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This article argues that qualia are a likely outcome of the processing of information in
local cortical networks. It uses an information-based approach and makes a distinction
between information structures (the physical embodiment of information in the brain,
primarily patterns of action potentials), and information messages (the meaning of those
structures to the brain, and the basis of qualia). It develops formal relationships between
these two kinds of information, showing how information structures can represent
messages, and how information messages can be identified from structures. The article
applies this perspective to basic processing in cortical networks or ensembles, showing
how networks can transform between the two kinds of information. The article argues
that an input pattern of firing is identified by a network as an information message,
and that the output pattern of firing generated is a representation of that message. If a
network is encouraged to develop an attractor state through attention or other re-entrant
processes, then the message identified each time physical information is cycled through
the network becomes “representation of the previous message”. Using an example
of olfactory perception, it is shown how this piggy-backing of messages on top of
previous messages could lead to olfactory qualia. The message identified on each pass
of information could evolve from inner identity, to inner form, to inner likeness or image.
The outcome is an olfactory quale. It is shown that the same outcome could result from
information cycled through a hierarchy of networks in a resonant state. The argument
for qualia generation is applied to other sensory modalities, showing how, through a
process of brain-wide constraint satisfaction, a particular state of consciousness could
develop at any given moment. Evidence for some of the key predictions of the theory is
presented, using ECoG data and studies of gamma oscillations and attractors, together
with an outline of what further evidence is needed to provide support for the theory.
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INTRODUCTION

The really challenging problem in consciousness studies is to find an answer to the question of the
origin of subjective experience itself. Of all the large number of articles published on the subject
of consciousness most explore the organization of consciousness (e.g., Baars, 1988; Dehaene et al.,
1998), or the neural activity that correlates with it (e.g., Rees et al., 2002; Koch et al., 2016). Such
work sets the scene for how we are able to have experiences, how the brain can organize itself
such that conscious experience results. But the nagging question of how these physical neural
activities can give rise to a phenomenal outcome is rarely addressed. Miller has argued (Miller,
2014) that the main emphasis in consciousness science should be on seeking the neural constitution
of consciousness, the minimally necessary substrate, but even this (as he admits) would not provide
an explanation of conscious experience.
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There have been some attempts to explore the origin
of phenomenal experience. The idea of representational
re-description, where a system is able to reflect on its own
internal states (Clark and Karmiloff-Smith, 1993), was
an early proposal that attempted to map particular kinds
of behavior onto the specific properties of phenomenal
experience, and led to ideas such as the radical plasticity
thesis (Cleeremans, 2008), where a system is able to re-describe
its own activities to itself. Indeed the whole concept of meta-
cognition, where a system observes its own internal states
leading to higher-order representations, also follows this theme
of self-reflection (Pasquali et al., 2010). Self-reflection is also
at the core of the attention schema theory (Graziano and
Kastner, 2011) which proposes that subjective experience is
the brain’s internal model of the process of attention, and the
authors have presented some evidence to support their ideas
(Webb and Graziano, 2015).

However, there is no theoretical account that shows a direct
mechanism whereby certain neural activities should lead to a
phenomenal outcome. This article is one attempt to link the
purely physical with the phenomenal, and it builds on a previous
article on the topic (Orpwood, 2013).

The article looks at the generation of qualia. Qualia
are often limited to sensory experiences in many author’s
definitions. However this article takes a broader view and
reflects the definition of qualia preferred by the philosopher
Flanagan. He defines the wider sense of qualia as any
experience with subjective, first-person, phenomenological feel
(Flanagan, 1992). In this definition sensory qualia are just
a subset of all the phenomenal experiences that constitute
consciousness. There is an underlying assumption in this
definition that there is a common cause for all these experiences.
The cause of sensory qualia is just the same as all the
other experiences, it just happens to be focussed on sensory
perception.

The article’s argument is strongly based on an information-
processing analysis of cortical network function. Information
approaches to understanding consciousness have been pioneered
by Tononi (2004) who has argued that conscious states
are characterized by the fact that they involve information
that is highly integrated and highly differentiated. He
developed useful quantifying measures for the informational
relationships generated by networks (Balduzzi and Tononi,
2009). However, rather than characterizing consciousness
from an information perspective, this article tries to more
directly explore the relationships between purely physical
information and semantic information that is at the heart
of qualia. It aims to show that, in certain circumstances, the
processing of information in local cortical networks should lead
to qualia.

INFORMATION IN THE BRAIN

Two Kinds of Information
Information is at the core of everything that goes on within
neural structures and yet the vast majority of neuroscience
studies use a traditional engineering-based definition of what

information is. The studies of Shannon over half a century ago
(Shannon, 1948) laid the foundations for this understanding.
The kind of analysis that is possible using these techniques
clearly applies to the information-processing abilities of the
brain. Information in Shannon’s analyses is physical information.
It is the binary pulses in a communication bus, the pixels
on a screen, the written words on a page, etc. The key
processes going on in the brain of course involve such
physical information. A vast amount of physical information
is generated and transferred using local chemical and electrical
changes within cells, and electrical and chemical events
to communicate this information between cells. The vast
bulk of experimental neuroscience is engaged in monitoring
these information generators and communicators. But there
is another side to the importance of information in a
neural context which seems to cause some concern (e.g.,
Pockett, 2014), and that is the importance of semantic
information. Semantic information is the meaning associated
with physical information. It is the message that is embodied
in, and communicated by, the physical information. In
the brain a key aspect of semantic information is the
message embodied in the firing of action potentials. It
is the meaning conveyed by the massive inter-neuronal
communication and processing of physical information. All the
information communicated via action potentials throughout the
nervous system clearly underlies the inner mental world in
some way but the link between these purely physical events
and the wealth of inner meanings that they underpin is
bewildering. But this problem is at the heart of neuroscience.
How does the physical information of neuronal firings relate
to the semantic information of the meanings of our inner
world?

This understanding is crucial to the understanding of
consciousness. Chalmers (1996) in his seminal book proposed
the fundamental principle that information has both a physical
and a phenomenal aspect. Our conscious inner world is
comprised of meanings. It is the way we perceive our
environment, and it is the way we experience our inner
thoughts. All the qualia that constitute our inner conscious world
are aspects of information, but they are aspects of semantic
information. They are in some way related to the physical
information processing taking place in the firings of our neurons.
In order to understand the cause of qualia we need to explore the
link between the physical information of neuronal firings and the
semantic information of qualia.

