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In recent years, the application of network analysis to neuroimaging data has provided

useful insights about the brain’s functional and structural organization in both health

and disease. This has proven a significant paradigm shift from the study of individual

brain regions in isolation. Graph-based models of the brain consist of vertices, which

represent distinct brain areas, and edges which encode the presence (or absence) of

a structural or functional relationship between each pair of vertices. By definition, any

graph metric will be defined upon this dyadic representation of the brain activity. It

is however unclear to what extent these dyadic relationships can capture the brain’s

complex functional architecture and the encoding of information in distributed networks.

Moreover, because network representations of global brain activity are derived from

measures that have a continuous response (i.e., interregional BOLD signals), it is

methodologically complex to characterize the architecture of functional networks using

traditional graph-based approaches. In the present study, we investigate the relationship

between standard network metrics computed from dyadic interactions in a functional

network, and a metric defined on the persistence homological scaffold of the network,

which is a summary of the persistent homology structure of resting-state fMRI data.

The persistence homological scaffold is a summary network that differs in important

ways from the standard network representations of functional neuroimaging data: (i) it is

constructed using the information from all edge weights comprised in the original network

without applying an ad hoc threshold and (ii) as a summary of persistent homology, it

considers the contributions of simplicial structures to the network organization rather

than dyadic edge-vertices interactions. We investigated the information domain captured

by the persistence homological scaffold by computing the strength of each node in the

scaffold and comparing it to local graph metrics traditionally employed in neuroimaging

studies. We conclude that the persistence scaffold enables the identification of network

elements that may support the functional integration of information across distributed

brain networks.
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1. INTRODUCTION

The application of graph theoretical analysis to neuroimaging
data has provided important new insights about the functional
organization of the human brain in health and disease. Graph
measures considering the global properties of brain networks
have notably helped shape our understanding of the system-
wide functional architectures which enable the brain to balance
the segregation and integration of information in macro-scale
networks (Bullmore and Sporns, 2009, 2012). Complementary
to these system-wide characteristics, local graph metrics have
been used to quantify the relative importance of individual brain
areas toward routing information in brain networks according to
different criteria (Section 2.3).

Whilst standard graphmetrics are powerful descriptive means
to characterize functional neuroimaging data at the whole-brain
scale, they also involve significant conceptual andmethodological
limitations. First, these measures are exclusively based on dyadic
(i.e., pairwise) interactions between edges and vertices. In
practice, this means that the basic “unit” of the graph is an edge
connecting a pair of nodes. By contrast, it is well established
that neural computations performed by distributed ensembles
of brain regions underlie higher cognitive phenomena and even
resting-state dynamics in the human brain. As described in detail
below, methods from algebraic topogology provide an alternative
for encoding such non-dyadic relationships. Specifically, the
concept of simplicial complexes allows one to describe relations
between distributed subpopulations of network elements without
sacrificing access to many of the fundamental tools of network
science (Giusti et al., 2016).

Secondly, the adjacency matrices which form the basis
for constructing network representations are derived from
measures that have a continuous response and are therefore
typically weighted, fully connected, and signed. That is,
the value of the pair-wise measure of association (i.e.,
bivariate/partial correlation, phase synchrony, transfer entropy,
mutual information) between the activity signals across brain
areas is non-zero, varies considerably across region pairs, and
may include both positive and negative values. Therefore, ad hoc
thresholding methods are commonly employed in functional
neuroimaging studies to selectively prune connections within the
graph leading to sparser, binary network representations with
more naturally interpretable attributes. An exhaustive discussion
of the methods used for thresholding brain networks is beyond
the scope of this study. It should however be noted that a majority
of these strategies lead to the elimination of weak and/or negative
connections within a network. Yet, it has been demonstrated that
standard graphmeasures are unstable across the threshold ranges
typically employed in functional connectivity studies (Garrison
et al., 2015) and very few neuroimaging analysis methods actually
account for the statistical significance of individual connections
(Lord et al., 2011, 2012; Pandit et al., 2013). Thus, while
neglecting weak links enhances information clarity, it may well
do so at the expense of information completeness. Previous
studies have indeed shown weak links to significantly contribute
to brain functional processes including: resting-state networks,
disease states, and cognition (Schneidman et al., 2006; Schwarz

and McGonigle, 2011; Bassett et al., 2012; Cole et al., 2012).
Furthermore, synchronous neural oscillations can be maintained
even with very weak synaptic links (Buzsáki and Draguhn,
2004) and complex systems research has provided considerable
evidence for the contributions of weak links to the stability
of large networks in a range of social and biological systems
(Granovetter, 1973; Csermely, 2004; Onnela et al., 2007; Pajevic
and Plenz, 2012).

An alternative to traditional network analysis methods is
the use of the homological scaffolds of the weighted network
(Petri et al., 2014) to summarize information about the
persistent homology of the data. Persistent homology is a
recent technique in computational topology (Munkres, 1984;
Zomorodian and Carlsson, 2005; Cohen-Steiner et al., 2007)
that will be described in detail in Section 2.2. In summary,
homology characterizes a topological space by counting its
holes of different dimensions (see Section 2.2.2 for definitions).
Persistent homology characterizes the importance and stability of
the holes in the original data through a process called filtration.
It is accordingly a specific type of mesoscopic organization of
the vertices and edges and their respective importance that is
considered in the persistent homology analysis. This enables
one to explore the network’s organization from a non-dyadic
perspective, consistent with the brain’s large-scale ensemble
coding mechanisms. Holes are the mesoscopic (anti-)structures
remaining in the topological space that are not bounding a
higher dimensional simplex. The case of 1-dimensional holes, or
“cycles,” to which we restrict ourselves in this study, is intuitive to
visualize (Figure 1): a cycle is a closed loop of length greater than
three.

