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Gabor filters have long been proposed as models for spectro-temporal receptive

fields (STRFs), with their specific spectral and temporal rate of modulation qualitatively

replicating characteristics of STRF filters estimated from responses to auditory stimuli in

physiological data. The present study builds on the Gabor-STRF model by proposing

a methodology to quantitatively decompose STRFs into a set of optimally matched

Gabor filters through matching pursuit, and by quantitatively evaluating spectral and

temporal characteristics of STRFs in terms of the derived optimal Gabor-parameters.

To summarize a neuron’s spectro-temporal characteristics, we introduce a measure for

the “diagonality,” i.e., the extent to which an STRF exhibits spectro-temporal transients

which cannot be factorized into a product of a spectral and a temporal modulation.

With this methodology, it is shown that approximately half of 52 analyzed zebra finch

STRFs can each be well approximated by a single Gabor or a linear combination of two

Gabor filters. Moreover, the dominant Gabor functions tend to be oriented either in the

spectral or in the temporal direction, with truly “diagonal” Gabor functions rarely being

necessary for reconstruction of an STRF’s main characteristics. As a toy example for the

applicability of STRF and Gabor-STRF filters to auditory detection tasks, we use STRF

filters as features in an automatic event detection task and compare them to idealized

Gabor filters and mel-frequency cepstral coefficients (MFCCs). STRFs classify a set of six

everyday sounds with an accuracy similar to reference Gabor features (94% recognition

rate). Spectro-temporal STRF and Gabor features outperform reference spectral MFCCs

in quiet and in low noise conditions (down to 0 dB signal to noise ratio).

Keywords: auditory receptive fields, spectro-temporal patterns, Gabor filters, matching pursuit, acoustic event

classification

INTRODUCTION

Robust detection and identification of behaviorally relevant sounds in possibly adverse acoustic
conditions is routinely performed by animals and humans. In order to achieve this superior
performance, the auditory system is thought to extract acoustic features from incoming sounds
that are well-tuned to sound components facilitating acoustic event detection and discrimination
(e.g., Lewicki, 2002; Coath and Denham, 2005; Smith and Lewicki, 2006). Applications such as
computational auditory scene analysis, automatic speech recognition and signal enhancement may
highly benefit from identifying and employing similar features. At the same time, performance
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of artificial systems equipped with nature-inspired acoustic
feature extraction may provide a quantitative, albeit indirect,
measure of those features in human and animal listening tasks.

While the auditory periphery is comparably well-
characterized by experimental techniques, understanding
processing in the inferior colliculus and auditory cortex requires
a combination of experiment, data analysis and modeling.
The spectro-temporal receptive field (STRF, Aertsen and
Johannesma, 1981) represents a linear approximation to an
auditory neuron’s response characteristics. It is estimated from
presented acoustic stimuli and recorded spike responses using
the reverse correlation method or related statistical techniques
(Bussgang, 1952; Aertsen and Johannesma, 1981; Chichilnisky,
2001). Since the obtained STRF pattern is the result of a
combined stimulation, neuronal processing and statistical
estimation procedure, it generally depends on a multitude of
factors including animal species, stimulus ensemble, linear, non-
linear, static and time-varying neuronal response characteristics,
as well as the statistical inference method employed. STRFs
have been measured in various species such as frogs (Eggermont
et al., 1983; Bibikov, 1987), cats (Valentine and Eggermont,
2004), ferrets (Depireux et al., 2001), rats (Poon and Yu, 2000),
gerbils (Lesica and Grothe, 2008), and birds (Theunissen et al.,
2000; Woolley et al., 2005), showing that qualitative STRF
characteristics are to a certain extent preserved across species
and stimulus ensembles. Current ridge regression methods
for performing reverse correlation obtain STRF estimates
that are robust under variations of second-order correlations
in the stimulus ensemble, including to some extent natural
stimuli (Theunissen et al., 2000; Chichilnisky, 2001; Escabi and
Schreiner, 2002; Paninski, 2003; Klein et al., 2006). Limitations to
the linear and time-invariant STRF model have been investigated
by several authors. They may result from higher-order statistics
or non-stationarity in stimulus ensembles, non-linear neuronal
processing or neuronal plasticity (Sahani and Linden, 2003;
Kvale and Schreiner, 2004; Machens et al., 2004; Valentine and
Eggermont, 2004; Fritz et al., 2005; Nagel and Doupe, 2006;
Christianson et al., 2008) and require specific algorithms for the
reliable estimation of underlying STRFs (Sharpee et al., 2004;
Meyer et al., 2014a,b, 2015).

