C,D is illustrated. (B) Sub-population patterns (SPPs) of

spontaneous activity of cultured cortical neurons obtained with NMF. The SPPs are shown as corresponding to recording electrodes configuration. (C) A dendrogram

represents a process of hierarchical grouping of BFMs. The dotted horizontal line indicates a selected level of the grouping. (D) A similarity matrix of sub-population

activation weights during synchronized bursts. (E) A contrast function for the dendrogram shown in (C). Asterisk indicates a maximum peak of the function. (F,G)

Mean SPAWs within classified burst classes.
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common sub-populations with partially identical temporal
orders. This suggests stable unidirectional propagation of sub-
population across different classes. Such a sequential structure
of neurons in spontaneous synchronized activity was suggested
in previous reports (Eytan and Marom, 2006; Ham et al., 2008;
Raichman and Ben-Jacob, 2008).

To evaluate partial similarity of spatiotemporal patterns
among different classes, the sequences of sub-populations
were compared. Figure 3A illustrates a schematic procedure
of the analysis. Five out of ten sub-populations were selected
according to the largest peaks of SPAWs in all averaged BFM
to exclude effects from burst-unrelated or burst-less-related sub
populations. Then, each burst was represented as a sequence
of selected sub-populations. The burst class with the largest
total SPAWs was defined as a template class; the sub-population

sequence of averaged bursts in the template class was defined as a
template sequence.

Figure 3B shows the probability that a sequence had partial
similarity with the template sequence in the mean of pair
permutation times. The threshold was set to two times here.
Obviously, sequences in the template class had a higher
probability of having partial similarity with the template
sequence compared with randomly generated sequences (p =

0.02857 < 0.05). However, sequences in the non-template
classes also showed higher probability than random sequences
(p = 0.02857 < 0.05), although the median probability
was slightly smaller than that of the template class. The
findings in the permutation analysis were reconfirmed in the
appearance probability of the same duplet/triplet order as shown
in Figures 3C,D (p = 0.02857 < 0.05 in all comparisons). Thus,

FIGURE 3 | Similarity in partial sequence of sub-population activation between synchronized burst classes. (A) Illustration of the procedure to evaluate

partial similarity between sub-population sequences of bursts. SPAWs during a burst were converted into a sequence of their peaks. Sub-population sequences of

bursts were compared with the template sequence. Permutation times for matching refers to the way in which many pair permutations are required to match the

template sequence. Duplet/triplet order matching indicates whether the order of two/three sub-populations matches the template sequence. (B) Probability that

permutation times for matching is two or less. (C,D) Probability that the duplet (C) or the triplet (D) order matched the template. The most reproduced duplet or triplet

was selected for analysis. The Mann–Whitney U-test. *p < 0.05.
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different spatiotemporal patterns in synchronized bursts were
likely to have partially similar sequences of sub-populations.

Next, temporal consecutiveness of these spatiotemporal
patterns was investigated. If spatiotemporal patterns in
synchronized bursts are an active representation of hidden
states of a network (Buonomano and Maass, 2009), temporally
neighboring bursts should exhibit similar patterns. Figure 4A
shows when each class of bursts appeared through recording,
clearly demonstrating that the same class of bursts appeared
consecutively. The probability of remaining in the same classes
of bursts was significantly higher in the experimental data than
in the simulation data with randomized orders of burst classes in
all the test dishes (Figures 4B,C; Culture #1: p= 1.578×10−30;
Culture #2: p= 9.466×10−30; Culture #4: 2.157×10−22; Culture
#5: p= 1.578×10−30). In other words, a network of cortical
neurons tends to maintain similar burst patterns for a certain
period.

The consecutiveness in spatiotemporal patterns was also
supported by the unsorted similarity matrix of bursts shown in
Figure 5A. Similar clusters along the diagonal in the similarity
matrix indicate that similar spatiotemporal patterns appeared
in succession. Figure 5B illustrates the relationship between
similarity of spatiotemporal patterns and the difference in
burst appearance indices. Interestingly, not only did neighbor
bursts share highly similar spatiotemporal patterns, but also
the similar pairs of bursts seemed to appear periodically.
From this observation, it was postulated that the combination
of consecutiveness and periodicity can account for the burst
similarity depending on the difference of burst appearance
indices.