FIGURE 1 | Illustrations of cliques, simplices, holes, and clique

complex. The simplices are shaded for identification. (A) 3 and 4-cliques,

which are associated to 2 and 3-dimensional simplices. (B) a 1-dimensional

hole, or cycle, is a closed path of edges of length greater than 3. (C)

Combining the elements of (A,B) following the rules in Section 2.2.1, one can

produce a clique complex with one 1-dimensional hole. All simplices in this

figure are shaded as is customary.
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The network organization of the human brain is characterized
by a large number of distributed networkmodules which perform
segregated local computations (Power et al., 2011; Sporns,
2013). There has recently been much interest toward identifying
the “hub” regions which enable global communication across
segregated brain modules, and the integration of these local
computations over space and time (Hansen et al., 2015). The
homological scaffolds summarizes the role of network edges
constituting the cycles during the filtration process; enabling
to identify edges belonging to multiple cycles and/or highly
persistent cycles along the filtration. A hypothesis tested in this
study is that the edges supporting thesemesoscopic network anti-
structures will be well positioned to bridge together segregated
functional brain modules, rather than participate in densely
connected local networks.

The present study investigates the relationship between
standard network metrics computed from dyadic interactions
in a functional brain network, and a novel metric computed
on the persistence homological scaffold of the network. Toward
this aim we generate a persistence scaffold from the whole-
brain functional connectivity data of healthy subjects recorded
during resting-state fMRI. We then convert edge-persistence
scaffold values into a node-level measure termed persistence
scaffold strength (PSS) which enables comparisons between the
persistence scaffold and local graph metrics computed on the
original network. We introduce this new measure because
homological scaffold theory does not yet include node-level
metrics analogous to the topological centrality measures typically
used in the analysis of functional brain networks.We find that the
unique mathematical attributes of the persistence homological
scaffold may render it useful for identifying key local nodes
supporting the global integration of information processing
directly from functional neuroimaging data.

2. MATERIALS AND METHODS

2.1. Data
2.1.1. Study Participants
Neuroimaging data were collected at CFIN, Aarhus University
Hospital, Denmark, from 16 healthy right-handed participants
(11 men and 5 women, mean age: 24.7 ± 2.5). Participants with
a history of psychiatric or neurological disorders were excluded
from participation in the study. The study was previously
approved by the Center of Functionally Integrative Neuroscience
internal research board. The study was performed in accordance
with the Declaration of Helsinki ethical principles for medical
research and ethics approval was granted by the Research Ethics
Committee of the Central Denmark Region (DeVidenskabsetiske
Komiter for RegionMidtjylland). Informed consent was obtained
from all participants.

2.1.2. MRI Data Acquisition
MRI data were collected in one session on a 3T Siemens Skyra
scanner. The parameters for the structural MRI T1 scan were as
follows: voxel size of 1 mm3; reconstructed matrix size 256 ×

256; echo time (TE) of 3.8 ms and repetition time (TR) of 2300
ms. The resting-state fMRI data were collected using whole-brain

echo planar images (EPI) with TR = 3030 ms, TE = 27 ms, flip
angle = 90o, reconstructed matrix size = 96 × 96, voxel size 2 ×

2 mm with slice thickness of 2.6 mm and a bandwidth of 1795
Hz/Px. Seven minutes of resting state fMRI data were acquired
for each subject.

2.1.3. MRI Data Processing
We used the automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) to parcellate the entire brain into
90 cortical and subcortical regions (45 for each hemisphere)
which represented the nodes in functional connectivity networks.
The parcellation was conducted in the EPI native space. Linear
registration was performed using the FSL toolbox (www.fmrib.
ox.ac.uk/fsl, FMRIB, Oxford) (Smith et al., 2004). The EPI
image was co-registered to the T1-weighted structural image,
and the T1-weighted image was coregistered to the T1 template
of ICBM152 in MNI space. The resulting transformations
were concatenated and inversed and further applied to warp
the AAL template from MNI space to the EPI native space,
where interpolation using nearest-neighbor method ensured
that the discrete labeling values were preserved. Initial fMRI
data preprocessing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 6.00, part of FSL and consisted of:
motion correction using MCFLIRT; non-brain tissue removal
using BET; spatial smoothing using a Gaussian kernel of FWHM
5 mm; grand-mean intensity normalization of the entire 4D
dataset by a single multiplicative factor; high pass temporal
filtering (Gaussian-weighted least-squares straight line fitting,
with sigma= 50.0 s).

2.1.4. Functional Connectivity Analysis
We used FSL to extract and average the time courses from all
voxels within each AAL cluster. We then used Matlab (The
MathWorks Inc.) to compute the pairwise Pearson correlation
between all 90 regions. R-values were transformed to z-values via
Fisher transformation, and the resulting z-values composed the
final 90 × 90 functional connectivity (FC) matrix. We averaged
the FCmatrices for all 16 participants to obtain a group-averaged
90× 90 FC matrix.