Typical STRFs display neuronal sensitivity that is localized in
a short temporal window prior to spike generation and within
a limited spectral range around the acoustic center frequency.
Spectro-temporal sensitivity patterns often correspond to
temporal or spectral onset processing; tuning to combined
spectro-temporal transients has also been reported (cf. for
example Versnel et al., 2009; Andoni and Pollak, 2011). Gabor
basis functions have been proposed as a model for these observed
two-dimensional spectro-temporal dynamics in STRFs, resulting
in a family of functions that are parameterized in terms of
acoustic center frequency, temporal position, spectral rate of
modulation and temporal rate of modulation (Jones and Palmer,
1987; Qiu et al., 2003). A more general approach was pursued
by Lindeberg and Friberg (2015), who presented a theoretical
framework for spectro-temporal representations of sound, of
which Gabor filters (among others) can be derived. They could
show that their approach replicates STRFs found in a wide

range of literature. Modulation analysis in spectral sub-bands
(Kollmeier and Koch, 1994; Kingsbury et al., 1998; Jepsen et al.,
2008) provides a model for processing of temporal dynamics
only, e.g., using a bank of modulation bandpass filters or through
delta and double-delta filters from automatic speech recognition
(Moritz et al., 2015).

The goal of the present study is to quantitatively investigate
spectro-temporal characteristics of physiologically measured
STRFs. We propose a two-dimensional matching pursuit
approach to approximate STRFs in terms of Gabor functions.
Thus, Gabor functions serve as “atoms” during the matching
pursuit estimation process that approximates STRFs with a sparse
combination of Gabor patterns. Dominant spectro-temporal
characteristics are retained during the estimation process. Minor
variations are discarded depending on a reconstruction threshold
that is varied as an independent parameter in our experiments,
resulting in a compressed representation that resembles reduced
redundancy in neural coding. Subsequent analysis of the
parameters pertaining to those Gabor atoms that have been
identified as dominant through matching pursuit, permits a
quantitative characterization of the relevant spectro-temporal
characteristics that are found most frequently in observed
STRFs. These analyses implicy relative importance of purely
spectral, purely temporal and joint spectro-temporal components
in STRFs.

Applications from audio signal processing, computational
auditory scene analysis and automatic speech recognition make
use of modulation features in order to more accurately model
natural signals (Lobo and Loizou, 2003; Turner and Sahani,
2007; McDermott and Simoncelli, 2011) and increase robustness
under variability of environmental conditions such as recording
channel, additive noise and speaker/target characteristics
(Kleinschmidt and Gelbart, 2002; Mesgarani et al., 2006; Chu
et al., 2009; Bach et al., 2011). Identification of those components
in STRF patterns that represent salient features for automatic
detection and recognition is thus important for development
of robust recognition algorithms (Hermansky, 1998; Thomas
et al., 2010). Compact feature sets comprising a small number
of spectro-temporal basis functions are preferable from a
numerical efficiency and statistical estimation perspective. Thus,
investigation of the relation between STRFs and their dominant
Gabor model components in the context of acoustic event
detection may yield such a compact feature set for recognition
algorithms. We explore the use of STRF-based feature extraction
as front-end in an audio classification task, whose main aim
is to identify strengths and weaknesses of the STRF approach
in general, on a well-defined and manageable set of tasks, and
to propose ways to improve on these in future work. Using
classification accuracy as a performance measure, we compare
STRF front-ends with Gabor front-ends and with Mel-frequency
cepstral coefficients.

METHODS

STRF Estimation
The classic approach to STRF estimation is reverse correlation
between stimulus and response (Bussgang, 1952; Aertsen and
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Johannesma, 1981; Chichilnisky, 2001). Let s = (s1s2...sD)
T

denote the spectro-temporal stimulus pattern preceding the
response in a specific time window, recast as a D-dimensional
vector. r is the corresponding response value estimated from
multiple stimulus repetitions. Without loss of generality, we
assumed that the stimulus vectors have a mean of zero. The
reverse correlation function can be estimated as the spike-
triggered average:

hRC ∝ 〈sr〉s , (1)

where 〈·〉s denotes expectation over the whole stimulus ensemble.
hRC is a vector with the same size as the spectro-temporal
stimulus patterns used for the estimation, and indicates the
stimulus features to which the neuron is most sensitive.

Natural signals are often correlated across time and frequency
and have on several occasions been reported to exhibit a 1/f -like
power spectrum. (Voss and Clarke, 1975; Attias and Schreiner,
1997; Woolley et al., 2005). Correlations can be removed using
the (pseudo-)inverse of the stimulus auto-covariance matrix
〈

ssT
〉

s
(Theunissen et al., 2000). To avoid overfitting, we used a

regularization scheme based on ridge regression (Machens et al.,
2004):

hridge ∝
〈

ssT + λI
〉−1

〈sr〉 . (2)

where I is the identity matrix and λ ≥ 0 is the regularization
parameter, ranging from a non-regularized solution (λ = 0)
to the original reverse correlation function (Equation 1) for
λ → ∞. We used this estimate as a regularized, whitened,
spike-triggered average (STA).

