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The hypothesis that brain organization is based on mechanisms of metastable

synchronization in neural assemblies has been popularized during the last decades

of neuroscientific research. Nevertheless, the role of body and environment for

understanding the functioning of metastable assemblies is frequently dismissed. The

main goal of this paper is to investigate the contribution of sensorimotor coupling to

neural and behavioral metastability using a minimal computational model of plastic neural

ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis

is that, under some conditions, themetastability of the system is not restricted to the brain

but extends to the system composed by the interaction of brain, body and environment.

We test this idea, comparing an agent in continuous interaction with its environment

in a task demanding behavioral flexibility with an equivalent model from the point of

view of “internalist neuroscience.” A statistical characterization of our model and tools

from information theory allow us to show how (1) the bidirectional coupling between

agent and environment brings the system closer to a regime of criticality and triggers the

emergence of additional metastable states which are not found in the brain in isolation

but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity

of the agent is fundamental to sustain open structures in the neural controller of the agent

flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor

metastable states, and (3) these extended metastable states emerge when the agent

generates an asymmetrical circular loop of causal interaction with its environment, in

which the agent responds to variability of the environment at fast timescales while acting

over the environment at slow timescales, suggesting the constitution of the agent as

an autonomous entity actively modulating its sensorimotor coupling with the world. We

conclude with a reflection about how our results contribute in a more general way to

current progress in neuroscientific research.

Keywords: neural assemblies, metastability, criticality, synaptic plasticity, embodied cognition, sensorimotor
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1. INTRODUCTION

Generally, neurodynamic approaches have focused in
understanding what kind of neural organization is necessary
to cope with the requirements of an external world. Assuming
that the brain is subject to demanding conditions from
its environment, the challenge is to explain what type of
neural computation or what form of organization of neural
spatiotemporal patterns might be capable of satisfying the
requirements for adaptive, conscious, cognitive activity. This
has led to progress in the definition of a framework able to
account for the brain’s ability to display a rich set of meaningful
behaviors. Nowadays, a popular view in neuroscience holds
that the human brain is structured into a large number of
areas in which information is highly segregated into local
clusters and, at the same time, functionally integrated (Damasio,
1989; Varela, 1995; Tononi and Edelman, 1998). One of the
most plausible mechanisms hypothesized to be behind this
equilibrium between integration and segregation is metastable
phase locking between neural assemblies over multiple frequency
bands. This mechanism has been proposed to explain how the
brain flexibly enters and exits coherent spatiotemporal patterns
of neural activity (Kelso, 1995; Varela et al., 2001; Le Van Quyen,
2011). Subsequently, the notion of metastable neural assemblies
as building blocks of brain organization has become relatively
widespread in large-scale neuroscience studies (e.g., Werner,
2007a; Buzsáki, 2010; Edelman et al., 2011; Ward, 2011).

Nevertheless, when analysing and modeling brain
organization, a crucial aspect of cognitive dynamics is frequently
neglected: the sensorimotor coordination that continuously
feeds back into brain dynamics (from saccadic eye movements
to proprioception; from perception to action; O’Regan and
Noë, 2001; Aguilera et al., 2013; Engel et al., 2013). Mental
processes such as perception, emotion or intention are not
limited to neural processes inside the brain, but produced
through a flexible integration of the dynamics of brain, body and
environment in a distributed manner. Hypotheses addressing
this issue propose that brain organization consists in a plastic
system of open loops developed in the process of life and
closed to full functional cycles in every interaction with the
environment (Fuchs, 2011), being the role of the central nervous
system to transform and diversify these loops. In addition, it
has been proposed that the behavior neural tissue in isolation
might be restricted to little more than exhibiting spontaneous
synchronization and other behaviors common to nonlinear
dynamical systems, and the brain may operate as a metastable
circuit breaker flexibly switching between different dynamic
fields of agent-environment engagement (Dotov, 2014).

Furthermore, enactive approaches to neurodynamics have
proposed that the formation and dissolution of neural assemblies
in the brainmust be embedded in sensorimotor regulatory cycles,
producing the emergence of global organism-environment
processes, which in turn affect their constituent elements
(Thompson and Varela, 2001; Varela and Thompson, 2003;
Di Paolo et al., 2016). One of the central contributions to this
issue has been the notion of an operational closure of the nervous
system (Varela, 1997; Di Paolo and Thompson, 2014), illustrated

in Figure 1. Operational closure implies a circular regulation
in which the coordinated activity of the neural system gives
rise to the emergence of neural ensembles (or “cell assemblies”;
Hebb, 1952), driving the behavior of the organism, which in turn
generates a sensory input into the neural system closing a double
regulatory loop. According to Francisco Varela,

The nervous system is organized by the operational closure of a

network of reciprocally related modular subnetworks giving rise

to ensembles of coherent activity such that: (i) they continuously

mediate invariant patterns of sensorymotor correlation of the

sensory and effector surfaces; (ii) give rise to a behavior for

the total organism as a mobile unit in space. The operational

closure of the nervous system then brings forth a specific

mode of coherence, which is embedded in the organism. This

coherence is a cognitive self: a unit of perception/motion in space,

sensorymotor invariances mediated through the interneuron

network (Varela, 1992, p.10).

Nevertheless, there are a lack of good models or precise
characterizations of the operational closure of the nervous
systems and the kind of interaction that takes place between
neural, bodily and sensorimotor cycles (Barandiaran, 2016).
Thus, it is far from clear how to characterize this sensorimotor
specific form of coherence and how is it constitutive of cognitive
activity. Clarifying this issue is of fundamental importance
for embodied neurodynamic views in order to propose solid
explanatory alternatives to internalist perspectives of brain
organization.

In the case of metastability in cognitive processes, we know
that metastable behavior is not restricted to the brain, but
also extends to behavioral patterns (Kelso, 1995; Kelso et al.,
1995). Nevertheless it is not clear what the relation is between
behavioral metastability and underlying neural metastability.
Consider, for example, the case of perceiving an ambiguous
image (e.g., an image perceived either as a face or as meaningless

FIGURE 1 | Organizational closure of the nervous system. Adapted from

Varela (1997).
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shapes, or a Necker cube which can be alternatively seen
as oriented in two different positions) in which perception
can alternatively and spontaneously switch from one mode to
another. If we take a look at the brain we can observe the
emergence of transient assemblies of neural synchronization
when one mode of perception arises (Rodriguez et al., 1999), and
at the same time if we were to analyse the switching of perceptive
patterns the subject is engaged in we can observe signatures of
metastable behavior (Kelso et al., 1995, Section 3). This raises
questions around whether long term behavioral metastability is
the product of a direct mapping of intrinsic metastable states
of the brain into behavior or, conversely, metastability of both
the brain and behavior is a product of the whole brain-body-
environment system coupled by sensorimotor processes (the
interaction of neural dynamics, retinal activation, patterns of
saccadic eye movements, etc.). These are difficult questions,
requiring comparison between processes taking place at different
scales (neurodynamic, sensorimotor, conductual, etc.) that pose
important experimental difficulties. In the past, evolutionary
robotics has been a highly productive tool for finding non-
intuitive solutions to complex problems and understanding
many-to-many relations between different scales of behavior
(Nolfi and Floreano, 2000; Harvey et al., 2005). In the same
tradition, in this paper we present an artificially evolved agent to
explore the relation between neural and behavioral metastability
in a simple bistable task. We choose a phototactic task1 in which
the agent alternatively develops a preference between two types
of light (e.g., two different colors) as an example of a simple task
involving metastable neural and behavioral dynamics.