2.2. Persistent Homology and Scaffolds
The next two sections will introduce fundamental notions needed
to understand persistent homology, which is presented in the
third section. Homological scaffolds are then defined and a toy
example is presented in the penultimate section. The last section
exposes the open problem and implications of the choice of a
cycle’s representative in the filtration. The workflow is illustrated
in Figure 2 and can be summarized as follows: one starts from
the data, that for the sake of generality we will assume to be a fully
connected, weighted, and signed matrix. As the matrix is square
and symmetrical, one can interpret it as an undirected network
adjacency matrix. The persistent homological features of the data
are then computed and finally summarized in the persistence
and frequency scaffolds. These scaffolds can be seen as an edge
centrality measure, that emphasizes the role of an edge in the
persistent homological characterization of the original data but
they can also be considered as network in itself and analyzed as
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such, as we define the PSS in Section 2.3.3. For a comprehensive
introduction to persistent homology, the interested reader is
invited to consult (Munkres, 1984; Zomorodian and Carlsson,
2005; Cohen-Steiner et al., 2007).

2.2.1. Simplices, Simplicial Complex, and Holes
A simplicial complex can be seen as a generalization of a graph,
where interactions, instead of being strictly between nodes,
are between objects called simplices that generalize the notion
of nodes. In the present context, a node is a 0-dimensional
simplex, an edge a 1-dimensional simplex, (representing a
binary interaction) a full triangle is a 2-dimensional simplex
(representing ternary interactions), and so on for higher
dimensions.A simplicial complex is thus a type of topological space
that is a collection of simplices of any dimension (Figure 1).

FIGURE 2 | Description of the four stages of the persistent homology

and homological scaffolds analysis workflow. The data consist of a fully

connected weighted network. The filtration is produced using the weight

clique rank filtration. The persistent homology of the filtration is computed,

and each cycle (or “hole”) is endowed with a birth and death time. The

homological scaffolds are generated using the information from persistent

homology.

There are many types of simplicial complexes. In this study,
we focus on clique complexes, which can be constructed from
any network. In graph theory, a clique is a subset of vertices of
a graph in which every pair of vertices is adjacent. Thus, a k-
clique is a completely connected subgraph Kk ⊂ G, composed
by k nodes containing all the possible edges among its nodes.
When representing a simplicial complex, simplices are typically
shaded, or filled in to identify them (Figure 1). Importantly,
upon identifying all the simplices in a clique complex, structures
called holes can remain, and these are the structures of interest
in this analysis (Figure 1). A hole of dimension k, or k-hole, is
a hole bounded by simplices of dimension k. In this paper, we
focus on holes bounded by 1-dimensional boundaries, also called
“cycles.” In a clique complex, a cycle is a minimal closed path
of length greater than 3 (Figure 1). This is due to the fact that
each clique corresponds to a full simplex so that a triangle is
filled in. The set of k-holes defining a space is described by the
k-th homology group Hk. Each k-hole i is in turn represented
by its generator gki ∈ Hk. Informally, generators are formed of
elements of Hk that identify and can be used to construct the
hole.

2.2.2. Homology
One of the most studied problems in mathematics is that of
defining a notion of similarity between spaces. Intuitively, two
spaces can be thought to be similar if we can transform one
into the other via a well-behaved transformation. In particular,
if there exists a continuous bijective map, a homeomorphism,
that transforms one space into the other, then the two spaces
are said to be homeomorphic. Such spaces are, informally,
topologically the same, and any of their properties that are
conserved by homeomorphism are are thus called topological
invariants.

The homology group, or simply homology, is a property of a
space which is based on the counting of holes and their associated
dimensions. As an analogy to homology, the reader can think of
The Hound of the Baskervilles by Sir Arthur Conan Doyle (Doyle,
1998), where the non-manifestation of the hound one night was
as informative to Sherlock Holmes as its presence. Homology is
a topological invariant which, as explained above, means that it
is a property of a space that is preserved by homeomorphisms
and keeps the same value whatever the representation of the
system (i.e., the bijective map used to look at it). Thus, if two
spaces have the same homology, then they are topologically
equivalent.

2.2.3. Persistent Homology
The process of adding simplices to form a simplicial complex
is called a filtration, and the filtration we use in this paper is
the weight clique rank filtration (Petri et al., 2013). It has been
specifically designed to extract homological features from fully
connected, weighted and signed networks. The filtration starts
with a set of disconnected nodes. Then all the edges from the
original network are sorted in descending order of magnitude
and added one by one as 1-simplices to the complex. After each
addition, the clique complex is constructed and its persistent
homology computed. When a new cycle appears, it is tagged
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with a “birth time,” βi and when it disappears, it is tagged with
a “death time,” δi. The difference between the two time points
defines its persistence πi. It is important to note that when the
starting network is fully connected, all the cycles eventually die
along the filtration. While it is true that the order in which
edges are introduced can depend on very small differences in the
weights, the same small differences would alter the persistence
or appearance of generators by a similarly small value hence
ultimately producing small variations in the scaffold. This is a
consequence of the robustness theorems for persistent homology,
where one substitutes the usual metric with an extended semi-
metric (Cohen-Steiner et al., 2007; Chazal et al., 2012; Bauer and
Lesnick, 2014).

2.2.4. Homological Scaffolds
The homological scaffolds are secondary networks and were
introduced in Petri et al. (2014) as a mean to summarize part of
the persistent homology of cycles information for the edges. As
they localize the cycles on specific edges of the network, they can
naturally be seen as edge centrality measures that characterize the
importance of links in the original network through the filtration
process, where the weights on the edges represent their centrality.

Two scaffolds are introduced to highlight different aspects of
the importance of an edge in the network: the number of cycles an
edge belongs to and the total persistence of the cycles it belongs

to. The weights of the edges are defined as:

ω
f
e =

∑

gj

1e∈gj (1)

for the frequency scaffold H
f
G, and

ω
p
e =

∑

gj|e∈gj

πgj , (2)

for the persistence scaffold H
p
G.