This article reflects earlier work (Orpwood, 2013) by defining
two new labels for the two kinds of information in the brain
that were discussed above. These labels aim to more strongly
separate them. First of all the physical information present
in the brain is given the label of ‘‘information structure’’.
Information structures are the physical activities of cell firings
and trains of action potentials. They are the form through
which information is communicated, processed and stored
within our brains. Second, the semantic information is given
the label ‘‘information message’’. Information messages are what
the physical activity in the brain is all about, what it means
to us.
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Transformations between Information
Structures and Information Messages
In order to explore the links between information structures
and information messages, it is important to examine the
transformations that can occur between them. There are two
clear transformations. The first of these is that information
structures, in some way, represent information messages.
Information structures in the brain, in the form of neuronal
firings, in some way represent meaning to us. As an example
consider firing activity in the V4 area of the visual cortex,
the color processing area. If the brain is attending to a
blue object then there will be patterns of firing occurring
in the V4 area. It is neural activity, and that is just an
information structure. But the meaning of the information to
that brain, the information message interpreted in some way,
is ‘‘the color blue’’ (Figure 1). In some way the information
structure of firing activity in networks in V4 represents the
information message ‘‘the color blue’’. As a further example
consider the particular information messages we refer to as
memories. They are probably embodied in the long-term
storage of variable input sensitivities in cortical pyramidal
cells. But these variable sensitivities aren’t memories. They
can’t be ‘‘that wonderful holiday we had last year’’. They are
just information structures. But they can represent memories.
The information structures in place in the variable input
sensitivities of cortical pyramidal cells can represent the
information messages of memories. Information structures
represent information messages. In order to examine the way
that qualia are generated, one key task is an analysis of this
representational process.

The second relationship between information structures and
messages is that messages result from the recognition and
identification of information structures. This relationship is less
easy to envisage because informationmessages are such nebulous
entities. Consider initially a single neuron. It has been shown that
they can recognize spatially distributed patterns in their inputs

(Mel, 1992; Orpwood, 1994). If an input pattern is received that
the neuron has learnt, then it can lead to a substantial soma
depolarization. The more significant the recognition the larger
the soma depolarization. Eventually the depolarization can reach
threshold and the cell will fire. The firing represents the binary
decision communicated to the outside world that this particular
input pattern is recognized, as opposed to not-recognized. But
the recognizing neuron cannot identify the input pattern in any
way. Every recognized pattern leads to the same outcome; a
firing. An input pattern cannot have any meaning to the neuron
other than ‘‘seen before’’.

The situation is very different for networks of neurons.
Consider a network trained on a particular set of input firing
patterns. Whenever it is exposed to a firing pattern that is
typical of those it has been trained on it will always generate a
characteristic output firing pattern. The network is recognizing
the input structure because it generates a response when the
structure is there, and generates little when the structure isn’t
there. But the network is also identifying the input structure
because it is generating a typical output response whenever
that particular input structure is received. It only generates
that characteristic response when it receives an input structure
it has been trained on. If it receives an alternative input
structure that it has also been trained on then it will generate
a different output response. The input has some identity to
the network and it is recognized as such, and the output
represents that identity. So networks can interpret incoming
information structures as messages if they are able to recognize
and identify them.

This analysis shows that the interaction between information
structures and information messages is a bi-directional one.
Messages can be transformed into structures through a process
of representation. Structures can be transformed into messages
through a process of identification (Figure 2).

Information structures can be transmitted from an
information sender to an information receiver. A sender

FIGURE 1 | A brain attending to the color blue receives a pattern of inputs to the V4 area of its visual cortex. This pattern is an information structure. Its
meaning to the brain, “blue”, is an information message.
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FIGURE 2 | The reciprocal relationship between information structures
and messages. Information structures represent information messages, and
information messages can be identified from information structures.

can generate information structures, and those structures
represent something to it. If the sender was responsive, say, to
sound, and it had just been exposed to a brief noise, the sender
could respond by generating an information structure. That
structure would represent the noise to the sender. The sender
could then transmit that structure to an information receiver,
but it is only the structure that is transmitted. It doesn’t carry
the information message with it. The structure that the sender
generated could be just a few bits. When those bits are received
by the receiver they can mean anything to it. They could mean
the noise but they could equally mean the number two, or the
shape of a triangle, or even ‘‘that wonderful holiday we had last
year’’. It all depends on how the receiver has been configured.
The structure represented the noise to the sender but it could
represent any message as far as the receiver is concerned. The
communication from an information sender to an information
receiver can therefore only be in the form of structures, and not
messages.

So some basic conclusions can be drawn from the discussion
of information processing so far.

• Information can be in the form of structures or messages.
• The brains physical activity deals with information structures.
• The qualia of our inner conscious world are information
messages.

• Structures represent messages.
• Messages can be identified from structures.
• Structures, but not messages, can be transmitted from a sender
to a receiver.

NETWORK INFORMATION
TRANSFORMATIONS

Basic Network Behavior
A key assumption in this article is that the basic information
processing entities in the brain are not individual neurons
but ensembles of neurons, or networks as they are labeled
in this article. There is a growing conviction that it is
ensembles of neurons that are key to the link between neuronal
dynamics and their function in information processing, rather
than individual cells (Harris, 2005; Buzsáki, 2010; Bharmauria
et al., 2016). Some recent evidence for the existence of these

ensembles/networks is discussed later. These networks in the
cortex consist of a large number of pyramidal cells and their
supporting interneurons, which act in a coordinated manner
in response to an input barrage. Such networks are able to
recognize patterns in their inputs, and can generate their
own output patterns of firing activity in response to such
recognitions.

Consider initially the behavior of a basic neural
network/ensemble in the cortex. The network can demonstrate
both the transformations between information structures and
messages that were discussed above. At its input, the network
is receiving a pattern of action potentials that constitute an
information structure. If the input structure is recognized, then
the network will react and a number of neurons within it will fire.
This firing constitutes the network’s output, and this output is
another information structure. This output structure represents
the identity of the input to the network. It represents themessage,
the meaning of the input. That identity depends on the learning
that the network has undertaken, or the way that it is configured
genetically. Of course the message is not in any way a conscious
one. It is just an abstract identity. But if the input structure is
identified then an information message is obtained. So a basic
network is both an information receiver and an information
sender. It is able to transform an incoming structure into a
message through a process of identification, and can transform
that message into an outgoing structure through a process of
representation.

This overall basic mechanism is one that takes place in
any cortical network receiving information structures. The
input information is a structure. If the network recognizes and
identifies that input structure then it will generate an output
information structure. That output structure represents the
information message, the identity, of the input structure to the
network. So within a basic cortical network, it is possible to define
more closely the relationship between information structures
and information messages. The output structure represents the
message obtained when the network identifies its input structure.
There is a transformation from structure to message to structure
again (Figure 3).