Our hypothesis is that the slow modulation of synaptic
plasticity over the sensorimotor coupling increases and sustains
the metastability of neuro-behavioral integrated states in a
manner that cannot be reduced to the dynamics of the brain
in isolation, nor the brain receiving a structured input. These
integrated metastable states are associated with specific modes of
coherence in neural structures when they are engaged in bodily
and environmental processes, as the brain-body-environment
system becomes an operationally closed entity. The specificity
of these modes of coherence is hypothesized to be related to
the particularities of autonomous agency and the operational
closure of the nervous system, i.e., the characteristics that
allow us to describe an agent as an individual entity albeit
in continuous interaction with its environment: such as the
self-constitution of the agent as an entity or an asymmetrical
interaction with its world in which it actively modulates its own
sensorimotor coupling (see Barandiaran et al., 2009). Here, we
propose a minimalistic approach to address some of the difficult

1Phototaxis implies climbing a light gradient. This task has been chosen because

gradient climbing is a minimal task, which is widespread in nature. Many small

scale adaptive behavior occurs along chemical gradients, and the microscopic

world is full of gradients (like thermal gradients or light gradients but mostly

chemical gradients). The adaptive behavior of small animals (e.g., C. elegans)

and individual motile cells (e.g., bacteria but also animal cells migrating during

development) is mostly a gradient-related adaptive behavior. Navigating smell or

heat gradients are also stereotypical adaptive tasks for higher animals. Moreover

many instances of higher-level behavior can also be interpreted as abstract gradient

climbing (e.g., a human can move up a gradient of social popularity or economic

wealth involving complex strategic decisions).

questions arising from these ideas. We introduce a robotic model
equipped with just three oscillatory units and synaptic plasticity
in their connections. Because of its simplicity, this approach
allows us to tackle the problem with a system about which we
have complete knowledge and that is tractable using dynamical
systems techniques of analysis.

In the following sections we first introduce the robotic agent
and an artificial evolution process to obtain a model displaying
metastable behavioral patterns in a bistable phototactic task.
Then, we describe our methodology for analysing the role of
the sensorimotor loop in the generation of metastable behavioral
patterns, combining (1) the comparison of a situated agent
interacting directly with its environment and a passively-coupled
agent which is fed a signal identical to the one received by
the situated agent, but it cannot influence its environment,
and (2) a statistical description of the states of the agent and
the environment together with the use of different tools from
information theory to quantify the metastability in its behavior
and the interaction between different scales of description
of the robot (oscillatory activity, synaptic plasticity and
behavioral patterns). In this framework we perform experiments
showing that (1) the bidirectional coupling between agent and
environment brings the system closer to a regime of criticality
and triggers the emergence of additional metastable states, which
are not found in the brain in isolation but extended to the whole
system of sensorimotor interaction, (2) the synaptic plasticity
of the agent is key to sustain open structures in the neural
controller of the agent flexibly engaging and disengaging different
behavioral patterns that sustain sensorimotor metastable states,
and (3) this creates an asymmetrical circular loop of interaction
between agent and environment, in which the agent is able to
respond to variability of the environment at small timescales,
while acting over the environment at large timescales. We
conclude that metastability of neural dynamics can be extended
to sensorimotor metastable states and that, in our model, this
takes place when the agent establishes a specific circular relation
with its environment, suggesting that the extension of metastable
dynamics from the brain to interactive behavioral patterns is
connected with specific forms of engagement with the world
characteristic in autonomous agency.

2. METHODS

As we proposed above, our goal is to explore the relation between
metastability in brain dynamics and behavior in a robotic model
in order to test the hypothesis that some behavioral metastable
states cannot be reduced to brain dynamics alone and are instead
the product of an integration of brain, bodily and environmental
dynamics. In order to do this, we design a model with the ability
of presenting flexibility in both neural and behavioral patterns
(which will be evolved using a genetic algorithm in order to
reduce the constraints imposed onto the model) and we propose
a framework of analysis allowing us to characterize metastable
states and relations between components of the model, as well as
a comparison of the behavior of the brain with and without the
effect of the sensorimotor loop in equivalent conditions.
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2.1. Model of a Neurodynamic Controller
with Relational Homeostasis Embedded in
a Robotic Agent
We propose a model of homeostatic adaptation inspired by
previous work in evolutionary robotics (Iizuka and Di Paolo,
2007; Di Paolo and Iizuka, 2008), defining an adaptive mobile
agent controlled by a plastic oscillatory neural system. This
model is not intended to represent the activity of individual
neurons but, more generally, to capture the dynamics of neural
oscillations at a mesoscopic level, where integration mechanisms
are hypothesized to be based on phase synchronization processes
between neuronal groups (Varela et al., 2001), thus representing
large-scale synchronization of brain regions that are anatomically
far apart. Since the model is described in detail in Aguilera et al.
(2015), we provide here a brief description.

The agent incorporates a neural controller defined as a fully
connected Kuramoto network (Acebrón et al., 2005) with three
units defined as:

θ̇i = ωi + Ii +

N∑

j=1

Kij · sin(θj − θi) (1)

where θi represents the phase of oscillator i, ωi is its natural
frequency (range [0, 5]), Kij is the coupling strength between
oscillators i and j, and Ii represents the sensory inputs. The
behavior of the neural controller is modulated by plastic
mechanisms preserving phase relational invariances of the
system, defined as:

δK̇ij = ηij · p(8i − 80
i ) · sin((θj − θi)− 80

i ) (2)

where δKij are the connection weights, ηij is the rate of plastic
change (range [0, 0.9]) of each connection, and 8 represents
the phase difference of oscillator i with respect to the sum of
the oscillators connected to it weighted by the strength of their
connections:

8i = 6 (

N∑

j=1

Kij · e
i(θj−θi)) (3)

where 6 denotes the phase of a complex value and i is the
imaginary unit. 80

i (range [−π
2 , π

2 ]) stands for the preferred
phase relation of the oscillatory node. Finally, the function
p(x) determines the level of plastic change for all incoming
weights of a node, which is activated when the value of
8i is far from 80

i (Figure 2B). When plastic changes take
place, connection strengths change following a continuous non-
monotonic function Kij = α · F(δKij) (Figure 2C) designed to
explore the full configuration space2, where α is a constant (range
[0, 5]) that regulates the coupling strength.