The STRF estimation based on STA was repeated using a
bootstrap procedure: 20% of the spike data was drawn randomly
and an STRF was estimated based on those items. This was
repeated 1000 times, and the mean and standard deviation of
each STRF coefficient over the 1000 repetitions were computed.
Only coefficients that significantly (p < 0.05) differed from
the null hypothesis were kept, the rest was set to 0, resulting
in visually “clean” STRFs (Escabi and Schreiner, 2002). Non-
zero spectro-temporal “pixels” of size 1x1 that were completely
surrounded by zero components (i.e., considering the 3 × 3
spectro-temporal patch centered around the non-zero pixel) were
regarded as insular artifacts and removed.

The correlation between neural response and model
prediction was computed depending on the regularization
parameter. In a 5-fold cross-validation setting, we used the
regularization parameter that resulted in the highest mean
correlation (mean over cross-validation iterations) for STRF
estimation. Furthermore, we only included STRFs that yield
a mean correlation of at least 0.25 on previously unseen data,
resulting in a total of 52 STRFs.

While experimental sampling of auditory areas is generally
sparse relative to the total number of auditory neurons, the
shapes of the measured receptive fields were assumed to be
representative of the whole neuronal population. Thus, cells with
similar spectro-temporal sensitivities were also expected to exist
for different best frequencies. While experimental limitations
do not allow a rigorous proof of this assumption, it plausibly

lends itself to the approach of STRF pattern replication across
frequency as pursued here (see below).

Gabor Filter Bank
Gabor functions constitute a quantitative description of two-
dimensional spectro-temporal filters for feature extraction. They
have been widely used in image processing, but successful
applications are also found in audio event detection (Chu et al.,
2009) and automatic speech recognition (Meyer et al., 2011).
Gabor filters have been put forward as models for receptive fields
in vision as well as audition. They lend themselves naturally to
two-dimensional pattern recognition in terms of modulations,
with Gabors of different widths covering different transfer
properties. Gabors are constant-Q filters when the number of
oscillations under the envelope is held fixed, similar to (Morlet)
wavelet analysis. Here, Gabor filters were defined as a complex
sinusoidal carrier with a Hann envelope:

g(t, f ) = s(t, f )h(t, f )

= sωt (t)sωs (f )hbt (t)hbs (f ) (3)

where

sω(x) = eiωx (4)

hb(x) =
{

0.5− 0.5 cos
(

2πx
b

)

,− b
2 < x < b

2
0 , else

(5)

Schädler et al. (2012) designed a filter bank of Gabor filters whose
transfer functions uniformly cover the temporal and spectral
modulation subspace (spanned by the spectral and temporal
resolution of the 2D representation). We used the same filter
bank design, adapting the parameters to the employed spectro-
temporal peripheral model. The spectral extent of the Gabors
was limited to 21 bands (size of the STRFs). The cited procedure
lead to Gabor filters covering spectral modulations between 0 and
0.25 cyc/Bark and temporal modulations between 0 and 125Hz.
The real parts of the resulting (complex-valued) Gabor filters are
shown in Figure 1.

Spectro-Temporal Convolution with STRF
and Gabor Functions
STRF- and Gabor-derived features for classification were
computed by 2D-filtering of spectrograms. Using all 52 STRF
patterns as 2D filters resulted in 1092 feature dimensions
(21 frequency channels× 52 filters). The number of feature
components could be reduced by exploiting the high correlation
found between the outputs of adjacent frequency channels in
STRFs with large spectral extent. Since highly correlated feature
components can result in reduced classifier performance, a
number of representative channels was selected by sub-sampling
the 21-dimensional output of each STRF-based filter. For Gabor
filters, the filter width was computed as the 1/e decay point
of the envelope; for STRFs, the filter width was estimated as
the spectral width containing 90% of the energy of the filter.
Channels closer than 1

4 of the filter width in spectral direction are
dropped, cf. Schädler et al. (2012) for details. Finally, Principal
Component Analysis (PCA) was performed to decorrelate the
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FIGURE 1 | The full Gabor filter bank. Each square has a width of 100ms

and a height of 21 Bark channels.

feature dimensions. Figure 2 displays the amount of variance in
the data cumulatively explained by the PCA components. STRF
features have the steepest PCA curves, i.e., their variance can
be explained with the lowest number of dimensions. This arises
from the strong similarity between some STRFs which causes
them to produce highly correlated features. By construction,
the Gabor filter set consists of highly non-redundant filters.
The filter shift along frequency (see above) as well as some
spectro-temporal overlap between the filters causes some feature
channels to be (weakly) correlated. Table 1 shows the number
of dimensions needed to account for 90 and 99% of the data.
The high numbers for Gabors and the low numbers for STRFs
illustrates the high degree of redundancy in STRFs compared to
Gabor filters.

In the experiments section, some results are given in terms
of accuracy against relative amount of variance explained by
the PCA in order to compare the different feature sets. We use
variance as an (arguably imperfect) estimator of information
content, assuming Gaussian distributions throughout.