Communication between Networks
The network can be part of a chain of networks, perhaps in a
hierarchy. For each network in the chain the same process as that
described above will take place. The network can recognize its
input structure and generate an output structure that represents
the identity of the input to the network. That structure will be
communicated to the next network in the chain. As mentioned
above it is only the structure that gets communicated. The
next network in the chain can recognize the structure and
identify it as a message, depending on the prior learning it has
undergone. This process can be repeated along the chain of
networks.

The network can also feedback its output to its input again.
This local feedback allows the representation that has just been
generated to be fed back to the network. It would appear on
the surface that if the network recognizes this feedback it would
be recognizing its own representation. But it is important to
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FIGURE 3 | Basic information processing in a network or ensemble of neurons. The output information structure represents the information message
identified from the input information structure. The information goes from a structure, to a message, to a structure again.

appreciate this situation from the perspective of the network.
To an observer the network is receiving its own representation
and identifying it. To the network however, although it is
receiving its own representation, it of course cannot know this.
To the network it is just receiving another input pattern that it
can identify or not depending on its prior experience. As was
discussed above, the network is both an information sender and
an information receiver. If the information sender part generates
an information structure and feeds it back to the information
receiver part, the only thing communicated is the information
structure. There is no message communicated. The information
sender cannot inform the information receiver that this structure
has the identity ‘‘representation’’.

The ability to identify representations as representations is
at the core of the problem of the origin of qualia. After all, the
information messages we call qualia are inner representations.
A color quale is an inner representation of the hue of
light detected. An odor quale is an inner representation of
the structure of a volatile molecule detected. How can a
representation be identified as a message of ‘‘representation’’
as opposed to just another basic identity? In order to get
some insight into how a representation could be identified
as the message ‘‘representation’’, it is necessary to focus on
where messages come from. The only statement that can be
made is that, to the network, whatever the output represents,
that is the message. To the network the message is simply
what the output represents. So is it possible for the output
to represent a representation? If the output could represent a
representation then the message must be ‘‘representation’’. It is
argued below that this is possible when the network settles into an
attractor state.

Attractor States
Consider an individual network that is feeding its output back
to its input again. Given this activity the network could achieve
an attractor state, most likely a fixed-point attractor. When
a network settles into such a stable attractor state its output
structure becomes the same as its input structure. The network
enters a state of cyclic activity where each output structure
generated is the same as the input structure that led to it.
In this situation it seems that the network is doing nothing
because the output is the same as the input. The transfer function
appears to be just unity. This is not the case however. There
are complex transformations going on to process the incoming
information structure. Each individual neuron is carrying out
pattern recognition and interacting with other neurons in the
network to conclude with a pattern of firing that happens to be
the same as the input.

So what is the impact of settling into such an attractor state?
As was discussed above, from the perspective of the network
the only statement that can be made is that the output from
a network is a representation of the identity of the input. But
in an attractor state the output is the same as the input. They
are the same structures. So in this state the output becomes a
representation of the identity of itself. This is quite a difficult
concept to appreciate, but it is the case that in this attractor
state the output structure is a representation of the identity of
that same output structure. The output is a representation of
the identity of the output. But, to the network, the output is
also a representation of the message. So the output becomes a
representation of the identity of a representation of the message.
This somewhat complicated statement does tell us something
about the message. As was argued above, whatever the output
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represents, that is the message. So, from the statement, the
message must be the identity of a representation of the message.
As information is cycled through a network in an attractor state
the message obtained each time is the identity of a representation
of the last message (see Figure 4). The message is identified as
a representation of the previous message. It was argued above
that the ability to identify representations as representations is
at the core of the problem of the origin of qualia. It is shown
here that in a stable attractor state this ability is realized. To an
observer, whenever information is cycled through a network it
is clear that the network is identifying a representation of the
previous message. But the network cannot know this until an
attractor state has settled. To the network, the message identified
each time in an attractor state is ‘‘representation of the previous
message’’.

Consider the start of information being cycled through the
network once an attractor state has been achieved. If the network
initially receives an input structure and recognizes it then
that input structure has some identity to the network, and it
recognizes it as ‘‘the message’’. It generates an output structure
that represents the message to the network. If that output
structure is fed back the network will identify the feedback as
‘‘representation of the previous message’’. The original message
is ‘‘message’’, and the second message is ‘‘representation of that
message’’. If the cycling continues then the third message will
also be ‘‘representation of the previous message’’, in other words
‘‘representation of the representation of the original message’’,
and so on. The message is unchanging on each cycle but its
nature is evolving. This situation only occurs when the network
achieves an attractor status, but it leads to some quite profound
properties.

There is a complication here that would on the surface seem to
dismiss the argument presented. The discussion about attractor
states has used very simple illustrations of the nature of the
networks involved. In neuro-modeling terms the feedback that
leads to attractors, and indeed the mathematical representation
of their behavior, is very simplified. The output information
structure is considered to be transferred unchanged from the
output of the network back to its input again (Figure 5A). But
of course in reality this feedback and the connections involved
are extremely complicated. The spatial pattern of the feedback
activity, the matrix of firing and silent axons, is inevitably
going to change as the output activity is fed back to the input
(Figure 5B). However the boundary of the network’s activity is
not fixed. In simple modeling terms the output is what comes out
of the network model, but the boundary of the network model
can be extended. If the boundary is extended to just before the
input to the network, and the output defined as the structure
at that point, then despite the complexities of the feedback
connections up to that point, the output structure is fed to the
input unchanged (Figure 5C). The important point is that the
output at that point is still the network’s representation of the
message. Of course it is only when an attractor state has been
achieved that the output at that point is the same as the input that
led to it.

Without the extra capabilities provided by an attractor state,
then a neural recognizer is always starting from scratch with any

input it receives. It can only recognize its input as something
dependent on its prior learning. With an attractor state this all
changes. For each feedback the network will identify its input as
a representation of its last message. The new message that results
from each recognition builds on the previous one and leads to
remarkable outcomes.

Resonant Loops
There is another neuro-anatomical entity whose behavior
matches that of attractor states, and which can lead to similar
conclusions about the information that is processed by it. This
entity is the resonant loop of networks. The idea of resonant
loops was pioneered by Grossberg in his Adaptive Resonant
Theory (Carpenter and Grossberg, 1987). It was applied to
feedforward and feedback interactions between networks in
different levels in a hierarchy, such as the sensory processing
hierarchies. The activity of networks in one level of the
hierarchy is fed forward to higher levels. The higher level
makes a judgment about the identity of its fed-forward input,
based on prior experiences, and feeds back the outcome of
that judgment to the original layer to see if there is any
agreement. Depending on the level of agreement the feedback
pattern is modified until both the feedforward pattern and the
feedback pattern remain unchanged. At that point the higher
level judgment of the identity of the input, according to its
prior experiences, is correct. Grossberg called this state of
stability a resonance. The mechanism involved to adapt the
responses of the networks until agreement is achieved was
called folded-feedback by Grossberg (Raizada and Grossberg,
2003). Inter-level interactions within a sensory hierarchy are
also at the core of predictive coding theories (e.g., Clark, 2013)
where adaptions are carried out to reduce an error function
reflecting the difference between fed forward activity and fed
back judgments as to its identity. These ideas about resonant
loops map really well onto the process of perception, and so
sensory qualia might well be expected to be linked to these
resonant processes.