The information given by the scaffolds has to be interpreted
with care, see Section 2.2.6 below for a full description of
the limitations. The python library we developed for persistent
homology analysis, that includes the weight rank clique filtration
and the scaffolds generation is available at: https://github.com/
lordgrilo/Holes.

2.2.5. Example
Persistent homology and the computation of the scaffolds can

be illustrated by a simple toy example, which is described in the

following lines and shown graphically in Figure 3. For simplicity,

some of the edges have a weight of zero and are thus not
represented. The first step is the filtration: edges are added in

decreasing order of magnitude. In the example, edges have five

FIGURE 3 | Toy example illustrating the generation of the homological scaffolds. On top The filtration: edges are added in decreasing order of weight

(thickness and color represent the weights) to arrive at the original network at step (5). Bottom middle The barcode encoding the persistence of the two cycles

〈abcf〉 and 〈cdef〉. Bottom right The persistence (green) and frequency (blue) scaffolds, summarizing the role of the edges in the cycles present during the filtration.
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different weights. Accordingly, five filtration steps are needed,

and five associated clique complexes are formed. There are

two cycles: one born at step (2) and one born at step (3). By
contrast, the edge added at step (4) does not define a new cycle.

The aforementioned cycles are both killed by the addition of

the two edges at step (5). Their persistences are summarized
in the barcode below the filtration. The resulting scaffolds are

on the right of the barcode: the persistence scaffold (green)

and frequency scaffold (blue). Inspecting the weights of both
scaffolds, we conclude that edge 〈fc〉 is the most important to
support the homological structure of the network.

2.2.6. On the Effect of the Cycle Representative
As illustrated by the present paper and Petri et al. (2014),
homological scaffolds can be quite informative, however there
is a caveat one has to be aware of when interpreting the results:
the choice of a cycle’s representative. Persistent homology probes
a dataset for its homological features that are persistent—more
specifically in the case treated in this paper, cycles. Cycles are
topological objects and thus their “sizes” are not uniquely defined,
because the homology generators are defined as an equivalence
class. Indeed, each cycle corresponding to a certain homology
generator can be stretched and deformed, while still remaining
a valid representative cycle. In practice, however, to identify
homological properties of a topological space, one has to recourse
to a representation of the components of the simplices that
bound it. In this setting, a hole will be uniquely identified by

the edges (or higher-dimensional simplices) forming its smallest
boundary at the time of its birth. During the filtration process,
a cycle will potentially shrink due to the addition of an edge.
Although the shrinking has no topological meaning for the hole
itself as it remains the same, its representation changes, i.e., the
specific edges forming its boundary change. The question “what
is the best representative of a cycle” is an open problem and the
definition of best strongly depends on the problem at hand.

In practice, however, this will have an impact. We used the
software package javaplex (Tausz et al., 2011) in our pipeline
for the implementation of persistent homology. It chooses a
representative for a cycle and identifies it with the entire lifetime
of the cycle. This means that a unique set of edges will represent
a cycle, regardless of its possible contraction. This has a direct
implication on the scaffolds, andmeans they are not well-defined.
This does not mean they are not informative, but rather that care
has to be taken when interpreting the meaning of the particular
edges weight forming the scaffolds. The evolution of any cycle
representative is a combination of two possible situations:

1. A cycle shrinks by triadic closure,
2. a cycle is split into 2 smaller cycles.

These two possibilities are illustrated in Figure 4, case (i) on the
top and case (ii) on the bottom. Therefore, one can monitor the
original cycles’ subgraphs evolutions as edges are added during
the filtration to verify how the cycles die and correctly interpret
the homological scaffolds.

FIGURE 4 | Illustration of the two possible routes a cycles can close. Top route: The cycles closes with the addition of triangles. The cycles representative will

be the original cycles 〈abcdef〉, irrespectively of the life time of the sub cycles that are partially closed. Bottom route: The original cycle is split into smaller cycles that

are eventually closed by the mechanism illustrated in the top route. The two cycles that will be represented in the original cycle 〈abcdef〉 and the subcycle 〈abcd〉, as

the cycle 〈adef〉 can be obtained as a linear combination of the first two.
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Practically, this means exploring the statistics of the holes
and verify how they close. It is also important to note that the
aforementioned phenomena are more likely to occur in cycles
that are long lived.

2.3. Graph Theoretical Analysis
By construction, the graphs that we have considered for the
standard graph analysis are unweighted, undirected, and do
not contain self-loops. Their adjacency matrix A is therefore
symmetric, and its elements are equal to 1 if nodes i and j are
connected and zero otherwise.

2.3.1. Standard Graph Metrics in Binarized Graphs
We now briefly introduce the standard local centrality measures
that were applied to the networks: degree centrality (DC),
betweenness-centrality (BC), local efficiency (Eff ), and
participation coefficient (PC). Standard graph measures
were calculated using the Brain Connectivity Toolbox in Matlab
(Rubinov and Sporns, 2010). These metrics each capture
different aspects of the contributions of a node to the network
organization. To facilitate the interpretation of standard graph
metrics, functional connectivity matrices were binarized at
eleven statistical thresholds that give a network link density
(D) in the range [0.10, 0.60] in increments of 0.05, eliminating
the weakest links in the network. This thresholding approach
was performed using the threshold_proportional function of the
Brain Connectivity Toolbox.