Matching Pursuit Analysis of STRFs with
Gabor Atoms
As described above, Gabor filters have been proposed as models
for STRFs. Explicitly describing the STRFs found in the present
work in terms of the Gabor filter bank underscores this choice.
This was done by implementing a two-dimensional matching
pursuit (MP) algorithm (Mallat and Zhang, 1993). MP is a greedy
reconstruction algorithm of signals by a dictionary of given
“atoms.” In our case, the target “signals” were the STRFs, and

FIGURE 2 | PCA results. Cumulative variance explained by the PCA

components plotted against the number of feature dimensions used. Since

STRF, Gabor, and estimated Gabor feature spaces have different

dimensionalities, values along the abscissa are relative. The abscissa is

log-scaled to better visualize the interesting region of low dimensionality.

TABLE 1 | PCA results.

Variance Explained Feature set Dimensions

90% STRF 8 (1%)

90% Gabor 26 (7%)

99% STRF 30 (6%)

99% Gabor 74 (21%)

Results of the principle component analysis: number of features needed to account for

90 and 99% of the variance. The second column contains the feature sets. “STRF”:

estimated neural responses; “Gabor”: Gabor filter bank (Figure 1). The third column gives

the number of dimensions; percentages relative to the dimensionality of full feature set are

given in parentheses.

the atoms were defined by the elements of the Gabor filter bank.
MP computes the overlap γ between signal and each atom in
the dictionary by correlation. At each iteration step i, γijk was
defined as the maximal correlation coefficient, computed from
two-dimensional correlation between the j-th Gabor atom and
the k-th STRF. Let CC denote two-dimensional cross-correlation,
g the Gabor function as defined above, and S the STRF:

γijk = max{CC(gj, Sk)}
∣

∣

iter=i
(6)

γ was computed for all Gabor atoms, the projection of the
atom with the largest correlation coefficient was subtracted from
the signal, and the process was repeated on the residual signal.
The correlation coefficient θ between original and reconstructed
STRFs increases monotonically through MP iterations. For
most tasks, we chose θ = 0.8 as termination criterion. As
described above, the Gabors are complex-valued filters; for MP,
we used the real (symmetric) and imaginary (antisymmetric)
parts as independent, real-valued Gabor atoms. Re-synthesized
STRFs were in turn used for feature extraction and subsequent
classification. The effect of the MP re-synthesis on these
features was two-fold: first, the filter shapes are approximated
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by smooth Gabor shapes, i.e., irrelevant noise and artifacts in
the STRF patterns may be removed when the reconstruction
is sufficiently coarse. Second, from an information point of
view, approximating filters incompletely results in a loss of
information.

For further analysis, we defined a measure κ of “spectro-
temporality” of the reconstructed filters, which is computed as
follows: the vector of modulation frequencies of a Gabor atom,
ω, was L2-normalized, i.e., it was projected to the unit circle
in modulation space. κ was then computed as its L1-norm (cf.
Figure 3). Let ω = (ωt ,ωs) be the vector of temporal and spectral
modulation frequency of a Gabor atom. For each element of ω:
π/2 ≤ ωt|s ≤ π/2. Then the spectro-temporality measure κω of
this Gabor atom is defined as the L1-norm of the L2-normalized
frequency vector:

κω =
∥

∥

∥

∥

ω

‖ω‖2

∥

∥

∥

∥

1

=
|ωt| + |ωs|
√

ωt
2 + ωs

2
(7)

κ ranges from 1 (purely spectral or purely temporal) to
√
2

(diagonal). In the MP task, the value κ assigned to the MP
reconstruction of an STRF over N iterations was the average of
the κs of the Gabor atoms involved:

κ =
1

Niter

Niter
∑

i=1

(κω)i (8)

Neural Processing Model for Acoustic
Event Detection
Figure 4 illustrates the linear-non-linear Poisson model (LNP)
of neural processing that was employed for sound-event
detection in the present work. Relevant functional processing
steps included cochlear transformation of incoming sound into
the corresponding time-frequency representation, extraction of
spectro-temporal features in a bank of parallel simple receptor
neurons with linear STRFs, a non-linear response stage, and
integration of neuronal activities into a single event detection
output through one downstream read-out neuron per acoustic
event class. STRFs in the feature extraction layer are derived
from (recorded and simulated) neuronal responses to acoustic
stimuli and remain fixed after their initial estimation. The
subsequent read-out neuron was trained using supervised
machine learning methods on examples of acoustic event data.
This architecture resembles a classical hierarchical feed-forward
processing approach, with feed-forward connectivity estimates
derived from physiological data, combined with a non-linear
classifier architecture in the read-out stage. Previous studies
analyzed, in a feature-driven approach similar to the one pursued
here, how physiologically motivated sound processing performs
in recognition and sound segregation tasks by using multi-
dimensional mappings, see for example Elhilali and Shamma
(2008). Algorithms from computer vision were adopted in
auditory models of peripheral and higher processing (Lyon et al.,
2010).