Figure 6 shows the core process that goes on in resonant
loops. It shows only two interlinked networks, although the
likelihood is that perceptual processes are more complicated than
this. For the argument to be presented this complexity doesn’t
matter. In the simple linked networks the input to Network 1 can
be identified by that network, and the output representation of
that identity fed forward. This feedforward activity becomes the
input to Network 2 which again can identify the input, and the
output representation of the identity can be fed back again to
Network 1. This iterative activity can continue until agreement
is reached and the outputs from the two networks stabilize to
unchanging structures (Figure 6A). It is this stable resonant state
that underpins the perceptual judgment that is made about the
identity of the original input.

This stable resonant state has many parallels with the
fixed-point attractor dynamics discussed above. As with
the single cortical network the network boundary can be
extended to remove the intervening complications between
the network’s output and its eventual fed back input
(Figure 6B). The eventual feedback to Network 1 is the
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FIGURE 4 | A key component of the theory presented is that in a settled fixed-point attractor state a network is able to identify its own
representations fed back to it as representations. This figure aims to clarify the argument for why this is the case. It shows that in an attractor state, as
information is cycled through the network, the network is able to identify its fed back input on each pass as a representation of the previous message.
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FIGURE 5 | (A) An idealized depiction of local feedback in a network. The
output structure remains unchanged as it is fed back. (B) A more realistic
depiction. Feedback axons follow convoluted paths and lead to an input
structure that is quite different to the output structure. (C) The network
boundary is extended to just before the fed back input. The output and the
new input are now unchanged. Importantly the output is still a representation
of the last message.

output from this extended boundary. In the non-stable
state whatever input is provided to Network 1 the output
from this boundary will be different. In the stable state,
whenever Network 1 is provided with this particular input,
the same output is generated. So in a stable state this
output is a representation of the identity of the input to
Network 1.

We can therefore consider Network 1 in isolation. In a stable
resonant state it is acting much like an attractor. The output is a
representation of the identity of the input. But in the stable state
the output is the same as the input that led to it. Therefore the
output is a representation of the identity of the output. And that
output is a representation of the last message. So the output is
a representation of the identity of the representation of the last
message. That is what it is to the network. As discussed before,
the identity to the network is whatever is represented by the

FIGURE 6 | (A) Feedback in a two-network loop at resonance. The structures
at different points in the system settle to a constant pattern, but the
feedforward and feedback paths are convoluted and lead to quite different
stable structures at different points. (B) The same system with the boundary of
Network 1 extended to just before its input. At resonance the input to this
network is the same as its output. Importantly the output is still a
representation of the last message obtained by Network 1.

output. So the identity to the network must be the identity of
the representation of the last message. In a stable resonant state,
as information is cycled through the network, the identity of the
input to the network is the identity of its representation of the last
message. This result will apply to each network in the resonant
loop.

So, to summarize the outcome of information processing
in networks, normally a network can only identify its input
as a particular ‘‘message’’. But in two situations involving
feedback this changes. The first situation is the achievement of
a stable fixed-point attractor state with a single network. The
second is the achievement of a stable resonant state involving
several interlinked networks. In both these two situations the
network identifies its input as ‘‘representation of previous
message’’.

The Importance of Re-Entrant Activity
Before exploring the generation of qualia it is important to briefly
look at how a network can be encouraged to develop an attractor
state, or for a hierarchy of networks to achieve a resonant
state. Rather than just undergoing one pass of information
the networks involved need to be encouraged to repeat this
activity via local feedback. A key to this ability is the process of
re-entrant feedback, and many authors have explored its impact
(e.g., Edelman, 1992; Lamme and Roelfsema, 2000; Bullier, 2001;
Pascual-Leone andWalsh, 2001). The underlying principle is that
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information entering the cortex initially undergoes feedforward
transmission through the hierarchy of areas in the sensory
cortex and onto prefrontal areas. Concluding network states
in higher regions generate information that is then fed back
to modulate and integrate the incoming sensory stream. There
is growing experimental evidence that the development of
conscious percepts is crucially dependent on this re-entrant
activity (e.g., Haynes et al., 2005; Silvanto et al., 2005; Boehler
et al., 2008). For example Lamme has argued that re-entrant
feedback arising from the prefrontal cortex is crucial for
visual perception. The prefrontal activity is part of attentional
activation following an initial feedforward stream from the
visual cortex (Lamme, 2010). Rees has also argued that for
conscious vision to take place there is a need for this higher
level re-entrant activity (Rees et al., 2002: Rees, 2007). Boly
et al. (2011) have also shown top-down projections from frontal
cortex are needed for consciousness. However Lamme (2010) has
also argued conscious percepts could also arise from re-entrant
activity within the visual cortex itself. Supporting this idea of local
re-entrant activity Boehler et al. (2008) have shown that early
awareness of sensory information can be too rapid to involve
prefrontal feedback.

Orpwood (2013) argued that this re-entrant feedback could
be crucial to the development of attractor states. Without the
facilitation provided by the re-entrant stimulus, network activity,
particularly activity involving very local feedback, would quickly
fade and attractors could not arise. Only with the stimulus of
the re-entrant feedback could local cycling of activity occur
long enough to allow attractors to settle. In addition re-entrant
feedback has been seen to provide the basis for resonant loops.
Lamme and Spekreijse (2000) showed it to be a key element
of perceptual organization where higher-level conclusions about
the meaning of sensory information are used to fine-tune the
lower level building blocks until an agreement is achieved.
So for both attractor and resonant states, re-entrant feedback
may be needed to instigate, shape and choreograph their
development.

THE GENERATION OF QUALIA

Orpwood (2013) argued that the ability of networks to identify
their inputs as representations of the identity of their previous
inputs could lead to the generation of qualia, but it is now
felt that the argument presented in that article was overly
complicated and not very clear. It also only dealt with the
case of stable attractor states. The current article argues
that in fact only two cycles of feedback information passage
should be needed for qualia to result, and that the process
could also involve interlinked networks in a stable resonant
state.