In short, the model works under the assumption that large-
scale neural oscillatory components try to maintain a preferred
phase relation with respect to other oscillatory components by
means of plastically regulating the strength of their connectivity.
The model is designed to present the possibility of metastable
behavior at different states. Kuramoto oscillator networks can
display metastable states when the connection strengths are
below a critical point of complete synchronization. Also, we
defined the evolution of synaptic plasticity in such a way that the

2This continuous, non-monotonic change of synaptic strengths was introduced by

Iizuka and Di Paolo (2008) as a simple mechanism to avoid weight saturation of

Hebbian-like rules. This way, eschewing biological plausibility allows us to make

sure that the robots is able to explore its whole range of weight configurations.

A B

C

FIGURE 2 | The robotic agent with three plastic oscillatory units. (A) Schema of the agent, the environment, sensors and motors, and the neural controller. (B)

Plastic function p(8i − 80
i
), in which plasticity depends on the difference between the weighted phase relation 8i of the neural oscillator i with respect to other

oscillators and the preferred weighted phase relation 80
i
. (C) Mapping function F (δKij ) which transforms weight values δKij into the actual value of coupling strengths

between oscillators Kij . Reproduced from Aguilera et al. (2015).
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agent can potentially explore all different available possibilities of
engagement with the environment, and furthermore be able to
exploit forms of behavioral metastability.

The agent is modeled as a simulated wheeled robot with a
circular body of radius 4 and two diametrically opposed motors
(Figure 2A), driving the agent backwards and forwards. The
agent’s mass is assumed to be small enough for inertial resistance
to be negligible, thus its translational speed is calculated as the
vectorial average of the motor velocities, and the angular speed
as the difference of the motor velocities divided by the body
diameter. Motor outputs are calculated from the phase relation
83 of the effector oscillator, with a gain parameter of value 2:

Mr = 2 · sin (83 − 8r)
Ml = 2 · sin (83 − 8l)

(4)

where 8r and 8l (range [0, 2π]) are bias terms which map the
motor output into the actual motor activation.

The agent has two pairs of sensors (right and left) for each
of the different light sources A and B. Each sensor points to a
direction at π/3 radians from the forward direction. Light A
sensors are connected to oscillator 1 and light B sensors are
connected to oscillator 2. The effects of both the angle and the
distance on the sensor activation are represented by the following
function:

IDX =

{
sDX ·0.5·(1+cos(αDX))

1+ea·(dDX−b) , |αDX| ≤ π/2

0, |αDX| > π/2
(5)

whereX can represent either lightA or B,D stands for either right
or left sensor, αDX is the angle of sensor DX to light X, dDX is the
distance between sensor DX and light X, and a and b have the
arbitrary values of 0.03 and 100 respectively. The light intensity
received at each sensor is multiplied by a gain parameter sDX
(range [−8, 8]), feeding the resulting value to the corresponding
oscillator’s input Ii. A full schema of the robot is represented in
Figure 2A.

All parameter values (except where otherwise specified)
are fixed by a genetic algorithm within the indicated range.
A population of 20 agents is evolved using a rank-based
genetic algorithm with elitism. Each of the agent parameters
ωi, sDX, α, ηij,8r,8l and 80

i is encoded into a 5 bits string
representing real numbers uniformly distributed within the
specified range. For each generation, the best 4 agents (20% of
the population) pass to the next generation without change. For
the remaining slots, pairs of individuals are selected for crossover
with a probability proportional to their fitness value, and new
individuals are created mixing their genes (bit series) by adding a
mutation probability of 3% for each gene.

The agents are evolved for displaying a metastable behavior
in which the agent has to develop switching preferences toward
two different types of light. That is, there is an environment
with two types of light (e.g., two colors) and we want the agent
to develop a preference toward one of them (e.g., repeatedly
interacting with it) while being able to switch its preference to the
other light depending on its internal configuration. This behavior
is chosen because it demands the agent to present a robust

phototactic behavior while at the same time presenting flexibility
in the creation and dissolution of behavioral preferences. An
evaluation procedure is proposed for the genetic algorithm in
order to accomplish this objective, consisting in four different
tasks designed by Iizuka and Di Paolo (2007): a single light A,
a single light B, one light A and a blinking light B, one light B and
a blinking light A (blinking lights illuminate with a probability of
0.15 for each time step). The agent gains fitness by approaching
the non-blinking light. The objective of this configuration is to
create a “dummy” that encourages the agent to learn to ignore
one of the lights while approaching the other. Lights appear at a
random distance, [100, 150]. When two lights are present, they
appear, from the agent’s point of view, with a random separation
within the range [π/2, 3π/2]. The length of each trial is 125 s.

Each individual agent is tested for 12 independent runs (3 for
each of the 4 tasks) consisting of a series of trials where a light or a
pair of lights are presented to the agents for a fixed time. Synaptic
weights δKij are reset to initial random values before each run.
Each run consist of 8 trials in which the agent is presented with
one or two lights for a specified time. Only the last 3 trials of each
run are evaluated in order not to penalize slow plastic changes
and bootstrap evolution. All simulations are run with an Euler
step of 0.1.

Fitness for each trial is calculated in three terms,
Ftrial = (FD + Fp) · FH . FD = 1 − df /di, where df and
di respectively correspond to the final and initial distances to the
target light. Fp is equal to the proportion of time that the agent
spends within a distance of less than 4 times its body radius (i.e.,
a distance of 16) to the target light during a trial. FH represents
the mean level of homeostasis in the system, computing the
mean degree of homeostasis 1

3

∑
i(1− p(8i −80

i )) (i.e., 1 minus
the level of plasticity) for each oscillator. The genetic algorithm is
run for 500 generations, reaching a stable level of fitness around
0.45. The best performing agent from the last generation (which
is able to reach both lights ignoring the dummy) is selected. The
code simulating the behavior of the agent and the parameters
obtained from the genetic algorithm can be accessed from the
following repository https://github.com/IsaacLab/HNA-robotic-
model/tree/master/minimal-preference-task.

2.2. Conceptual Setup for Testing
Sensorimotor Integration: Situated vs.
Passively-Coupled Agents in An Open
Environment
In order to explore how the agent exploits internal and
sensorimotor metastability we simulate the agent in an open
environment (which was never experienced during training)
in which the agent can develop sustained preferences toward
the two types of light. In this case, the two lights are always
present with equal intensities, and a new pair of lights is
generated periodically after a given time (starting a new trial).
The best performing agent from the last generation of the genetic
algorithm agent is simulated in a virtual environment which
presents a series of pairs of lights, giving the agent a time of
1250 steps to choose and approach one of them. As analysed
elsewhere (Aguilera et al., 2015), the agent is able to develop
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stable preferences toward one of the lights, maintaining it for
several trials until the preference is changed. The switching
of preferences depends on the long-term interaction between
internal plastic mechanisms and the encountered configurations
of the environment. Different neural cell assemblies arise
connected with particular patterns of behavior of the agent, and
at slower timescales synaptic plasticity modulates the emergence
and dissolution of these behavioral patterns. A video of the
behavior of the agent (including plastic mechanisms) can be
found at https://vimeo.com/53847420.