FIGURE 3 | Computation of the measure of spectro-temporality κω . The

modulation vector ω = (ωt,ωs) is normalized to unit length; κω equals the

L1-norm of the normalized vector.

FIGURE 4 | Processing model. Illustration of the processing stages in the

assumed sound detection architecture, comprising auditory periphery, LNP

model, and detection neurons.

EXPERIMENTS AND RESULTS

Overview
Results are organized in two parts. In part (A), we analyze the
spectro-temporal properties of STRF patterns resulting from the
STA estimation process both quantitatively and qualitatively:
From filter shapes, we deduce typical properties of STRFs. Using a
matching pursuit approach, we re-synthesize STRFs from Gabor
filter atoms. Analysis of the Gabor atoms used in the process
results in a quantitative characterization of spectral, temporal,
and spectro-temporal properties of the STRFs. In part (B), we
use a data set of acoustic event recordings as a toy example
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FIGURE 5 | Typical shapes of STRFs found in this study. The two examples on the left depict STRFs corresponding to temporal onset detectors of varying

spectral bandwidths. The third panel has a similar detector characteristics for broadband offsets. The fourth pattern represents a detector for spectral modulations,

while the 5th and 6th panels show more complex transient spectro-temporal behavior.

for application of STRF-based and Gabor filters as a front-
end for sound classification. This experiment investigates how
the STRF-based features perform compared to Gabor filter-
based features and to (purely spectral) Mel-frequency cepstral
coefficient (MFCC) features in quiet and in noisy conditions.

A: STRF Estimation and Analysis of
Spectro-Temporal Properties
Neural data from several areas in the zebra finch (Taeniopygia
guttata) auditory system was used to compute auditory STRFs,
cf. Gill et al. (2006) for a detailed description of the experimental
setting and data. Single-unit recordings were taken from
anesthetized zebra finches. The animals listened to stimuli
consisting of conspecific songs and modulated ripple patterns
that had the same modulation spectrum as conspecific bird
song. Recordings were performed in areas Caudal Mesopallium,
Primary Forebrain (from sub-areas L1, L2a, L2b, L3, and L),
Nucleus Ovoidalis, and Mesencephalicus lateral dorsalis. Stimuli
were typically repeated 10 times.

Typical shapes of auditory STRFs are displayed in Figure 5.
These correspond to narrowband and broadband onset/offset
detectors, frequency modulation detectors, transient detectors,
and complex spectro-temporal patterns. Most STRFs observed
can be classified as one of the first three groups.

Based on these findings, we used Gabor filters as model
patterns for auditory STRFs by approximating the zebra
finch STRFs with Gabor basis vectors using two-dimen-
sional matching pursuit (MP). In a first step, we determine
the number of Gabor atoms needed to reproduce an STRF
pattern with sufficient reconstruction accuracy. Figure 6 shows
a histogram of the results: More than half of the 52
STRFs need only 1 or 2 Gabor atoms. The single most
complex pattern is represented by a superposition of 8 Gabor
atoms. Thus, STRFs can be well approximated as sparse
combinations of Gabor basis functions, with a comparably low
dimensionality of each STRF pattern when decomposed into
Gabors.

In a second step, we analyze the particular Gabor shapes that
are used in reconstructing the STRF in terms of their spectral,
temporal and joint spectro-temporal extent. Figure 7 shows the

FIGURE 6 | Dimensionality analysis of STRF patterns. Number of Gabor

atoms needed to reconstruct STRFs with θ = 0.8 in matching pursuit.

FIGURE 7 | Matching Pursuit: Modulation characteristics. Importance η

of the different Gabor atoms when using matching pursuit (θ = 0.8), plotted by

modulation frequencies (see text for details).

dominantmodulation frequencies contained in the reconstructed
STRFs. These are discretely spaced because each Gabor atom
corresponds to one specific spectro-temporal modulation. The
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FIGURE 8 | Matching Pursuit: Gabor weight analysis. First up to 4 Gabor components needed to approximate the filters shown in Figure 5 with an MP threshold

of θ = 0.8. Font size corresponds to the MP weight γ of the Gabor atom. The panels left to right correspond to the panels in Figure 5.

area of each disc in the figure is proportional to the importance
ηj of the j-th Gabor atom in the MP task. ηj is computed as the
overall weight from the γijk (cf. Equation 6) the atom received in
all iterations of MP for all STRFs:

ηj =
Niter
∑

i=1

NSTRF
∑

k=1

|γijk| (9)

Figure 7 shows ηj for all Gabors, computed at a reconstruction
threshold of θ = 0.8. In combination with the modulation
frequencies of the Gabor atoms used in the first couple of MP
iterations for typical STRFs (Figure 8), the surprising result
is that even with transient STRF patterns, i.e., STRFs with
simultaneous spectral and temporal modulations, virtually no
Gabor atoms with diagonal shape are used in MP. This could
be a result of the chosen threshold value (θ = 0.8) under the
hypothesis that the more detailed the reconstruction (higher θ),
the more likely the use of diagonal atoms is. The threshold θ =
0.8 might be comparatively low, as may be indicated by the low
number of Gabors needed (Figure 6).