It is perhaps easier to understand how the information
processing discussed above could lead to qualia by using
an example. Consider the situation of olfactory perception.
Assume the nasal epithelium has been exposed to a chemical.
The olfactory receptor neurons respond to this exposure, and
following local processing of this information in the olfactory
bulbs, a pattern of firing is generated along the olfactory tract.

This firing pattern is an information structure. There is some
debate about whether it is the olfactory cortex or the orbito-
frontal cortex that is the site of odor consciousness (Shepherd,
2007), perhaps both, but for the purposes of this argument
it doesn’t matter. Assume the information structure being
conducted along the olfactory tract reaches the necessary cortical
region (Figure 7). If there are ensembles of neurons in this
region that recognize the input structure then the recognizing
network of cells will generate its own output pattern of firing,
an output structure. If there is an output structure generated
then that structure must represent the identity of the input
to the network. If the chemical that the nasal epithelium was
exposed to was hydrogen sulfide then the output structure must
be the network’s own representation of H2S. It only generates
that output structure when the sensors feeding it are exposed
to hydrogen sulfide. The output structure represents H2S to the
network, but not in any conscious sense of course. It is just the
network’s own depiction of a chemical that has been detected. It
is a structure that embodies the identity ‘‘H2S’’ for this network.
The incoming input structure was just an abstract set of neuronal
firings, but because of the way that the olfactory cortical networks
have been configured the output structure is the network’s own
representation of the chemical that has been detected. It is a
physical embodiment of the identity ‘‘H2S’’ for this network
(Figure 7).

It is assumed that some attention is being paid to this
olfactory input that encourages the development of either an
attractor state or a resonant state, as was described above in
the section on re-entrant feedback. The output structure will
be fed back, either directly or via other networks in a chain
or hierarchy. The feedback is a physical structure representing
the identity ‘‘H2S’’, but it is identified as a message. It has a
specific meaning to the network. What is that message? Before
an attractor or resonant state has developed, the message will
simply be the identity of a new random input. But, as argued
above, once an attractor or resonant state has developed, the
message will be ‘‘representation of the previous message’’. If
the previous message was identified as ‘‘H2S’’ to the network
then the feedback will be identified as its ‘‘representation of
H2S’’. The feedback is of course a physical structure, but the
identity of that feedback is an inner meaning. The meaning is
the network’s own representation of H2S, its depiction of the
chemical, the inner form of H2S to the network. So with this
second recognition, the fed back structure is identified by the
network as its inner form of H2S. Therefore in the case of the
olfactory cortex responding to an exposure to hydrogen sulfide,
the first message is ‘‘identity of H2S’’, the second message is
‘‘inner form of H2S’’ (Figure 7).

As a result of the recognition of the feedback the network will
fire again. This second output structure is a representation of the
second message, so it is a representation of the network’s inner
form of H2S. This output structure will be fed back again. The
feedback is a physical structure representing the identity ‘‘inner
form of H2S’’, but it is identified as a message. It has a specific
meaning to the network.What is that message? As an attractor or
resonant state has developed the message will be ‘‘representation
of the previous message’’. If the previous message was ‘‘inner
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FIGURE 7 | The generation of olfactory qualia. Following exposure to H2S, information structures from the olfactory tract are cycled through a cortical olfactory
network. If attention can lead to an attractor state in this network, the message obtained with each pass of information builds on the previous message. The
message evolves from an inner identity of H2S, to an inner form of H2S, to an inner likeness or image of H2S. H2S-ness is experienced.

form of H2S’’ to the network then the feedback will be identified
as ‘‘representation of inner form of H2S’’. But a representation
of the form of something is a likeness of it, an image of it. The
network has communicated to itself an inner likeness or inner
image of H2S. The feedback is of course a physical structure, but
the identity of that feedback is an inner meaning. The meaning
is an ‘‘inner likeness or image of H2S’’. To the network it is
H2S-ness. It is how H2S appears to the network, what it is like
to it, how it seems to it. The first message was the identity of
the chemical, the second message was the form of H2S to the
network, and the third message is an inner likeness or image
of H2S (Figure 7). If the brain were able to report the outcome
of this process it wouldn’t just be reporting its inner form of
H2S but how that H2S seemed to it. It is identifying an inner
experience of H2S-ness. It is just an abstract inner sense and
not something that can be described to anyone. But from prior
learning of words, that inner experience would be given the label
of a ‘‘smell’’. The brain had a quale of the smell of hydrogen
sulfide.

If the brain used a different chemical sensing system based
on receptors in the tongue rather than the nasal epithelium
then a recognized chemical would be interpreted in a similar
way. If the tongue sensors responded to glucose in the mouth
then the chemical would initially be identified by the cortical
networks receiving the information structure from the taste
sensors. On first feedback the new input would be identified as

the network’s inner form of glucose. On second feedback the
new input would be identified as an inner image of glucose. It
would lead to an outcome that was how the chemical seemed
to the brain. But the inner experience, impossible to put into
words, would be different to the olfactory experience. It used
different structures in the brain (for a discussion of how qualia
can vary depending on the site of generation, see Orpwood,
2010). The outcome would still be how that chemical seemed
to the brain, how it experienced it. But in this instance, from
learning, the brain would put a label on it of a ‘‘taste’’. The
brain’s experience would just be an abstract inner sense but
from knowledge of words it could report the experience as
sweetness.

Going back to the example used above of blue color
information being communicated to area V4 in the cortex,
how will this be interpreted? The initial identity to the
network in V4 is ‘‘blue’’. The network itself cannot of course
interpret it as ‘‘blue’’. For the network it is just an abstract
information message. But because of the network’s configuration
and learning it recognizes the input information structure.
The output structure generated as a result of the initial
recognition is the network’s own representation of blue, its
inner embodiment of blue. If this is fed back in an attractor
state the network would recognize the feedback input as its
inner form of the color blue. The network would generate an
output that this time was a representation of its inner form
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of blue. If this second output were fed back and recognized
the network would identify it as an inner likeness or image
of blue, or blue-ness. It would be how the color blue seemed
to the network, how it experienced it. It would be just an
abstract, un-describable concept, but from prior learning the
brain could give it the label ‘‘blue’’. A blue quale had been
experienced.

Similarly, if the brain received an input to its auditory cortex
that resulted from the striking of a tuning fork, how would
it respond? The auditory cortex would at some point contain
networks that would recognize the tone and generate an output
structure that was its inner representation of that particular
sound. If that output was fed back in an attractor state it would
be recognized as the form of that sound to the network. If the
sound was that of middle-C then the second firing would be a
representation of the network’s inner form of middle-C. This
form representation is then communicated back to the network
and identified as an inner likeness. The new message would be
how middle-C seemed to the network, how it experienced it. A
quale would have been formed that couldn’t be described but it
would be middle-C-ness, what middle-C was like to the network.
But from learning to express qualia in words it could be given a
label of a ‘‘sound’’. The particular sound of middle-C would be
less easy to put into words, but it would have a distinctive quale.