Once defined the agent in which we want to explore the
emergence of metastable behavioral patterns, we propose a
sensorimotor null model to be compared with our model in order
to test the influence of the sensorimotor loop in the generation
of metastable states in the agent. To this end, we propose an
agent which maintains the structure of the received input but
presents a disrupted coordination with its environment. Thus, we
will compare:

1. A situated agent with normal sensorimotor interaction.
2. A passively-coupled agent, in which the input fed to the agent is

recorded from the behavior of the situated agent. Thus, in the
passively-coupled agent the received input is decoupled from
the activation of the motors but it maintains an structure as if
it was generated by real interaction.

With this comparison we can detect the effects that, despite being
the result of sensorimotor coordination, cannot be replicated
just by using an input with an adequate structure. This is a
subtle difference, but if genuine sensorimotor coordination is
constitutive of a cognitive process, the same process should not
take place when the agent is passively processing an input with
the rig as an input-structured process.

2.3. Discretization and Probability Density
Function of the System
In the experimental setup defined above, we will use information
theory tools in order to get a better understanding of how
the different elements of the neural controller and the agent’s
behavior interact, using a symbolic representation of the
system states. Understanding the coordination between neural
ensembles and sensorimotor activity is not trivial due to the
moderately high dimensionality of the system (9 dimensions
of the neural controller, plus the dimensions of body and
environment). Nevertheless, the system can be simplified by
reducing both the state of neural ensembles and synapse
configurations to discrete values representing the state of a
network, plus a binary variable representing the behavior of the
agent (reaching one light or the other).

To simplify the analysis, we are interested in a description of
the systemminimizing the number of symbols needed to describe
the states of the robot, while maintaining the properties of the
system. In this case, we find that a binary discretization is a
good choice for describing the system. In order to ascertain a
good discretization of the system, we test the validity of different
possible discretizations by comparing the dimensionality of
the original and discretized data through principal component

analysis on their covariance matrix. We use the following
definition of dimensionality (Abbott et al., 2009):

d =
( N∑

i=1

λ̃i
2
)−1

(6)

where λ̃i are the normalized eigenvalues of the covariance
matrix expressing the fraction of the variance explained by
the corresponding principal component. We find that different
discretizations generally increase the dimensionality of the
system (due to the introduction of noise in the form of
discretization error). In Figure 3 we can observe how the
dimensionality of the discretized systems departs from the
original dimensionality depending on the number of bins
employed. Specifically, we find that the choice of a binary
description with just two bins is a particularly good description
of the covariances of the system, increasing the dimensionality
of the system by just 1.32% of the original dimensionality.
Therefore, for the rest of the paper we will employ a binary
description of the variables of the system as described below.

In previous work (Aguilera et al., 2015) we have determined
that the configuration of the oscillators in the assembly is the
relevant variable for generating one or other type of behavior.
Therefore, we define cell assemblies depending on the relative
phase of the oscillators with respect to the mean phase of the
Kuramoto network. We codify the state of the cell assembly with
a string of three bits 2:

2 = {21,22,23}, where 2i =

{
1, if sin (θi − θm) > 0

0, otherwise
(7)

where θm = 6 ( 13
∑
i
eiθi ) is the mean phase of the system at a

particular instant.
Analogously to cell assemblies of neurons, we may consider

a constellation of changing synaptic weights as an assembly

FIGURE 3 | Increment of dimensionality of the discretized system for

different bin choices. The dimensionality of the data generated by the

situated agent (the passively-coupled agent yields similar results) with

continuous (dashed line) or discrete (continuous line) values using different

numbers of equally spaced bins in the discretization. We observe how a binary

description (2 bins) is a good discretization of the system, presenting a small

increase in dimensionality only matched by discretizations with 7 or more bins.

A discretization with 3 bins is particularly unfit since it cannot capture the

covariance of small fluctuations around the central bin.
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of synapses or “synapsemble” (Buzsáki, 2010, p. 372). Synapse
assemblies have been hypothesized to be critical for building up
and dissolving cell assemblies and linking together sequences of
cell assemblies. To codify the activity of synapse assemblies, we
define each synapse as active or inactive if the value of the synapse
is higher3 than the mean value of the synaptic strengths Km,
where Km = 1

6
1
T

∑
t

∑
i,j

Ki,j(t). The state of the synaptic assembly

9 is codified with a string of 6 bits:

9 = {91,2, 92,1, 91,3, 93,1, 92,3, 93,2}, where

9i,j =

{
1, if Kij > 〈Km〉

0, otherwise
(8)

Similarly, for each trial we define a variable 3 which represents
the behavioral pattern of the agent (i.e., what light it reaches):

3 =

{
1, if df ,A < df ,B

0, otherwise
(9)

where df ,A and df ,B are the final distances to each type of light at
the end of the trial.

In summary, we define whether a particular cell or synapse
ensemble is active by using a set of binary variables s = {2,9,3}

which represent if a specific ensemble is active at a particular
moment of time and what behavioral pattern is being developed
by the agent. All possible relations between oscillators give rise
to 6 possible states for the cell assemblies, and all possible
activated synapses give rise to 64 possible combinations or
synapse assemblies, giving us a complete and discrete definition
of the system that we can use to apply information theory tools. In
order to do so 100 similar agents with random initial conditions
are simulated for the situated and passively-coupled cases for
1000 trials with a duration of 1250 steps, generating a time series
with 1.25 · 106 states. Sections 3.2 and 3.3 use one of these time
series to compute mutual information through time and transfer
entropy, although the other 99 series yield practically identical
results. The calculations in Section 3.1 require us to accurately
compute the whole probability density function of the system.
Thus, in order to avoid correlations in our sampling we compose
100 series of 106 states, consisting in 104 random states extracted
from each of the initial 100 time series. Each sample can provide
an estimation of the frequency of the 210 states of s, inferring the
probability density function of the system, which we compute as
P(s) = ns/nT , where ns is the number of occurrences of state s,
nT is the total length of the sample.

2.4. Information Theory Tools
Having defined these variables of the system in a discrete manner,
we can use information theory tools to determine the relation
between variables. In our model, we can use these measures to
quantify the relation between the state of different elements in
the neural controller of the agent, or between such components
and features of the environment surrounding the agent. The

3Km is an arbitrary threshold for capturing when weights are active and sufficiently

strong. Different values have been tested without altering the results.

information contained in a random variable is quantified in terms
of entropy, which is defined as:

H(X) = −
∑

x∈X

P(x)log(P(x)) (10)

where X is the set of states of the variable and P(X) its density
probability function.