Varying the reconstruction threshold in the MP task changes
the number of iterations and hence changes the spectro-
temporality index κ (Equation 8). Figure 9 shows the change of
κ when varying the MP threshold between 0.7 and 0.99. Up to
about θ = 0.8, κ shows a slow rise but stays below 1.02. From
θ = 0.81 to 0.99, we find a rise in κ with increasing slope, i.e.,
a higher number of diagonal atoms is needed to reconstruct the
fine details of the STRF patterns.

B: Application in Sound Classification
Acoustic Event Data

To assess the use of STRFs for automatic event classification,
we recorded a corpus of acoustic events and evaluated accuracy
of the neural processing model (cf. ) in a 6-class classification
task. The 6 classes were distinct everyday sound objects: speech,
a ringing telephone, a running tap, an electrical toothbrush,
a coffee grinder, and clinking glasses. Several hundred events
(approximately 10 min of data) per class were used for training,
and about half as much (5 min) for testing; all data were recorded
in-house except speech, which was taken from the TIMIT
database (Garofolo et al., 1993). For the in-house recordings,
we used different rooms and settings for training and testing:
glass clinks, water tap, coffee grinder and telephone sounds
were recorded from at least two different types of devices

FIGURE 9 | Matching Pursuit: Spectro-temporality analysis. Diagonality

κ of STRFs, depending on MP threshold value.

each. Recordings of telephone and coffee grinder had natural
beginning/end points since they operated in an automated way
(a couple of seconds per run). Each device was recorded in all
of its operation modes (telephones: 8 different ring tones each,
coffee grinders: 6 different settings each) at least 100 times. The
glass clinks were recorded continuously by clinking a number of
glasses repeatedly against one another without silent intervals in
between. This was continued for about 2 min and repeated 10
times. The same procedure was repeated with different sets of
tumblers and glasses in a different room for recording the test
set. Segments were arbitrarily cut out of the continuous clinking.
Experiments in noise were done using artificial noises (stationary
Gaussian ICRA-1, speech simulatingmulti-speaker babble ICRA-
7, Dreschler et al., 1999) as well as recorded noise (pedestrian
zone noise and road noise, Bach et al., 2011). The noises were
chosen to cover the spectral and modulation ranges of the sound
classes.

The peripheral model employed in the detection model is a
Bark-scaled spectrogram representation. We used 4ms windows
with 2ms overlap to compute the linear spectrogram (128 point
discrete Fourier transform) at a sampling rate of 16 kHz. This was
followed by a trapezoid Bark summation with a bandwidth of
1 Bark. Amplitudes are compressed by cubic root compression.
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FIGURE 10 | Comparison of spectral and spectrotemporal patterns for classification. The left set of bars refers to spectro-temporal features, the right set of

bars refers to spectral features. Numbers on top of the spectro-temporal data indicate relative reduction of errors in %. Note that these data were obtained with

feature sets of comparable dimensionality.

The resulting spectrogram had 21 Bark channels and a temporal
resolution of 2ms.

Extraction of Mel-frequency cepstral coefficients (MFCC,
Davis and Mermelstein, 1980) provided baseline features that
served as a comparison to STRF and Gabor features. The
reference implementation used here (Ellis, 2005) is compatible
with the HTK standard, which uses a 25ms frame length, 10ms
window shift, 23 triangularMel filters, and logarithmic amplitude
compression. The first 13 coefficients were used, the first one
replaced by the log-energy of the signal. Extracting the derivative
and acceleration parameters (1 and 11 features) for all 13
dimensions using 7-point and 9-point linear slopes resulted in
a 39-dimensional feature vector per 10ms time step.

The classification experiments used Support Vector Machines
(SVM) as discriminative models. We trained 1-vs.-all models
and perform classification with a winner-take-all strategy. Since
we used radial basis function (RBF) kernels, the SVM penalty
parameter and the radius of the basis functions had to be fixed.
SVM parameter optimization was conducted by grid search with
5-fold cross validation to find the optimal values.

We analyzed the performance of STRF-based 2D filters in the
classification task with respect to four different effects: temporal
resolution of the spectral representation and comparison
between spectral and spectro-temporal features, effect of the MP
reconstruction, and robustness against noise.