So it is proposed that there could be at any given moment
a set of inner experiences related to networks that have settled
into an attractor state. Each could lead to an inner experience,
a seeming, a quale. There will be qualia associated with activity
in the sensory cortices as described. There will also be qualia
generated in the amygdala related to emotional experiences, in
place cells of the hippocampus related to a sense of place, etc.
Only activities in networks that have achieved attractor states
would lead to these experiences. As was discussed above and
in Orpwood (2013), the development of attractor states could
be dependent on re-entrant feedback stimulating networks into
this behavior. So attention and other mechanisms would be
shepherding the development of attractor states allowing some
to develop and inhibiting others. Such control would lead to a
kind of brain-wide constraint satisfaction where activity settles
down to a set of activities that includes all the networks that are
maintained in an attractor state. The set of qualia engendered at
that moment could constitute the conscious state of the brain at
that moment. So, as underlined in Orpwood (2013), these ideas
are quite compatible with more general consciousness theories
such as Global Workplace theory. The difference with this article
is that it aims to provide a theory about the mechanism of the
generation of the phenomenal experience itself.

IS THERE ANY EVIDENCE FOR THIS
BEHAVIOR?

What would the theory predict would bemeasurable as qualia are
formed? The theory revolves around the activity of local cortical
networks and presumes these ensembles are the major functional
unit for information processing within the cortex rather than
individual cells. It also requires these local networks to undergo
cyclic activity as a pre-requisite for qualia to be formed, and

requires attractor or resonant states to be formed at the point
at which qualia are generated. Is there any evidence for these
predictions?

Networks or Ensembles of Neurons
There is growing evidence that the key information processing
entities in the brain are networks of neurons, rather than
individual cells. Over 10 years ago Harris argued that the
fundamental currency of information processing in the cortex
is the spatial pattern of firing activity in assemblies of neurons
(Harris, 2005). The idea has been amplified by others (Buzsáki,
2010; Bharmauria et al., 2016). To provide evidence for the role
of networks ideally requires studies that examine population
activity, and inevitably 2-photon calcium imaging has proven to
be a useful tool in this work. Miller et al. (2014) showed specific
ensembles of neurons that responded to visual stimuli in awake
mice. The same ensemble activity also occurred spontaneously,
albeit at much lower levels, as though the ensembles were prior-
learnt connected networks. Any given neuron could be part
of a number of different ensembles. The stimulus dependence
of the activity of pyramidal cell ensembles was also shown
by Hofer et al. (2011). They showed that this pyramidal
cell activity contrasted markedly with local inhibitory neuron
activity which more simply reflected general activity in the
locality. Cossell et al. (2015) demonstrated that the majority
of the synaptic drive in L2/3 cells is provided by a small
number of strong reciprocal inputs between local cells with
similar responses to visual inputs. Lee et al. (2016) also showed
L2/3 pyramidal cells organized into sub-networks with similar
orientation selectivity. As well as these population studies, data
from individual units have also indicated the importance of
ensembles in information processing. Yoshimura et al. (2005)
showed distinct subsets of L2/3 pyramidal cells within a given
column that were activated by sensory inputs. Bharmauria et al.
(2016) demonstrated specific cell assemblies which discriminated
between the orientations of visual inputs, recruiting a different
functional network in V1 at all orientations. Such ensembles
are exactly the kind of building blocks required to generate
qualia according to the theory discussed in this article. Zeki’s
original work on micro-consciousness (Moutoussis and Zeki,
1997) showed that, in the visual cortex, movement qualia arise
separately to color qualia, implying activity in local networks is
at the core of qualia generation. This work has been repeated
and investigated further by other authors (e.g., Linares and
López-Moliner, 2006; Self, 2014). In an ERP study Bablioni
also concluded that synchronized activity in specific cortical
networks underlay the generation of qualia (Bablioni et al.,
2016).

Oscillatory Activity
Is there any evidence that these ensembles of neurons are
engaged in the kind of cyclic activity required by the theory
presented here? Attractor behavior would, by definition, lead
to oscillatory activity, and this could be picked up in LFPs or
in scalp potentials if sufficient numbers of cells were involved.
The involvement of local network feedback would lead to very
short feedback paths that would cause quite fast oscillations.
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This kind of time-course is indicated by various theoretical
studies exploring the generation of gamma oscillations in the
cortex (e.g., Wang and Buzsaki, 1996). It is highly likely that
whenever local attractor oscillations occurred they would be
indicated by oscillating field potentials or scalp potentials that
were in the gamma frequency range. This does not mean of
course that all gamma oscillations are indicative of attractor
behavior. Although oscillating cortical potentials such as gamma,
or alpha and beta, etc. are often treated as end results in
their own right, and therefore a singular phenomenon with a
specific function, there is no reason that this should be so. It
is more likely that any particular frequency is generated by a
number of different activities in the brain where the dynamics
of the activity involved happen to lead to that frequency of
oscillation (Merker, 2013; Bosman et al., 2014). This point was
amplified further by Merker comparing gamma activity to the
BOLD signal, as being simply an indicator of local cortical
activity, co-varying with cognitive activity rather than being a
cognitive operator in its own right (Merker, 2016). The only
thing that can be deduced from gamma frequencies is that
their fast nature tends to indicate local activity with its short
conduction paths. So gamma frequency activity is likely to be
generated by attractor behavior, but the occurrence of gamma
activity can indicate things going on other than attractors.
At the very least however, it would be expected from this
theory that activity in the gamma frequency range would be
detected in appropriate brain areas if conscious perceptions
were reported, and that this activity would be quite local. A
technique for distinguishing between the likely gamma activity
arising from attractor behavior, and gamma activity arising from
other mechanisms, would be extremely useful in testing this
hypothesis. Modeling studies have shown that the key current
source for the gamma waveforms measured with EEG and MEG
arises from activity in L5 neurons, and that activity in L2/3 layers
is completely masked when L5 activity occurs at the same time
(Lee and Jones, 2013). Given the different feedforward/feedback
roles of these laminae in cortical information processing (e.g.,
Harris and Shepherd, 2015), and their possible impact on
consciousness (Orpwood, 2010), the interpretation of gamma
activity is not straightforward.