A useful measure to compare two variables is the relative
entropy or Kullback-Leibler divergence between their statistical
distributions, which is a measure of the difference between two
probability distributions X and Y . It is defined as:

D(X;Y) =
∑

x∈X

∑

y∈Y

P(x)log
P(x)

P(y)
(11)

Given a pair of variables X,Y and their marginal distributions
the Kullback-Leibler divergence can be used to capture the
information shared between the variables, defined as theirmutual
information:

I(X;Y) = H(Y)−H(Y|X) =
∑

x∈X

∑

y∈Y

P(x, y) log
P(x, y)

P(x)P(y)
(12)

By definition, I(X;Y) = I(Y;X), thus mutual information
cannot describe relations of causality. Instead, transfer entropy
measures are typically employed to analyse causal relationships
between variables. The decrease of uncertainty in the state of a
variable derived from the past history of other variables is defined
as the transfer entropy between two variables:

TE(X → Y) = H(Yt+τ |Y
(d′)
t )−H(Yt+τ |Y

(d′)
t ,X

(d)
t ) =

=
∑

xt+τ ,xt∈X

∑

yt∈Y

P(xt+τ , x
(d)
t , y

(d′)
t )log

P(xt+τ , x
(d)
t , y

(d′)
t )P(x

(d)
t )

P(xt+τ , x
(d)
t )P(x

(d)
t , y

(d′)
t )

(13)

where X
(d)
t denotes the past history of x counted from time t and

length d (i.e., xt, xt−1, ..., xt−d).

3. RESULTS

In this section we present results comparing a situated and a
passively-coupled agent using a discrete description of the system
and information theory tools. We first show that when the
system is coupled to its environment it is brought closer to a
regime of criticality and that the number of metastable states
of the system is extended. These extended metastable states do
not arise from the brain nor the agent in isolation but from
the whole brain-body-environment system. We then use tools
of mutual information to observe how neural plasticity in the
agent in coordination is key for generating the structures that
sustain flexible and metastable behavioral patterns. Finally, we
use transfer entropy to characterize the loop of interactions
between oscillatory dynamics, synaptic plasticity and behavioral
patterns, describing the circular multiscale relation between the
agent’s neural controller and its behavioral dynamics necessary
for generating extended sensorimotor metastable states.
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3.1. Scale-free Statistical Distribution and
Mestastability
We start by analysing the properties of the statistical distribution
of the situated and passively-coupled agents. We compute
the probability density function P(s) for each agent, where
s = {2,9,3}, by sampling 100 simulations of identical agents
with random initial conditions during 1000 trials (1.25 · 106

steps). We generate 100 samples, each one composed of 104

random states s randomly sampled from each simulation run (106

states in total) and calculate the frequency of occurrence of each
state. The result from one randomly selected sample is shown
in Figures 4, 5, while in the text we provide the statistics of the
complete set of 100 samples.

An initial finding about the probability density function of the
agent is that it approximately follows the Zipf law (Figure 4A),
for states with a probability larger than 2 · 10−4. If the occurrence
of the states of the system s is ordered by their decreasing
frequency P(s), Zipf ’s law states that P(s) decays as the inverse of
their rank r(s) in the ordered sequence, making P(s) ∝ 1/r(s).
The occurrence of Zipf-like distributions is considered to be
a signature of criticality (Mora and Bialek, 2011), coinciding
with previous analysis of self-organized critical patterns in the
same robotic agent when it is coupled with its environment
(Aguilera et al., 2015). We observe that, while the situated
agent presents a pattern very close to Zipf ’s distribution, the
passively-coupled agent diverges more from a perfect scale-
free distribution (Figure 4B), especially in states with higher
probabilities. We can quantify this divergence by computing the
Kullback-Leibler divergence between the distribution of states of
the agent P(s) and Zipf ’s law distribution Psf (s) ∝ 1/r(s). As we
observe in Figure 4C the divergence from the Zipf distribution
in the passively-coupled agent is more than twice that of the
situated agent. Computing the average and standard deviation for
the 100 generated samples reveals that this result is repeated for
different agents, confirming that the Kullback-Leibler divergence
to a Zipf distribution is much larger in the passively-coupled
agent (µ = 0.381, σ = 8.44 · 10−4) than in the situated case
(µ = 0.141, σ = 5.46 · 10−4).

Criticality in the brain is generally associated with the
metastability of transiently formed neuronal assemblies (Werner,

2007b), although in general the exact relation between the
existence of metastable states and criticality is still not well
understood. The definition of a metastable state is a state whose
energy is lower than any of its adjacent states while not being
the state of minimum energy of the system. If we assume that
the probability of each state follows a Boltzmann distribution4,
metastable states will be those with higher probabilities than
those of their adjacent states. We define adjacency between two
states when they are separated by a single flip5 of an individual
variable 2i, 9i,j or 3. In short, we consider metastable states
as local peaks in the probability landscape. If we compute the
number of metastable states of the system s = {2,9,3}, we
observe that the situated agent presents 17 metastable states for
most of our data series (µ = 17.2, σ = 0.782)), while the
passively coupled agent presents typically over 13 metastable
states (µ = 13.1, σ = 0.902), indicating that the level of
metastability is boosted when the agent is in interaction with
its environment. However, if we only analyse the neural system
of the agent, i.e., the system s′ = {2,9}, we find that the
situated agent presents 13 metastable states (µ = 13, σ =

0) and the passively-coupled agent presents around 11 (µ =

11.0, σ = 0.243). Figure 5 portrays the number of metastable
states of one random sample.

These results show how the critical scaling and the repertoire
of metastable states of the agent is extended when it is coupled
with its environment. Moreover, metastable states generated
when coupled with the environment cannot be reduced to
metastable states in the “brain” of the agent (i.e., in s′ = {2,9})
but only appear when we analyse the distribution of the complete
system (s = {2,9,3}). These results suggest that, aside
from neural metastable states generated by oscillatory dynamics
and neural plasticity, sensorimotor metastable states can appear
from the coordination between behavioral patterns and internal

4The situated system can be considered an isolated system in thermodynamic

terms, whereas the passively-coupled system may be considered a closed system

exchanging energy but not matter with the situated system, thus making plausible

the assumption of thermal equilibrium and a Boltzmann distribution of states, and

therefore a direct mapping between probabilities and the energy of each state.
5Other definitions of metastability could be used, using an arbitrary number n

of flips. Nevertheless, in this particular case only n = 1 yields the existence of

mestastable states.