The spectro-temporal filters analyzed in the above
experiments share a common peripheral pre-processing. The
spectral and temporal parameters of the peripheral processing
are made to fit the neural data in order to produce meaningful
STRF shapes. In particular, a comparatively high temporal
resolution (≈ 2ms) is needed to estimate meaningful STRFs
from avian auditory data. The audio event detection literature
suggests that parameter settings similar to those typically used in
speech processing are better suited to general acoustic events, too
(Cai et al., 2006; Aucouturier et al., 2007; Bach et al., 2011). We
therefore presume that the parametrization may be a limiting
factor for the later processing stages. We allow for that effect by

comparing the performance of features derived with different
spectral parameter settings. In particular, we used the following
variants of STRF-based features: (a) resampling of the STRF
filter outputs to the temporal resolution of the MFCC baseline.
(b) resampling of the original STRFs to the lower temporal
resolution and using them as 2D filters on spectrograms with the
same low resolution (i.e., spectrograms comparable to those used
to compute MFCCs). These different spectro-temporal features
are compared to the same features with no STRF processing,
i.e., different sets of spectrogram features, and with MFCCs.
Figure 10 shows the results. The left set of bars shows results of
spectro-temporal features while the right set of bars shows results
of spectral features. The difference between left and right bars of
the same color, shown as reduction of errors (in %), is the relative
“spectro-temporal benefit” resulting from using STRF-type
filters. This benefit is largest when using high resolution STRFs
(black bars) and smallest when using a spectrogram basis as used
for MFCCs. (light gray bars).

The effect of the MP reconstruction on the classification
results is shown in Figure 11. The plot shows classification
accuracy as a function of reconstruction threshold θ . Each
approximation, i.e., each drop in θ , results in a (small) drop in
performance.

We tested the robustness against noise by mixing the
audio data in four different background sounds, one stationary
(and artificial), three modulated (one of them artificial).
Figure 12 shows the mean results and standard error of the
mean, computed over the four noise conditions. Spectro-
temporal features perform better in high and moderate
SNRs. At low SNRs, MFCCs beat both STRFs and Gabors.
Standard errors computed over noises are much larger at
low SNRs, indicating that performance varies depending on
the type of noise. Detailed results for each noise type
(not shown) reveal that the general trend is similar for all
noise types, we therefore omit more detailed plots. In real
recorded noise (road noise, pedestrian zone noise), spectro-
temporal patterns are slightly closer to par with MFCCs
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FIGURE 11 | Classification results for MP-reconstructed STRFs using

several MP thresholds and comparison to Gabor filter-based results.

Note that the abscissa does not apply to the Gabor result.

FIGURE 12 | Results of the different feature sets in noise: average and

standard error of the mean over 4 different noises. SNRs were identical

for all feature sets, shifts on the abscissa are for visual clarity only. For

comparison, results on clean data are also displayed as SNR: Inf.

than in both modulated and unmodulated artificial noise
(ICRA-1, ICRA-7).

DISCUSSION

The STRFs analyzed in this work were found to be spectro-
temporal patterns with largely separable spectral and
temporal properties. We did not pursue a specific analysis
of separability. Previous studies have shown explicitly
that auditory STRFs in mammals are to a large extent
separable. See e.g., Depireux et al. (2001) and Versnel et al.
(2009) for corresponding studies in ferrets and macaques,
respectively.

Typical patterns found in the current data set include (a)
temporal “onset detectors” with different spectral bandwidth and
differing temporal extent, (b) spectral modulation detectors with
virtually no variation in temporal direction, and (c) transient
and more complex patterns. Results found in matching pursuit

FIGURE 13 | The full Gabor filter bank after re-estimation using the LNP

model and STA estimation. See text for details. Each square has a width of

100ms and a height of 21 Bark channels. Cf. Figure 1 for comparison.

experiments show that each of these filters was adequately
represented by a small number of well-designed Gabor filters.
The question arises to what extent spectro-temporal properties
are influenced by the limitation of the neural recordings and
the linear estimation process. To this end, we employed the
Gabor filter bank as a set of artificial STRFs. Non-linearities
and a Poisson process were added after the linear stage to
extend the Gabors to full LNP neurons. Using the same stimuli
as employed in the original experiments (Gill et al., 2006), an
electro-physiological experiment with resulting spike trains was
thus simulated. STA computation based on these simulated spike
trains was used to re-estimate the STRF of the artificial Gabor-
based LNP neurons. Figure 13 shows the STA-estimated Gabor
filter bank. STA obviously keeps spectro-temporal properties of
the filters intact. However, we observe a loss of information
for most of the purely spectral filters (first column of filters
in Figure 13). For purely temporal filters (middle row), this
detrimental effect is much less pronounced. In general, the
STA process produces slightly washed-out versions of the Gabor
filters.