The link between neuronal events and gamma band activity
in EEG and MEG recordings is complex (Fernández-Ruiz and
Herreras, 2013) but it has for some time been associated
with perception, (for reviews see Martinovic and Busch, 2011;
Rieder et al., 2011). Early evoked oscillations seem to be linked
to feature analysis and later induced activity to perceptual
understanding (Tallon-Baudry, 2003; Herrmann et al., 2004).
Tallon-Baudry (2003) showed that top-down feedback to sensory
areas was associated with increased gamma oscillation during
object recognition, and the same activity could be induced
by visual imagery. Analysis of evoked and induced gamma
responses indicated that both relied on a similar source of
neural activity (Porcaro et al., 2011). Visual stimuli have also
shown gamma activity to drop to lower levels with sustained
stimuli but to continue for the duration of the stimulus (Lowet
et al., 2016), also seen in awake monkeys (Swettenham et al.,
2009). Reported pain levels seem to reflect the induced gamma

band response to pain stimuli (Schulz et al., 2012), with stimuli
just above the pain threshold causing increased gamma power
compared to those just below (Gross et al., 2007). Visual and
acoustic illusions have also led to increased gamma activity
in appropriate sensory cortices (Kaiser et al., 2006; Matsuzaki
et al., 2012). Gamma synchrony has been highlighted as a
key factor in perception, particularly phase synchrony (Fries
et al., 2007), and given the proposed importance of ensemble
activity in awareness, it is interesting that when functionally
connected units were identified in V1 there was an increased
gamma power in their responses compared to unconnected
neurons (Bharmauria et al., 2015). Attention increases gamma
synchronization between visual and other areas (Doesburg et al.,
2008), and increases the gamma response to pain (Hauck et al.,
2007). However there have been some detractors from the
possible link between gamma band activity and awareness. Aru
et al. (2012) found that sensory context and prior information led
to different gamma responses despite perceptual reports being
the same.

Direct recordings from the cortical surface in humans (ECoG)
provides a very useful tool for exploring the link between
gamma activity and consciousness. There are some useful ECoG
reviews (Jacobs and Kahana, 2010; Crone et al., 2011; Lachaux
et al., 2012), and Buzsáki et al. (2012) have a good discussion
about links between neural activity and ECoG recordings, and
show gamma oscillations reflecting firing activity. Using ECoG
techniques very local activity in the hippocampus was found to
link to conscious recognition (Rey et al., 2014). These authors felt
that gamma activity reflected the activity of local cell assemblies
as particular concepts were brought into awareness. Also Burke
et al. (2014) explored the activity that took place as subjects tried
to recall a list of words. They showed three stages; an initial
searching stage with high levels of theta, a second recognition
stage with high levels of gamma, and a third report stage
involving gamma in motor regions. They argued that the theta
reflected the searching process whereas gamma reflected the
conscious recall. Perceptual face recognition has been used by
a number of researchers to look at responses in awake humans.
Increases in gamma band activity in facial areas has consistently
been found when recognition took place (Lachaux et al., 2005;
Fisch et al., 2009). ECoG studies in monkeys also showed large
increases in gamma activity over the visual cortex when the
animal focussed on viewing an object (Brunet et al., 2015).
This activity dropped to low levels following a saccade before
returning to high levels again. Gaillard et al. (2009) looked
at conscious perception of words. Only conscious stimuli lead
to high power gamma, and with gamma synchrony that was
very local. The gamma response was sustained throughout the
stimulus presentation. Sequence learning has also been explored
using ECoG techniques (Madhaven et al., 2015). Gamma power
increases occurred during the learning process but as recall
improved the gamma power decreased, with new sequences
leading to increases again. The gamma power seemed to reflect
the conscious content which reduced once a sequence had
become learnt. Using their ECoG data, Van Vugt et al. (2014)
concluded that sensory percepts are maintained in sensory
cortex as synchronized gamma activity which decays but can
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be re-energized by top down activity from the PFC. Attention
has also been linked to these ECoG responses. Lachaux et al.
(2008) found gamma band signals decreased in power in
one region and increased in another as attention shifted. Ray
et al. (2008b) showed both auditory and somato-sensory areas
had an increase in gamma power when sensory stimuli were
attended to, with an increase over the PFC when this took
place.

Some recent articles have underlined the importance of not
using a blanket term for higher frequency activity, and have
shown that low and high frequency gamma can reflect different
responses. Crone et al. (2011) argued that high gamma is
more limited in extent and more reliably linked to recognition
responses, and also that it was more linked to local synchrony
than firing rate changes. The attention-linked increases in
gamma power discussed above were also primarily in the
high gamma frequencies. Hermes et al. (2015) went further to
show that high-level visual perception (faces, buildings) only
correlated with high frequency gamma and not lower ones.
Lower frequencies could only reliably be elicited by gratings. The
high level activity also continued for the duration of the stimulus.
Interestingly in macaques it was found with depth electrodes that
firing activity led to high gamma rather than low (Ray et al.,
2008a). The ECoG literature in general seems to show lower
frequency EEG waveforms to be more widespread and related
to basic processing. For example Groppe et al. (2013) suggest
alpha is related to sensory processing and attention, beta very
widespread, and although gamma is prominently observed, it is
quite infrequent and localized.

Attractors
One strand of the theory presented requires that the ensembles
of cortical neurons undergo attractor behavior. Although
oscillatory waveforms linked to consciousness are a useful
indicator, is there more direct evidence that attractors can
form in the cortex? There has been an implicit assumption
for some 20–30 years that attractor behavior underpins many
cognitive functions (Hopfield, 1982; Amit, 1989; Rolls and
Treves, 1998). The structure of local cortical networks, and the
recurrent collateral connectivity of their pyramidal cells, would
imply that they are ideally suited to develop attractor behavior.
Many theoretical studies have used this framework. For example
Tsodyks (1999) described a theory of hippocampal function
that used attractors to define place maps in the hippocampus.
In a discussion about motor cortex organization Capaday
et al. (2013) concluded that the large amount of recurrent
collaterals would enable motor cortex to generate attractors to
represent kinetic data. In addition, several theoretical studies of
consciousness have been constructed around the generation of
attractors (e.g., Mozer, 2009). It was proposed that the contents
of consciousness corresponded to transient attractors developing
in an interconnected network of computational modules (Mathis
and Mozer, 1996). Grossberg claimed that conscious states are a
subset of the resonant states that develop between bottom-up and
top-down information, and which lie at the heart of his Adaptive
Resonance Theory (Grossberg, 1999).