The degree centrality is a measure of the total number of
connections that a node has. It therefore depends on the direct
neighborhood of the node. For a node j within a binarized
network comprising N nodes, degree centrality is defined as:

DC(j) =

N
∑

i= 1

Ai,j (3)

The betweenness-centrality of a node measures how many of
the shortest paths between all other node pairs pass through it
and is a measure of its importance when routing information
in the network. By contrast to the degree, BC is dependent of
the overall topology of the rest of the network beyond the direct
neighborhood of a node. For a node k it is defined as:

BC(k) =

N
∑

i 6= j 6= k,i,j= 1

σ̂i,j(k)

σ̂i,j
(4)

where σ̂i,j(k) is the number of shortest paths going from node i
to node j through node k, and σ̂i,j is the total number of shortest
paths going from node i to node j.

The local efficiency of a node k computes how well the
neighbors of a node are connected together. That is, the inverse
of the average shortest path length connecting the neighbors of
that vertex:

Eff (k) =
2

Nn(n − 1)

n
∑

i∈G

n
∑

i<j∈G

1

di,j
(5)

where n is the number of neighbors of a node k.

In addition, a community detection algorithm based on
modularity (Louvain method with finetuning; Blondel et al., 2008)
was applied to the adjacencymatrix withD = 0.40, and identified
six communities for the partition optimizing the modularity
function. The participation coefficient was then calculated for
each node in this network. The participation coefficient compares
the degree of a given node to nodes in all other communities with
the number of links it has within its own cluster. Nodes with a
high participation coefficient are therefore expected to play an
important role in binding different communities together and
hence contribute to global integration. This measure therefore
provides additional information about a node’s role in the
network topology which cannot be inferred from measures of
topological centrality alone. It is defined as:

PCi = 1−

NC
∑

c= 1

(

kCi

ki

)2

, (6)

where ki is the degree of node i and kCi its degree limited to
cluster C.

2.3.2. Weighted Network Analysis
As a follow-up analysis, we explored the relationship between
the PSS and the weighted counterparts of the same three
graph metrics employed in the original graph analysis described
in Section 2.3.1: the nodal strength (weighted counterpart of
degree), the weighted betweenness centrality (wt − BC), and
the weighted local efficiency (wt − Eff ). By definition, the
computation of these measures on a fully connected weighted
graph does not rely on the ad hoc thresholding of the FC matrix.
The mathematical formulation of the weighted version of the
metrics are the same as in the unweighted case. For the nodal
strength, one sums up the weights of the links connected to a
node:

SC(j) =

N
∑

i= 1

Wi,j. (7)

For the weighted versions of betweenness centrality and
efficiency, the difference resides in the definition of the shortest
path. In the BCT implementation, the shortest path is computed
via a breadth-first search algorithm that follows the links with the
smallest weight (Brandes, 2001).

2.3.3. Definition of PSS
Lastly, we define a new centrality measure for the homological
scaffolds, the nodal PSS. It is essentially the strength of a node, i.e.,
the sum of the weights of its links, in the persistence scaffold H

p
G.

We gave it a different name to clearly differentiate its meaning
as a measure obtained from the persistent homology procedure
instead of pairwise interactions between edges and vertices. It is
defined as:

PSS(j) =

N
∑

i= 1

H
p
G i,j (8)

The PSS thus compresses into a scalar information about
the persistence of cycles passing through a given node. The
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PSS may thereby effectively capture the combination of a
nodes central position in the network and the relative lack
of connectivity amongst its local neighborhood. Moreover, as
outlined above, the PSS does not rely on ad hoc thresholding
of the functional connectivity matrix and therefore includes
information from all the edges in the network. This is an
important distinction between the PSS and the topological
centrality metrics traditionally measures applied to functional
neuroimaging data.

2.3.4. Definition of Functional Hubs
Node-level values were calculated for the PSS measure as well
as standard graph centrality measures. As indicated above, the
PSS does not require a priori thresholding of the functional
connectivity matrix. However, for the computation of local graph
measures (DC, Eff , and BC), we calculated the node-level metric
values at each of eleven different thresholds over the D =

[0.10, 0.60] range. This curve was then integrated to yield a single
nodal metric value that is independent of the threshold. The
highest-ranking nodes (termed “hubs” for concision) were then
identified for each measure under study. They were defined as
those nodes with a metric value larger than 1 standard deviation
from the mean of their respective distribution.

3. RESULTS

3.1. Relationship between Nodal PSS and
Standard Graph Metrics
3.1.1. Topological Centrality in Binary Networks
The main objective of this analysis was to examine the
relationship between standard topological centrality measures
described above; DC, BC, Eff , and the nodal PSS. This was
done by computing bivariate correlations between the standard
graph metric values and nodal PSS across the threshold range
applied to the functional connectivity matrix. The R-values for
each analysis are plotted in Figure 5, and the corresponding
p-values shown in Table 1. It is important to note that while
different FC network thresholds were used for the standard
graph analysis, the input FC matrix for the persistent homology
analysis did not require a priori thresholding, which is a potential
strength of this methodology. In order to verify that the reported
associations between nodal PSS and standard metric values at a
given threshold were not simply driven by the direct connectivity
of network nodes, we also examined the correlations DC vs. BC,
DC vs. Eff , and BC vs. Eff as control conditions (Figure 5).

PSS vs. DC: The positive correlation between PSS and DC
was significant at all thresholds under study, although it was
consistently weaker than the correlation of PSS vs. BC.

PSS vs. BC: The PSS showed strong and also statistically
significant positive correlations with the BC metric at all
thresholds under study. This indicates that PSS is associated with
a node’s tendency to be part of shortest paths between node pairs
in the network.