After subtracting the linear regression line, normalized
autocorrelation of the similarity function (Figure 5B) was
computed to visualize periodicity; then, clear periodicity was
found in the autocorrelogram (Figure 5C). Fisher’s g-statistic
was calculated from the periodogram of the residual similarity
function to evaluate the significance level of the largest
component of the periodicity (Figure 5D; Wichert et al., 2003);
Figure 5D indicates that similarity fluctuation in Figure 5B

had 3 cycles, corresponding to 64.0 length of cycle. All
cultures showed significant (p < 0.001) periodicity (Culture
#1, p= 1.568×10−43; Culture #2, p = 1.222×10−5; Culture
#4, p= 2.270×10−3; Culture #5, p= 4.829×10−7), while the
length of the cycle varied between cultures (Culture #1, 64.0;
Culture #2, 27.7; Culture #4, 66.0; Culture #5, 38.6). The same
analysis was tested against the relationship between similarity of
spatiotemporal patterns and the difference in their appearance
time (Figures 5E–G). A mean interval of 64 bursts, i.e., a
length of the cycle in Figure 5B, corresponds to 195.1 (±26.0,
SD) s, which appeared as a peak in Figures 5E,F. All cultures
except one showed significant (p < 0.001) periodicity (Culture
#1, p= 3.492×10−8; Culture #2, p= 1.483×10−8; Culture #4,
p= 0.1338; Culture #5, p= 3.492×10−8). Frequency of the
similarity functions ranged between 0.01 and 0.02Hz (Culture #1,
0.01Hz; Culture #2, 0.175Hz; Culture #5, 0.01Hz).

Figure 5B indicates that spatiotemporal patterns may not
be homogeneous during a period of the same class bursts. To
address this possibility, similarity of bursts was quantified in
the first two bursts in a given period (Start-Start), in the burst
pairs at the start and end of a given period (Start-End), and in
the successive burst pair at the transition of the period (Class

FIGURE 4 | Evaluation of consecutiveness in appearance of burst spatiotemporal patterns classes. (A) (Top) Periods in which each class of bursts

appeared. (Bottom) Number of array-wide spikes through the whole recording. (B) Schematic illustration of the transition between multiple burst classes. The

probability of “remaining” was evaluated. (C) Probability that the same class of bursts appeared in succession. Randomized data was generated by randomly shuffling

original data. The red lines in randomized data indicate the median of the probabilities. The blue boxes are ranges from the 25th percentiles to the 75th percentiles.

The whiskers are the ranges of the all probabilities excluding outliers (the red crosses). One-sample Wilcoxon signed-rank test. ***p < 0.001.
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FIGURE 5 | Consecutive and periodic appearance of similar spatiotemporal patterns of bursts. (A) Similarity matrix of bursts. Bursts are listed in temporal

order. (B) Relationship between similarity and the difference of the burst indices in temporal order. The red line indicates mean similarity against the difference of burst

indices in temporal order. The error bars are SD. The thick black line is a linear regression line to the mean similarity. (C) Autocorrelation of the mean similarity that

subtracted the regression line shown in (B). (D) Periodogram of the mean similarity that subtracted the regression line. Asterisk indicates a maximum peak. The

significance level of the maximum peak was tested using Fisher’s g-statistic. (E–G), The same analysis as shown in (B–D), respectively, about relationship between

similarity and the difference of burst appearance time.

A-Class Ā) (Figure 6A). Consequently, the Start pair exhibited
slightly but significantly higher similarity than the Start-End pair
(p = 0.003), while both the Start pair and the Start-End
pair exhibited significantly higher similarity than the Class A-
Class Ā pair (p= 6.383×10−7, p = 3.858 × 10−6, respectively)
(Figure 6B). Thus, spatiotemporal patterns of the same burst
class gradually change with time, yet this within-class fluctuation
is much smaller than the abrupt change at the transition of the
burst classes.

Consequently, these results demonstrate that spatiotemporal
patterns of bursts were not stochastically generated; rather,
they were consecutively and periodically generated. Our results
support hypothetical ideas that spatiotemporal patterns of bursts
depend on hidden internal states of the network (Buonomano
and Maass, 2009), and that the internal states spontaneously
and recursively fluctuate between multiple “metastable” states
(Durstewitz and Deco, 2007; Mazzucato et al., 2015).

DISCUSSION

By combining high-resolutionmeasurement with a 4096-channel
CMOS MEA and dimensionality reduction with NMF, we
investigated synchronized bursts of dissociated cortical neurons
at approximately 3 weeks in vitro. We found that bursts had
a repertoire of repeating spatiotemporal patterns, and different

patterns shared a partially similar sequence of sub-population.
These findings support the idea of propagation of neuronal sub-
populations during synchronized activity (Figure 7A; Abeles,
1991; Ikegaya et al., 2004; Eytan andMarom, 2006). Furthermore,
we found that similar spatiotemporal patterns tended to
appear successively and periodically, suggesting state-dependent
fluctuation of propagation (Figure 7B), which is overlooked
in existing literature. Thus, such a state-dependent property
within the sequential structure is a plausible neural substrate for
performing a repertoire of stable patterns during synchronized
activity.