A B C

FIGURE 4 | Statistical distribution. (A,B) Ranked probability density function of the states s = {2,9, 3} for (A) the situated agent and (B) the passively coupled

agent (solid line), compared to the distribution of a Zipf-like distribution (dashed line). (C) Divergence between the probability density function of each type of agent

and a Zipf-like distribution. States with probability lower than 2 · 10−4 are dismissed from the plot and calculations.
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FIGURE 5 | Metastable states in the system. Count of metastable states

of the probability density function of neural and behavioral patterns P(s)

(s = {2,9, 3}), and of neural patterns alone P(s′) (s′ = {2,9}), for both the

situated and passively-coupled agents.

neural dynamics. Spin glass theory indicates that metastable
states emerge when some of the couplings between variables are
negative (Mezard et al., 1987), which can be translated to stating
that in our case agent-environment effective coupling presents
mechanisms of mutual inhibition between pairs of variables. The
appearance of metastable states only existing for the situated case
in the whole sensorimotor system suggests a complex regulation
between neural and sensorimotor processes, inviting us to take
a closer loop of how agent-environment relations take place in
order to increase the metastability of the system.

3.2. Mutual Information Flows
Typically, features such as criticality and metastability have
been linked to the idea of systems driven by interaction
dynamics between its components (Jensen, 1998; Van Orden
et al., 2003; Ihlen and Vereijken, 2010). We investigate what
type of interaction takes place in our agent between oscillatory
dynamics, neural plasticity and behavioral patterns to generate
neural and sensorimotor metastable states. We use information
theory tools to quantify the interactions between the components
of the system in the situated and passively-coupled agents,
simulated for 1000 trials with a duration of 1250 steps.
Although we only show the results of the time series of an
individual simulation (random sampling is not applicable if
we want to maintain temporal correlations), the differences
in the results analyzing different runs of the simulation were
negligible.

First, we analyse what information is shared by the emergent
cell assemblies 2, synapse assemblies 9 and behavioral patterns
of the agent 3 by measuring mutual information along the
time series of values of each variable. In Figure 6 we can
observe how the three variables share an important amount of

information. The entropy of 3 (which is the variable with the
lowest entropy) is 0.86, thus the shared entropy is in the same
order of magnitude in most cases. In the case of the situated
agent, we can observe in Figure 6 (left) that all variables share a
relevant amount of information. However, in Figure 6 (right) we
observe that the information shared between 9 and 3 decreases
dramatically, suggesting that most of the interaction between the
two variables is lost.

The information analysis above shows a static picture of
information flows on average, but it does not explain how
these flows unfold over time. To overcome this limitation, Beer
and Williams (2015) have proposed a framework combining
information flow and dynamical analyses, exploring how a
simulated model agent in a relational categorization task
integrates information at different moments of time about a cue
used for solving the task. Instead of analysing information as
an average of the dependences between variables along a time
series, they run the same task several times for different initial
conditions and compute information measures for each time
instant. Instead of using a series of temporal values of a variable,
they use a series of values of a variable on each instant along
different starting conditions. Similarly, we fold our time series
into 1000 time series (one for each simulated trial) in which e.g.,
2′

T(t) = 2(t + (T − 1)1250), where T is the trial number and
1250 is the duration of each trial. Consequently, for each value
of t we have 1000 values of 2′

T(t) we can use for computing
mutual information with other variables. For six consecutive
trials (i.e., t = 1, ..., tend = 6 · 1250) we compute the mutual
information between the neurodynamic variables of the agent
2′

T(t) and 9 ′
T(t) and the behavioral pattern at the end of the

sixth trial 3′
T(tend) (in order to observe how information about

future behavioral patterns is accumulated). Also, we compute
the joint mutual information that both 2′

T(t) and 9 ′
T(t) share

with 3′
T(tend).

In Figure 7 (left) we can observe the result for the situated
agent. We see how the mutual information I(2′

T(t);3
′
T(tend))

increases during the middle of the trial, fading out at the
beginning and the end. That is, the activation of specific neural
patterns when the robot is approaching a light contributes to
its repetition in future trials (i.e., contributing to the habit
of choosing that light). However, when the robot engages in
other behavior (e.g., exploring its surroundings, or stopping after
having reached a light) the habit is no longer being enacted and
the information about it vanishes from its oscillatory patterns.
Also, from one trial to the next the information at the peak
increases, being maximal at the sixth trial. We can interpret
this as a self-sustaining behavior of cell assemblies: when a cell
assembly emerges, it reinforces itself and has more probabilities
to reemerge in the next trial. Similarly, I(9 ′

T(t);3
′
T(tend))

steadily increases until a cell assembly is activated at the middle
of the sixth trial. Mutual information between 9 ′

T(t) and
3′

T(tend) is continuously accumulated and does not decrease,
thus we hypothesize that the configuration of the synapse
ensembles “stores” information about the behavior that the
agent will develop. Furthermore, when we analyse the joint
mutual information I(2′

T(t), 9
′
T(t);3

′
T(tend)), we observe that

it is always higher that the individual contributions. Moreover,
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FIGURE 6 | Mutual information. Values of mutual information between cell assemblies (2), synaptic assemblies (9) and behavioral patterns (3) for the situated

agent (left) and passively-coupled agent (right).

FIGURE 7 | Information flows. Mutual information at different instants between cell assemblies (2′
T
(t)), synaptic assemblies (9′

T
(t)) and the behavioral patter

displayed at the end of the sixth trial (3′
T
(tend )) for the situated agent (left) and passively-coupled agent (right).

it increases when I(2′
T(t);3

′
T(tend)) decreases at the transitions

between one trial and another. Also, I(2′
T(t), 9

′
T(t);3

′
T(tend))

decreases when at the middle of the trial a cell assembly is
activated, except in the last trial. This portrays an interesting
picture, where information flows back and forth between
the emergent cell assemblies and the collective cell-synapse
assemblies, until the sixth trial when an assembly emerges
producing behavior 3′

T(tend).
If we analyse the passively-coupled agent we observe a quite

different picture (Figure 7, right). Although I(2′
T(t);3

′
T(tend))

is quite similar in both cases (its values are slightly smaller
in the passively-coupled condition), I(9 ′

T(t);3
′
T(tend))

does not integrate any information. This suggests that even
when the input produced by behavior 3′

T(tend) is able
to influence the cell assemblies that emerge, coordination
between behavior and the stabilization of synapse assemblies
does not take place. Furthermore, the joint information
I(2′

T(t), 9
′
T(t);3

′
T(tend)) does not integrate much information

either, and the anticorrelation between I(2′
T(t);3

′
T(tend)) and

I(2′
T(t), 9

′
T(t);3

′
T(tend)) disappears. This suggests that the

passively-coupled agent does not capture the struggle between

information flows through individual and collective variables,
indicating that the important moments for generating the
behavior of the agent are not only synchronizing moments of
emergence of cell assemblies, but that most information is built
during instants of desynchronization corresponding to transition
from one assembly to the next.