PSS vs. Eff : Conversely, a strong and significant negative
correlation was observed between the PSS and Eff metrics at
all but one threshold, showing that high PSS nodes generally

avoid densely connected neighborhood clusters. These results are
illustrated in the top panel of Figure 5.

DC vs. BC: By contrast to PSS vs. BC, the DC vs. BC
correlation failed to reach statistical significance at 5 of the
11 thresholds under study. When the relationship did reach
statistical significance at some of the higher network densities,
the DC vs. BC correlations remained on average weaker than PSS
vs. BC over the same threshold range.

DC vs. Eff : The DC vs. Eff correlation also showed a
threshold-dependent profile. Significant positive correlations
were observed at some of the lower densities in theD = [0.1, 0.2]
range which contrasted with the negative correlations between
PSS vs. Eff observed at these same thresholds. DC vs. Eff did not
reach statistical significance at any of the thresholds exceeding
D > 0.35.

BC vs. Eff : Finally, the negative correlation between the BC
and Eff metrics was qualitatively similar to the BC vs. PSS
correlation over the threshold range. However, BC vs. Eff did
not reach statistical significance at the lowest network density of
D = 0.1 and the negative correlation strengths at higher densities
were overall stronger (and less stable) for BC vs. Eff than PSS vs.
BC. These results are graphically represented in the bottom panel
of Figure 5.

3.1.2. Topological Centrality in Weighted Networks
As a follow-up analysis, the relationships between the PSS and the
weighted counterparts of the metrics used in the original analysis
were also studied. These included the nodal strength, weighted
betweenness-centrality (wt − BC) and weighted efficiency (wt −
Eff ).

Strength vs. PSS: There was a borderline significant positive
correlation between the nodal strength in the weighted network
and the PSS: R = 0.21, n = 90, p = 0.046.

wt − BC vs. PSS: The positive correlation between wt − BC
vs. PSS was stronger than strength vs. PSS and highly significant:
R = 0.39, n = 90, p < 0.01; consistent with the results of the
binary graph analysis.

wt − Eff vs. PSS: There was a significant positive correlation
between PSS vs. wt − Eff : R = 0.23, n = 90, p = 0.03. This
relationship was opposite to that observed in the binary network
analysis where PSS vs. Eff instead showed a strong negative
association at all thresholds under study.

3.1.3. Participation Coefficient
For the network with an intermediate density of D = 0.40, a
community detection algorithm was applied to the data and the
participation coefficient (PC) was computed for each node in the
network. A significant positive correlation was revealed between
PC and PSS, R = 0.32, n = 90, p < 0.01. This indicated that the
PSSmeasure also reflects the tendency of a node to act as a bridge
across communities in distributed brain networks.

3.2. Identification of Functional Hubs Using
the PSS and Standard Graph Measures
We now explain the results shown in Figures 6, 7. Functional
hubs were identified on each of the PSS, DC, Eff , and BC
measures using the procedure outlined in Section 2.3.4. Fourteen
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FIGURE 5 | Top: Relationship between nodal persistence scaffold strength (PSS) and standard topological centrality measures. At each threshold under study, the

value of the bivariate correlation coefficient (R) between PSS and each of: degree-centrality (DC), betweenness-centrality (BC), and local efficiency (Eff ) is plotted.

Bottom: Relationship between standard topological measures. The same procedure as above is repeated for correlations between: DC vs. BC, DC vs. Eff , and BC

vs. Eff as control conditions. Filled shapes indicate the presence of a statistically significant correlation between the two variables (p < 0.05).

AAL regions (out of 90) were identified as hubs on the PSS
measure. The most important overlap was observed between
the PSS-hubs and the DC-hubs (5/14) and the second-most
important overlap was between the PSS-hubs and BC-hubs
(4/14). We note that this was the case despite the presence of
a stronger positive correlation between PSS vs. BC than PSS
vs. DC at all the thresholds under consideration. As expected,
Eff -hubs showed the least amount of overlap with the PSS-hubs,

consistent with the strong negative correlation between these two
measures.

4. DISCUSSION

Persistent homology provides a window into the global
organization of the edges’ weights fabric of a graph. The
present results indicate that persistence homological scaffolds
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TABLE 1 | p-values of correlations in Figure 5.

PSS v DC PSS v Eff PSS v BC DC v BC DC v Eff BC v Eff

D = 0.10 0.0001 0.0405 0.0001 0.0003 0.0001 0.8792

D = 0.15 0.0016 0.0306 0.0016 0.7669 0.0001 0.0170

D = 0.20 0.0001 0.0812 0.0001 0.4625 0.0057 0.0004

D = 0.25 0.0031 0.0001 0.0031 0.0725 0.6113 0.0001

D = 0.30 0.0001 0.0001 0.0001 0.1602 0.0165 0.0003

D = 0.35 0.0003 0.0003 0.0003 0.0113 0.0786 0.0041

D = 0.40 0.0001 0.0001 0.0001 0.0104 0.3999 0.0001

D = 0.45 0.0001 0.0001 0.0001 0.0009 0.7328 0.0001

D = 0.50 0.0001 0.0001 0.0001 0.0024 0.4340 0.0001

D = 0.55 0.0009 0.0001 0.0009 0.0051 0.6192 0.0001

D = 0.60 0.0023 0.0001 0.0023 0.3332 0.5165 0.0001

may be useful objects to consider in functional neuroimaging
research. The persistence scaffold notably circumvents the need
for ad hoc thresholding of the functional connectivity matrix
and is constructed using the data of all the edges present
in the original network. Moreover, the concept of simplicial
complexes upon which the persistence scaffold is built allows
one to describe relations between distributed sub-populations
of network elements consistent with the brain’s encoding of
information in distributed networks, and is not restricted to
dyadic associations between region pairs.