Using Gabor approximations of STRFs also proved to
be beneficial in the sense of efficiency in classification: at
equal accuracies, these smoothed filters needed less relative
information than the original STRFs. However, the original
STRF filter bank still reaches higher scores (Figure 11, MP
threshold = 1). This indicates that the information loss due to
incomplete approximation by Matching Pursuit is the dominant
effect compared to the hypothesized artifact-removal property
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of the process. This may possibly be explained by the fact
that significance analysis and subsequent artifact removal were
already implemented in the optimized STA estimation of STRFs,
hence the MP yields no extra benefit. STRFs reach performance
competitive to an idealized Gabor filter bank, both in quiet and
in noise (Figures 11, 12). This indicates that the STRFs used in
this work extract most of the relevant information, even given the
limiting boundary conditions (spectral representation, temporal
resolution).

A different approach was pursued by Lindeberg and Friberg
(2015). Providing a theoretical framework for deriving spectro-
temporal representations of sound, they could qualitatively
reproduce a large number of STRF shapes found in a variety
of animal studies. The strength of the theory lies in the
large variability of the representations, encompassing (among
others) common Gabor and Gammatone filter representations.
However, due to the generic nature of the theory, their approach
does not lend itself naturally to quantitative recovery with
matching pursuit. Moreover, in this work we emphasize the
simplification brought about by using a small number of Gabor
shapes, with only two free parameters (namely temporal and
spectral modulation). It may be interesting to pursue, in a
data-driven approach, a variety of features provided by their
approach, and find the best filter shapes for specific tasks
(such as event detection, automatic speech recognition, and
others). This is, however, beyond the scope of the current
paper.

Pre-processing provides further room for improvement. The
peripheral model is adapted fromwell-known human and animal
perception models, which include amplitude compression and
log-spaced frequency-specific filters with increasing bandwidth.
The approach was ad-hoc adapted to fit the zebra finch neural
data in order to obtain suitable STRFs. The temporal resolution of
the spectro-temporal representation is clearly much higher than
in speech processing, for example. We expect some improvement
if the periphery was tuned toward the application rather than
toward physiology. This approach was pursued in previous work
by Mesgarani et al. (2006), replacing real STRFs with properly
selected, application-oriented filters in a sound discrimination
task. If one were to stick more closely to physiological data,
different animal models may provide better data.

Ferrets, for example, have been shown to exhibit broader
temporal patterns in their STRFs (Klein et al., 2006; Mesgarani
et al., 2008). However, for the purpose of the current work,
the set-up, size, and availability of the zebra finch data
base was the best choice. Our results indicate that STRFs
can provide large benefits in terms of relative reduction of
errors. This overcompensates the less than optimal peripheral
processing chosen here. Factoring in the aforementioned
observation that the STRFs are mostly temporal or spectral,
one is tempted to assume that the effect of STRF filtering
is little more than temporal averaging, i.e., a simple low-pass
filter, which in itself is potentially beneficial for classification
since it removes high-frequency noise. Comparing the results
of temporally smoothed spectrogram features with those of
STRF features (Figure 10), however, it becomes obvious that

the effect of STRFs is far stronger than that of temporal
averaging.

CONCLUSIONS

The experimental evidence presented here leads to several
conclusions.

• Gabor filters are an appropriatemodel for auditory STRFs. The
majority of STRFs is adequately modeled by at most two Gabor
functions. No STRFs were more complex than the weighted
sum of eight Gabors.

• Virtually all STRFs could be represented by a sum of purely
temporal and purely spectral Gabor shapes, i.e., they contain
separable spectral and temporal information. This is in line
with findings from, e.g., Qiu et al. (2003). Similar results have
been found for Gabor filters in automatic speech recognition
(Schädler and Kollmeier, 2015).

• STRFs approximated with a sum of Gabor shapes are more
efficient (in terms of dimensionality) in classification tasks
than the original STRFs, albeit not reaching higher absolute
scores. We conclude that the very compact STRF-based
representation makes them a logical physiological model for
feature extraction.

These results open up several avenues for future work. Different
methods for STRF estimation may provide cleaner, more
compact estimates. Examples include reverse correlation-based
approaches with additional processing steps similar to the
one pursued here, machine-learning- (Meyer et al., 2014a) or
information theory-based approaches (Sharpee et al., 2004).
Filters derived from such estimates may reduce redundancies in
the features and span a larger effective feature space. Alternatives
to single cell recordings might alleviate the restrictions set
by the sparse sampling of brain areas. Electro-corticography,
for example, allows similar reconstruction of spectro-temporal
filters (based on reverse correlation) by measuring cortical
response fields (Pasley et al., 2012); they provide the additional
advantage that responses can be measured in human subjects
(Mesgarani and Chang, 2012). Additionally, single cell neural
data from different species allows comparison of different sets
of filters. On the one hand, this may generally produce STRFs
in different spectro-temporal parameter regimes, on the other
hand, data from mammals for example may produce STRFs that
are plausible for modeling human perception, including speech
coding (Mesgarani et al., 2008) and phoneme classification (Herff
et al., 2015).
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