These results show that synaptic plasticity, in coordination
with behavioral patterns, plays a fundamental role in the situated
agent, since it allows the agent to “store” information about future
behavioral patterns the agent will engage it. Interestingly, the
results in Figure 7 suggest that neural assemblies behind the
execution of a specific behavioral pattern reinforce the synaptic
circuits sustaining that pattern, which store information about
the repetition of that behavioral pattern. This resonates with
the idea of the brain as a plastic system of open loops (Fuchs,
2011) created during previous interactions with the environment
and functionally closed to full sensorimotor cycles in every new
coupling with the environment. Sensorimotor metastable states
could be precisely the transient closure of those loops, which in
turn imprint and reinforce onto the brain the synaptic structures
necessary to their reproduction.
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3.3. Transfer Entropy
The analysis above shows the information shared by variables
unfolding through time. As mutual information is a symmetric
index, it is not a good tool to characterize causal interactions
between parts of a system. Instead, we characterize directional
interactions by measuring transfer entropy between variables
using Equation 13, with d = d′ = 1 as the length of the
past history that we take into account6 and a logarithmically
distributed series of values of τ from 1 to 625, 000 steps (half the
length of the 1000 trials), with multiplicative intervals of 100.1.
In Figure 8 (left) we can observe a complex chart of information
flows for the situated agent:

• 2 − 9 transfer. We can observe transfer entropy from 2 to
9 taking place at small and medium values of τ , whereas at
larger values of τ the flow of the information is reversed. This
suggests a circular causal chain in which, at short timescales,
the structure of the current synaptic assembly determines the
cell assemblies that can emerge, but at long timescales it is
the self-sustainment of particular assemblies during different
trials that determines the stability of the possible synaptic
assemblies.

• 2 − 3 transfer. We observe that while there is an important
transfer entropy flow from 3 to 2 at fast and medium

6We tested different values of d and d′ up to 5 for a series of representative values

of τ with similar results, therefore we used d = d′ = 1 to reduce the computational

cost, since just varying the value of τ seems to be enough for capture the different

timescales of information flows.

timescales, the flow does not exist in the opposite direction
(Figure 8, middle-left), suggesting that the behavioral pattern
of the agent influences the cell assembly that emerges, but that
the current cell assembly that is active at a particular moment
of time is not decisive for the behavioral pattern that the agent
will deploy.

• 9 − 3 transfer. There is an important bidirectional exchange
of information between 9 and 3. This suggests that 9 is the
variable that determines the behavior that will be chosen by
the agent. Also, we can observe that TE3→9 and TE2→9

are very similar in value and shape (if we integrate the area
of the difference between TE3→9 and TE2→9 and divide
it by TE2→9 the result is 0.11, showing that both functions
coincide with almost 90% of accuracy). This is supported
by the fact that there is no functional dependency from 3

to 9 , since change in the weights δK̇ is only a function of
K and θ . As we can easily check, all the other information
flows present in Figure 8 correspond to actual functional
dependencies depicted by the equations defining the systems7.
This suggests (since 3 influences 2 and not otherwise), that
3 causally determines 2 which in turn influences 9 in their
circular mutual interaction8.

7Since θ̇ is a function of θ , K and sDX , and ṡDX is a function of θ , K and sDX . The

only functional dependency that presents no informational content is TE2→3
8It is worthy noting that in the experiments depicted in Figure 8, the variable 3 is

defined as the macroscopic behavior of the agent, whereas 2 and 9 are patterns

of low level variables of the agent. To test that this difference did not distort in any

way the result of our analysis, we repeated the analysis substituting 3 by a variable

FIGURE 8 | Transfer Entropy. Values of transfer entropy at different timescales among cell assemblies (2), synaptic assemblies (9) and behavioral patterns (3). Note

that the duration of a trial corresponds to a value of τ of 1250 steps.
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Putting together the transfer entropy flows above, we may
summarize them in the schema at Figure 9 (left). The behavior
of the agent 3 generates an input that determines the emergence
of cell assemblies 2 at fast timescales. A circular relation
between the emergent cell assemblies and their underlying
synapse ensembles 9 generates a particular behavior 3 which is
determined by the state of9 at longer timescales.We can observe
how the resulting schema is similar to the one proposed by
Varela (1997) and depicted in Figure 1, though adding interesting
information about the timescales of each dependency.

Moreover, for the passively-coupled agent, the information
flows from9 to3 and from9 to2 are disrupted and reduced in
comparison to other flows, whereas information flows from 3 to
2 and2 to99 are maintained or even increased. This disruption
of part of the transfer entropy flows dissolves the self-sustained
neurodynamic structures that generate a coordinated behavior
and reinforcing unidirectional influence from 3 to 2 and 2 to
9 , as we depict at Figure 9 (right).

These results strongly suggest that the generation of complex
and integrated neurodynamic structures is a product of a double
circular loop that strongly couples (1) neural oscillatory patterns
with the plastic synaptic structures sustaining them and (2) these
neurodynamic circular structures with the behavioral patterns
generating them. This double loop is constituted in a way that
creates a circular asymmetry between agent and environment, in
which the oscillatory dynamics of the agent present a sensitivity
of environmental parameters at shorter timescales, and its

S defined as a string of 4 bits (one for each sensor of the robot), in which each bit

was equal to one if the activity of its corresponding sensor is higher than its average

activation. The results of transfer entropy measures were strikingly similar to those

displayed in Figure 8, indicating that the series of sensory activation are strongly

correlated with particular behavioral macroscopic patterns of the agent. Since the

use of 3 simplifies other analyses performed in this paper, we have chosen to use

this variable instead of S.
9Flows from 2 to 9 are almost equivalent to flows from 3 to 9 , supporting our

suspicion that they represent the same information flow.

repeated activation generates the synaptic structures that are
able to engage and disengage different behavioral patterns of
the agent at longer timescales. The operational closure of the
nervous system implies a special circular relationship between
agent and environment, in which the agent individuates itself in
front of its environment as it is capable of being sensitive to small
fluctuations of its world while being able to act over it at longer
timescales as a coherent dynamical unit.

4. DISCUSSION

In this paper we have presented a neurodynamical model
of oscillatory activity with synaptic activity embedded in a
robotic agent in a behavioral preference task. The model is
based on a network of three Kuramoto oscillators with plastic
homeostatic mechanisms designed to maintain constant phase
relations among oscillators. Our goal was to explore metastability
in behavior and neural assemblies in a context of embodied,
adaptive activity, in which the agent is in continuous and
bidirectional interaction with an environment, a dimension
which is frequently neglected in the study of brain activity and
organization. The model was carefully designed for exploring
(1) the integration of transient assemblies underlying behavior
through nonlinear coupling neural clusters generating specific
conducts in the agent, and (2) the coordination between
sensorimotor and plastic neurodynamic structures into a self-
maintaining behavioral patterns. The integration of these two
levels of activity gives rise to metastable sensorimotor integrated
patterns which cannot be reduced to metastability of brain
dynamics alone, as behavioral preferences of the agent emerge
from the interaction between oscillator cell ensembles, ensembles
of synaptic weights and the agent’s sensorimotor coupling.
We present a methodological framework to analyse the role
of sensorimotor behavior in interaction with neural dynamics:
we compare a situated agent, normally interacting with its

FIGURE 9 | Operational closure. Simplified information flows among cell assemblies (2), synaptic assemblies (9) and the behavioral patterns (3) for the situated

(left) and passively-coupled (right) agents.
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environment, and a passively-coupled agent, receiving a sensory
input recorded from the situated agent but unable to influence its
environment in any way. Comparing a passively-coupled agent
and a situated agent in an open environment we have found three
different results shedding light on the relation between neural
and behavioral metastability.