In order to study the relationship between standard network
metrics and on the persistence homological scaffold, we
calculated the strength of each node in the persistence scaffold
and termed this novel measure the persistence scaffold strength
(PSS). The PSS measure hence differs in important ways from
the standard graph metrics used in neuroimaging studies as it
includes information from seemingly unimportant edges with
weak weights in the network, and considers the contributions
of mesoscopic structures (“cycles”) to the network organization,
rather than edge-vertex interactions. We then examined how
PSS relates to some of the local binarized and weighted graph
theoretical metrics typically employed in neuroimaging studies.

Of the binary graph metrics under study, PSS showed the
strongest positive correlation with the betweenness-centrality
metric (BC) across the entire threshold range. Even when
controlling for the node degree by means of a partial
correlation analysis, the positive association between PSS and
BC remained highly significant. This suggested that high PSS
nodes are likely to contribute to the binding of information
across different sources in the brain by creating shortest
paths between node pairs. Conversely, a strong negative
correlation was observed between PSS and local efficiency (Eff ),
and indicates that nodes with a high PSS are unlikely to
participate in strongly integrated local networks. To further
explore the association between the PSS measure and functional
integration, we conducted a modularity analysis and computed
the participation coefficient (PC) of network nodes. A strong
positive correlation between PC and PSS was found in the
network under study. Nodes with a high participation coefficient
preferentially make connections to network communities other

than their own, consistent with network roles in global
integration.

Taken together, these observations lead to an understanding
of the meaning of this new centrality measure and on the
interpretation of persistent homological scaffold. The tendency
of high PSS nodes to bind topologically remote modules in the
brain whilst simultaneously avoiding clustered neighborhood
reflects the significance of persistent homology in resting-state
fMRI data. PSS therefore captures different aspects of global
network organization in a natural index that does not rely on any
weighted average of classic graph metrics, and that extracts this
information directly from the data. We also note that although
for interpretational purposes we limited ourselves to the study
of the first homology group, the PSS can easily be generalized to
higher dimensions, where it would capture aspects of the network
organization that are not reflected at all by traditional network
metrics.

When bypassing the thresholding step and instead comparing
the PSS to the weighted counterparts of the standard graph
measures computed on the fully connected network, the results
for strength and wt − BC were broadly consistent with those
of the binarized networks. As in the binary network analysis,
the strength vs. PSS correlation was positive and significant,
but weaker than the wt − BC vs. PSS correlation. However, a
significant positive correlation was observed for the PSS vs. wt −
Eff correlation in the weighted network, which was inconsistent
with the results of the thresholded network analysis where the
binarized version of the two metrics were actually negatively
correlated at every threshold under study. This exemplifies that
the generalization of a binary graph metric to a fully connected
weighted network does not imply its specialization.

Finally, we note that the nodal PSS does not merely
recapitulate the betweenness-centrality metric. Although the
correlation between PSS and BC measures was significant at all
thresholds under study in the binary networks analyses, only
4 of the 14 highest ranking PSS nodes overlap with the hubs
identified on the BC metric (Figure 7). This may be explained
by the fact that some nodes ranking highly on the betweenness-
centrality metric concurrently participate in strongly connected
neighborhood clusters; their respective edges would thus form
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FIGURE 6 | Normalized Metric Values. The normalized nodal values are displayed for each graph measure under study. The values for PSS, BC, DC, and Eff are

respectively depicted from left to right. While computation of the PSS does not require ad hoc thresholding, the BC, DC, and Eff metrics are threshold-dependent and

nodal metric values have thus been integrated over the threshold range under study to generate a single value for each node. The analysis used is described in detail

Section 3.2.

clique complexes at an early stage in the filtration, leading to low
PSS value. Moreover, the value of the correlation between PSS
and BC was around R = 0.4 in both the binarized and weighted
network analyses, which further suggests that the PSS and BC do
not reflect identical network attributes.

The highest-ranking regions on the PSS measure
(Figures 6, 7) were distributed across the brain, consistent
with potential roles in the global integration of local networks.

There was nevertheless a tendency for the PSS hubs to belong
to frontal cortical areas (middle and superior frontal gyri,
precentral gyrus, rolandic operculum, cingulate), and subcortical
structures (amygdala, globus pallidum, caudate nucleus). In
the posterior brain, PSS-hubs within the parietal lobe included
the inferior and superior divisions of the parietal gyrus but did
not include midline parietal structures. In the occipital lobe, a
visual association area located in the superior occipital cortex
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FIGURE 7 | Graphical display of the highest-ranking nodes. Functional hubs identified on the PSS measure and three standard topological centrality metrics

(BC, DC, Eff ). Hubs on each measure are defined as having a value >1 S.D. of the mean of their respective distribution. Nodes overlapping with the PSS hubs are

shown in brown. The corresponding AAL labels for each numerical index are included in Supplementary Figure S1.

ranked highly as a PSS hub, as did the calcarine fissure which
includes part of the primary visual cortex (V1). We note that
V1, which also ranked highly on the DC metric in this study,
has previously been shown to engage in distributed networks
thought to support mental imagery during the resting-state
(Wang et al., 2008). Interestingly, no subdivision of the temporal
cortices were included amongst PSS-hubs, despite several of
these regions ranking highly on the DCmeasure.