Methodological Significances
CMOS MEA is an emerging platform for capturing
electrophysiological activity of neuronal networks. It is
analogous to a movie with a spatial resolution at a cellular
level and temporal resolution at a single action potential
(Berdondini et al., 2009). Only a small population of neurons
exhibit high activity, which plausibly play crucial roles in the
network (Wohrer et al., 2013); overlooking these neurons may
lead to misinterpretation of results in our experiments. Thus,
to avoid such sampling bias, cellular-level spatial resolution is
required in the measurement (Panas et al., 2015). Furthermore,
because typical burst activities of our interests last only for a
few 100ms (Eytan and Marom, 2006), the temporal resolution
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FIGURE 6 | Variation of spatiotemporal patterns during a period of the same class burst. (A) Similarity of the first two bursts in a given period (Start-Start

pair), that of the burst pair at the start and end of a given period (Start-End pair) and that of the successive burst pair at the transition of the period (Class A-Class Ā

pair) were evaluated. (B) Similarity of Start-Start pair, Start-End pair and Class A-Class Ā pair. The red lines indicate the median of the similarities. The blue boxes are

ranges from the 25th percentiles to the 75th percentiles. The whiskers are the ranges of the all similarity excluding outliers (the red crosses). Wilcoxon signed-rank

test. **p < 0.01. ***p < 0.001.

FIGURE 7 | Schematic illustration of the hypothesis. (A) Stable spatiotemporal patterns observed in synchronized spontaneous activity are generated by

sequential activation of neuronal sub-population. (B) Such sequential activation of sub-population is state-dependent, whereby multiple metastable states can be

defined as a finite continuous period.

should be on the order of ms to appropriately characterize
the pattern in bursts. CMOS MEA is the only measurement
device available that meets both of these spatial and temporal
requirements.

The dimensions of CMOS MEA data are inherently much
higher than those of the functional SPPs (Baruchi and Ben-Jacob,
2004) of our interests. Appropriate dimensionality reduction
is therefore helpful in identifying functional patterns. In the
present study, we employed NMF to identify stably co-activated
neuronal sub-populations. Originally, NMF was developed to
extract characteristic parts, such as an eye, nose, andmouth, from

facial pictures (Lee and Seung, 1999). The practical advantages
of NMF are that there is no need for pre-processing (Peyrache
et al., 2009; Lopes-dos-Santos et al., 2013), and that non-negative
components extracted from the spiking activity patterns are
intuitively interpretable, just like the facial parts in facial pictures
(Lee and Seung, 1999).

Repeating Spatiotemporal Patterns in
Synchronized Spontaneous Activity
Consistent with the present results, previous studies showed that
cortical cultures have a repertoire of repeating spatiotemporal
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patterns (Segev et al., 2004; Madhavan et al., 2007; Rolston
et al., 2007). A bimodal burst-peak-amplitude distribution
and bimodal spatiotemporal patterns of bursts were typically
observed in our experiments. In terms of burst peak amplitude,
developed cultures (around 21DIV) exhibited a bimodal
distribution, whereas young cultures showed a uni-modal
distribution (Eytan and Marom, 2006; Wagenaar et al.,
2006b; Madhavan et al., 2007). Similarity-based clustering also
demonstrated that synchronized bursts could be classified into
a few patterns (Segev et al., 2004); i.e., small and large bursts
(Madhavan et al., 2007). Our results extend these findings in that
both large and small bursts share similar activation sequences of
sub-populations.

State-Dependency and Spatiotemporal
Patterns
Our results demonstrate the spontaneous itinerancy between
different classes of spatiotemporal activity, suggesting that
metastable states exist in innately isolated neuronal networks
in vitro. Some intermediate states may also exist because
similarity of burst patterns fluctuated continuously within a given
state. Similar spontaneous transitions between metastable states
were recently reported in the gustatory cortex in vivo (Mazzucato
et al., 2015). Cortical activities were also characterized as two
extreme states, i.e., desynchronized and synchronized states, with
continuum of intermediate states (Harris and Thiele, 2011).
These metastable states have a time scale of seconds or minutes.
Thus, they are different from previously described metastable
states in dissociated networks through development, which have
a time scale of weeks or months and transit only unidirectionally
(Pu et al., 2013).