These results are obtained first, through a statistical
description of the agent (in the form of a discrete characterization
of the states of the agent neural configurations and behavioral
patterns), depicting how the situated agent presents signatures of
criticality and additional metastable states that are not present
in the passively-coupled agent. Moreover, we show how those
additional metastable states do not appear in neural variables
alone, but in the combined space of neural and behavioral
patterns, indicating that metastable states in behavior are not
exclusively a direct mapping of neural metastable states. Instead,
we find the existence of sensorimotor metastable states that
extend the range of metastability of the agent’s “brain.”

Second, an analysis of the flow of mutual information
between different groups of variables of the agent shows
that in both the situated and passively-coupled models
neural ensembles of oscillatory components contain a lot of
information about the behavioral pattern being developed.
However, this information is lost after the neural ensemble
dissolves at the end of a trial, and only in the situated
case this information is stored instead through changes in
synaptic plasticity, generating the structures reinforcing future
appearances of that behavioral pattern. This suggests that
mechanisms of synaptic plasticity have a fundamental role in
coordinating neural and behavioral processes, sculpting the
sensorimotor structures sustaining extended metastable states.
While synapse assemblies have been hypothesized to have a
critical role for building up and dissolving metastable cell
assemblies in the brain as well as linking together sequences
of cell assemblies (Buzsáki, 2010, p.372), our results invite
us to rethink the role of synapse assemblies in a broader
sense, as fundamental elements that facilitate emergence and
dissolution of metastable modes of engagement with the
environment.

Finally, using transfer entropy we can depict the causal
influences at different timescales between different components
of the system. We observe how the situated agent generates
a closed network of interaction, circularly organized with
bidirectional interactions at different timescales. This network
takes the form of a double coupling loop of (1) a circular
causal dependence between the emergence of cell assemblies
and the synaptic neural structure that generates them, and (2) a
causal chain in which synaptic structures influence the behavior
displayed by the agent, which in turn triggers the emergence of
specific neural assemblies (Figure 9, left). If the sensorimotor
loop is disrupted (e.g., when the agent is passively-coupled, and
probably for more severe sensorimotor disruptions), this circular
closure disappears and autonomous organization of the agent
vanishes (Figure 9, right). This provides cues of what happens
in real-life examples of disruption of sensorimotor coordination.
For example, in Held and Hein’s experiment on visually-
guided behavior (Held and Hein, 1963), the “passive” kitten

fails to develop perceptual abilities. Similar situations can take
place in different physiological or pathophysiological conditions.
Examples of those are the problems faced by deafferented
subjects (i.e., without any proprioception) to develop behavioral
automatisms exclusively in the absence of sensory feedback;
needing to rely on visual feedback to perform simple tasks such
as holding an egg without breaking it, or when are unable to
maintain an upright posture in the dark (Cole and Paillard,
1995).

Interestingly, the schema of circular dependencies in the agent
resembles the idea of operational closure of the nervous system
proposed by Varela (1997) depicted in Figure 1. Moreover,
it describes a novel characteristic of closure since this loop
of closure creates a multiscale asymmetry between agent and
environment: the agent is sensitive to changes in the environment
at fast timescales, while it can influence the environment at
slow timescales (Figure 8, left). Although the agent’s oscillatory
dynamics are mostly driven by inputs from the environment at
fast timescales, it exerts an influence over the environment at the
slower timescales of synaptic plasticity by generating structured
behavioral habits (e.g., reaching repeatedly one of the lights)
which will influence future stimuli received by the agent. In
some sense, once the agent “sees” a light it is trapped in a
behavioral field and has to reach it, but it still has a degree
of autonomy in the sense that it can modulate its internal
connectivity to influence which lights it is going to be sensitive
to in the future. This allows us to identify the agent as a unit
which is affected by bottom-up causal flows of sensorimotor
stimuli and, at the same time, it is able to develop a downward
causation modulating its sensorimotor interaction. Breaking the
symmetry of the coupling between agent and environment has
been proposed as one of the fundamental aspects which can
constitute an agent as an autonomous entity able to regulate from
within its exchange with the world, constituting its identity as
a self-individuating system (Barandiaran et al., 2009). Previous
characterizations of agent-environment asymmetry have referred
only to the presence of a directionality in the flows of information
from agent to environment depicting a causal influence from
the former to the latter (see Seth, 2007; Bertschinger et al.,
2008). These contributions do not take into account a self-
referential operational closure of the system (Bertschinger et al.,
2008, p.14) and only quantify the degree of self-determination
of the system. In contrast, our approach captures agent-
environment asymmetry as a circular relation of causal influences
at different scales.

The type of analysis performed in ourmodel has typically been
unexplored by neuroscientists studying real life organisms, partly
due to the difficulty of recording whole-brain activity of freely
behaving animals. In general, recordings of neural activity have
been limited to either small brain regions or to immobilized or
anesthetized animals exhibiting limited behavior. Nonetheless,
during the last few years some promising results point to
the plausability of experiments involving the sensorimotor
engagement of whole-brain or large brain areas. For example, an
interesting technique for analysing brain and behavioral activity
of a head-restrained mouse interacting with a virtual reality
environment in a spherical treadmill (see Dombeck et al., 2007)
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has been developed. Furthermore, the first report of whole-brain
recording in freely behaving animals has been reported for
the nematode Caenorhabditis elegans during free locomotion
(Nguyen et al., 2016). These advances open-up an exciting path
for neuroscience, allowing an exploration of how interesting
properties of neural processes such as criticality andmetastability
are extended and amplified when they are embedded in ongoing
embodied sensorimotor loops. In such scenarios, minimal
models of brain-body-environment dynamical regulation in
adaptive behavior, such as the one presented here, offer a
conceptual basis for facing complex analysis in real animals
due to the low dimensionality of their dynamics. Even models
that have little connection with biological brains can provide
insights into how neural and sensorimotor dynamics may
interact (e.g., extending the range of metastable states, creating
asymmetrical loops of causal interaction, etc.), as well as
contribute to the development of conceptual methodological
tools for understanding the role of the different scales of the
system (e.g., the situated vs. passively-coupled comparison to
address the role of sensorimotor regulation in the nervous
system). Moreover, the availability of real data of brain-body-
environment interaction will provide the opportunity to advance

in the design of more accurate and realistic models, bringing us
closer to capturing fundamental aspects of adaptive behavior.
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