We also paid attention to the special case of high-ranking
PSS nodes which did not qualify as “hubs” on any of the
three standard topological centrality measures (DC, Eff , BC).
This subset of nodes was anatomically restricted to the lateral
frontal and parietal cortices. They included the middle and
superior frontal gyri, as well as inferior and superior sections
of parietal gyri. These findings would suggest that, relative
to standard topological centrality metrics, the PSS may be
particularly sensitive to the network activity of frontal and
parietal association areas located on the lateral surface of
the brain. This would be consistent with the established role
of these regions toward supporting high-level cognitive and
behavioral functions requiring the large-scale coordination of
network elements. The relative importance of PSS-hubs toward
the information processing capacities of the brain should notably
be assessed in future studies by means of virtual lesions in whole-
brain computational models (Deco and Kringelbach, 2014; Deco
et al., 2015; Váša et al., 2015).

It has now become well recognized that the brain performs
local computations in segregated modules that become
seamlessly integrated over space and time to support high-level
functions necessary for survival. Some brain regions are likely
to play a more critical role than others toward enabling the
global integration of information. The exact identities of these
regions and the optimal experimental approaches for identifying
them remain unclear. However, recent evidence would suggest
that integrative nodes, such as those potentially identified via
the persistence homological scaffold, require metastability for
maximal exploration of the full dynamic repertoire of the brain
(Kringelbach et al., 2015). Previous research has employed

diffusion tensor imaging (DTI) and graph theoretical analysis
to identify a subset of hubs which forms a central core or
“rich-club” that has been suggested to be important for global
brain integration by linking together spatially remote network
communities (van den Heuvel and Sporns, 2011). Yet, the
mapping of a structural network architecture that can plausibly
support segregation and integration does not describe the causal
mechanisms and/or activity dynamics that actually underlie
functional segregation and integration of information (Deco
et al., 2015). The identification of integrator hubs directly from
functional neuroimaging data using the homological scaffold
may be particularly valuable in this regard.

The application of computational topology analysis to
functional neuroimaging data is a novel avenue of research,
and the physiological significance of homological scaffolds and
related measures remains unclear. Given that high PSS nodes
participate in a large proportion of cycles along the filtration,
such nodes may be well positioned to contribute to a specific
type of integration where, for example, a given neural pathway
diverges than re-converges. Examples of such pathways include
the dorsal/ventral visual streams and the well-defined cortico-
basal loops between the basal ganglia and motor cortex. Further
studies will be needed to test these hypotheses with specificity,
but we nevertheless point out that the identification of both visual
areas as well as basal ganglia and cortical motor areas amongst the
PSS-hubs in the present analysis supports this idea.

Whilst the present results suggest that high-ranking PSS
nodes could be well positioned to support the integration of
information across segregated brain modules, further studies
will be needed to confirm this observation. One potential
approach would be to apply recently developed measures
of perturbational integration and segregation in a whole-
brain computational model. Previous work has shown that,
by perturbing in silico neural dynamics by a random set of
Gaussian inputs, one can estimate the amount of integration in
the system calculated after each perturbation. In this context,
perturbational integration is defined by considering the length
of the largest connected component of the functional network
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as an estimate of the amount of integration in the system
after each perturbation, as described in detail in Deco et al.
(2015). One would therefore expect virtual lesions to high-
PSS nodes to have a particularly profound impact on the
system’s integration capabilities, relative to randomly selected
network nodes. Another possibility would be to investigate
changes in PSS hubs assignment and distributions in clinical
syndromes characterized by disordered functional integration at
the whole-brain scale, such as schizophrenia (Alexander-Bloch
et al., 2010; Lynall et al., 2010). Both approaches could help
determine to what extent PSS-hubs support the integration of
network elements, and potentially provide useful insights into the
neurobiological attributes of topologically central brain regions
in the homological scaffold.

Another limitation of this study, as mentioned in Section
2.2.6, is the choice of the representative cycles for homology
classes, which could result in selecting edges that do not belong
to the shortest cycle around a certain hole. A possible way
around this limitation would be to perform an a posteriori
analysis of the cycles, in which one controls for the evolution
of the subgraph’s transitivity (as done in Petri et al., 2014). One
could also consider employing computationally cumbersome
techniques to track the shortest path across the filtration and
then update the scaffold accordingly, Dey et al. (2011a,b). Further
work is needed to establish which protocol would be most suited
to the specific case of fMRI networks. Our results on network
communities nevertheless suggest that the cycle choice issues
might not be so critical in our study and potentially lead to a
stronger PSS interpretation. Indeed network communities, being
densely connected internally and strong information integrators,
likely constitute the network regions where connected triangle
components reside and thus the regions where different
representative cycle choices are possible. Moreover, scaffold
hubs already tend to have large participation coefficients
suggesting that they behave as information brokers between these
communities and are therefore, although imperfectly, capturing
the large-scale homological structure.

In summary, the present study has explored the relationship
between standard network metrics in functional brain network
and the persistence homological scaffold derived from the same
fMRI dataset. The computation of a local graph measure on
the PSS differs from standard applications of graph theory to

functional neuroimaging data as the scaffolds are not derived
from typical dyadic interactions between network elements, and
consider information from all edges in the network. The results
suggest that topologically central nodes in the persistence scaffold
may play important roles toward supporting the functional
integration of information across brain modules. Future work
should investigate the sensitivity of the homological scaffolds and
derived measures to disease-related changes in brain function as
well as the specific type of integration performed by the strongest
edges and nodes in the scaffolds.
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