A stable activity state of a neuronal network has been often
mentioned as an attractor (Cossart et al., 2003; Wagenaar
et al., 2006a). Classically, an attractor in the neural network
was postulated as a memory of specific information (Hopfield,
1982). The classical attractor networks, however, are biologically
implausible because the number of attractors is limited compared
to the capacity of information (Maass et al., 2002) because the
converging time into attractors (Maass et al., 2002; Rabinovich
et al., 2008) and the effect of spontaneous activity (Kurikawa and
Kaneko, 2015) are not consistent with experimental observation.
Therefore, according to recent studies, it is more biologically
plausible that transient metastable dynamics dominate neuronal
activity (Durstewitz and Deco, 2007; Rabinovich et al., 2008).

Usually, repeating spatiotemporal activity is apprehended
only as a visible sign of a metastable state (Haldeman and
Beggs, 2005; Mazzucato et al., 2015) during which cellular and
synaptic properties—e.g., the effect of short-term plasticity, slow
inhibitory post-synaptic potentials, NMDA channel kinetics,
etc.—are lasting, forming a so-called “hidden state” of neuronal
networks (Buonomano and Maass, 2009). Such hidden states
could account for consecutive appearances of similar bursts and
can be considered an internal memory of a neuronal network.
This internal memory is likely stronger than the short-term
memory of external events, which is easily broken by bursts;
i.e., internal memory (Dranias et al., 2013, 2015; Ju et al., 2015).

Inhibitory interneurons may significantly contribute to selection
of spatiotemporal patterns (Sasaki et al., 2014), depending on
such hidden states.

In addition, our results demonstrate that spontaneous bursts
may induce state transitions. Similarly, co-activation of some
neurons trigger a state transition in the gustatory cortex
(Mazzucato et al., 2015). These findings suggest that the hidden
states in a neuronal network dominate spatiotemporal patterns of
spontaneous activities, which in turn modulate the hidden states.
Such an interaction between the hidden states and spontaneous
bursts is a possible underlying mechanism of the metastable
activity in neuronal networks.

Sequential Propagation Structures during
Synchrony
Our results imply that multiple spatiotemporal patterns are
generated by a common stable propagation structure in the
network (Raichman and Ben-Jacob, 2008). Signal transmission
within such a stable structure might therefore depend on the
hidden states. This conceptual framework of sequential structure
is compatible with previous findings of a small group of “leader
neurons,” which activate at burst initiation, and hierarchical
structures in the dissociated neuronal networks (Eytan and
Marom, 2006; Ham et al., 2008). Our results are also consistent
with in vivo experiments in that activity bursts across states
have similar spatiotemporal patterns (Luczak et al., 2013). Taken
altogether, such a modified model of synfire chain with state-
dependent fluctuation can account for both stability (Eytan and
Marom, 2006; Panas et al., 2015) and multiple pattern generation
(Segev et al., 2004; Madhavan et al., 2007; Rolston et al., 2007) in
synchronized activities.

Existing models mostly overlooked state-dependent property
to account for the variety of spatiotemporal patterns in
the neuronal network. For example, a branching process is
one of the convincing models (Beggs and Plenz, 2003). It
demonstrates that cortical networks in vitro have metastable
states, and that the critical branching process maximizes the
number of metastable states (Haldeman and Beggs, 2005).
Fixed propagation probabilities between neurons are postulated
in these models, and spatiotemporal patterns are generated
stochastically. However, this model is inconsistent with our
finding that each spatiotemporal pattern does not randomly
emerge; instead, it is repeated in a temporally consecutive
manner. Further modeling with state-dependent properties
would be one of the future directions.

Spontaneous Spatiotemporal Patterns
In vivo
The repeating spatiotemporal patterns in spontaneous activities
have been observed not only in vitro (Beggs and Plenz,
2004; Ikegaya et al., 2004), but also in vivo (Luczak et al.,
2007). Neuronal networks may transmit information as
“neuronal packets” (Luczak et al., 2013, 2015), i.e., activity
of neuronal sub-population, generating such stable patterns,
which is consistent with our results. Memory replay in the
hippocampus is extensively studied as a possible mechanism
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of memory consolidation during sleep (Lee and Wilson, 2002)
and memory retrieval at awaking immobility (Takahashi,
2015; Villette et al., 2015). In the sensory cortex, Luczak
et al. found similarity between spontaneous patterns and
evoked ones. They hypothesized that a repertoire of evoked
responses is a fraction of a spontaneous repertoire (Luczak
et al., 2009). Spontaneous activity might be considered
a prior distribution of sensory inputs (Berkes et al.,
2011).

Nevertheless, in the network that experiences no external
inputs, we demonstrated that repeating spatiotemporal patterns
emerge in a state-dependent manner. Such network could have
similar functional structures during spontaneous activity and
stimulus-evoked activity (Pirino et al., 2015). Future extensive
studies in both experimental and theoretical approaches are

required to elucidate the functions and mechanisms of these
spontaneous properties.
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