Despite this widespread theoretical thinking, evidence for
attractor behavior is only just starting to appear. A key reason
for this is that this behavior depends on the activity of whole
networks of neurons and evidence has had to wait until the
availability of techniques for monitoring large populations of
cells. A key technique in these studies had been the use of
2-photon calcium imaging (Wallace and Kerr, 2010). There is
evidence that the transient calcium dynamics that are recorded
closely reflect cell firing (Kerr and Denk, 2008). However even
this technique struggles to follow the detailed time-course of
cell firings as it is an indirect measure that can only provide an
integrated view of activity over a slower timescale. Miller et al.
(2014) demonstrated very clearly in awake mice the repeatedly
active ensembles of neurons that arose following visual stimuli,
but argued that the time resolution of calcium imaging was
not fast enough to determine their detailed dynamics, such
as if attractors were developing within the ensembles. And
of course these techniques do not lend themselves to work
on human subjects, which is key when it comes to exploring
conscious experience. Nevertheless evidence for the occurrence
of attractor behavior is becoming more widespread. A key aim
for future large-scale connectomics projects would be to explore
the attractor behavior of cortical networks and the emergent
properties that arise (Alivisatos et al., 2012).

Attractor-based theories for hippocampal behavior have been
discussed for some time (Rolls, 1996; Tsodyks, 1999) and some
evidence has been emerging to support these theories (Poucet
and Save, 2005; Knieren and Zhang, 2012). CA3 in particular
seems to be able to generate distinct patterns of activity as it is
exposed to different environments (Guzowski et al., 2004). One
prediction for fixed-point attractors is that as inputs are slowly
morphed from one distinct kind to another then the response
of the network should not change until about the midpoint
of the morphing process when the response should suddenly
change from one pattern of activity to another. Wills et al. (2005)
showed that as environmental stimuli changed from a round
to a square design in stages, there was an abrupt change in
the response in CA1 place cells at about the halfway point, as
would be expected. Morphed stimuli were also used to explore
visual processing in awake monkey IT cortex, and neurons were
found that reflected the categorization decision the monkeys
made (Akrami et al., 2009). In the auditory cortex of mice,
discreet groups of L2/3 cells were found that responded to similar
sounds, and as sounds were changed the transitions between the
responses of these groups was abrupt, suggesting attractor-like
dynamics (Bathellier et al., 2012). The behavior of the awakemice
to different sounds could be predicted from the group activities,
underscoring their behavioral relevance. In a comment on this
work Harris (2012) felt that the firing of the cell assemblies
resembled so-called ‘‘bump’’ attractors. However others have
shown more progressive changes as environmental stimuli are
morphed in this way (Leutgeb et al., 2005). Using a different
technique (in vivo multi-electrode recordings in pre-motor
cortex), Mattia et al. (2013) recorded stereotypical network
activity that the authors felt provided compelling evidence that
motor plans resulted from attractor activity in local networks as
a result of local synaptic reverberation.
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So the evidence for the development of attractor states is quite
thin on the ground, despite the widespread assumption that it is
a common occurence. Measurement techniques at the moment
are not quite up to determining whether there are coordinated
cycles of firing within ensemble activity. What is really needed is
evidence for the generation of attractors during conscious report,
and for no conscious experience when attractors do not develop.
This can only be done in awake humans but there is no evidence
to date with ECoG studies or LFPs for attractor activity linked
to conscious report. An indirect signature of attractor behavior
using EEG or MEG activity would of course make such studies a
lot easier.

What Would be Needed to Provide Further
Evidence?
Despite the overwhelming likelihood that all higher animals
experience a degree of consciousness, the only animals we
can be a 100% certain about are humans. Therefore it
is necessary ultimately to measure activity in humans that
underpins conscious experience. For the theory presented here
that evidence has to come from monitoring the activity of
networks of individual cells, with sub-millisecond resolution,
to see how they behave during conscious acts and how
that differs to unconscious acts. Such work would necessarily
have to remove co-varying activity relating to such things as
allocation of attention, activity relating to the reporting process,
anticipation, etc. Techniques for population monitoring are of

course developing fast, with the pioneering use of 2-photon
calcium imaging. At present this technique is not quite fast
enough to explore the detail firing activity of cells in networks
but this is surely not far off. In the first instance such techniques
can be usefully used with higher mammals who are strongly
suspected of having conscious experience. Strong pointers would
result frommonitoring local activity such as that described in this
article as the animal indicated a perception as opposed to not
indicating a perception. If in parallel with such measurements
a signature of that activity could be defined using EEG, MEG
or ECoG that would enable human experiments to look for
those signatures. Ultimately though it will be necessary to find
a technique that can be used in humans, perhaps an ethically
acceptable form of light imaging, that can detect the local
activity described and to show that it occurs only with conscious
awareness.

AUTHOR CONTRIBUTIONS

This article presents work carried out by the sole author (RO),
and was written by him.

ACKNOWLEDGMENTS

I am very grateful to the University of Bath, and the Centre of
Pain Research in particular, for granting me a visiting post at the
University and thus enabling this work to be undertaken.

REFERENCES

Akrami, A., Liu, Y., Treves, A., and Jagadeesh, B. (2009). Coverging neuronal
activity in inferior temporal cortex during the classification ofmorphed stimuli.
Cereb. Cortex 19, 760–776. doi: 10.1093/cercor/bhn125

Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., and
Yuste, R. (2012). The brain activity map project and the challenge of functional
connectomics. Neuron 74, 970–974. doi: 10.1016/j.neuron.2012.06.006

Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural
Networks. Cambridge, MA: Cambridge University Press.

Aru, J., Axmacher, N., Do Lam, A., Fell, J., Elger, C., Singer, W., et al. (2012). Local
category-specific gamma band responses in the visual cortex do not reflect
conscious perception. J. Neurosci. 32, 14909–14914. doi: 10.1523/JNEUROSCI.
2051-12.2012

Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge, MA:
Cambridge University Press.

Bablioni, C., Marzano, N., Soricelli, A., Cordone, S., Millán-Calenti, J. C., Del
Percio, C., et al. (2016). Cortical neural synchronisation underlies primary
visual consciousness of qualia: evidence from event-related potentials. Front.
Hum. Neurosci. 10:310. doi: 10.3389/fnhum.2016.00310

Balduzzi, D., and Tononi, G. (2009). Qualia: the geometry of integrated
information. PLoS Comput. Biol. 5:e1000462. doi: 10.1371/journal.pcbi.
1000462

Bathellier, B., Ushakova, L., and Rumpel, S. (2012). Discrete neocortical
dynamics predict behavioural categorisation of sounds. Neuron 76, 435–449.
doi: 10.1016/j.neuron.2012.07.008

Bharmauria, V., Bachatene, L., Cattan, S., Brodeur, S., Chanauria, N., Rouat, J.,
et al. (2016). Network-selectivity and stimulus-discrimination in the primary
visual cortex: cell-assembly dynamics. Eur. J. Neurosci. 43, 204–219.
doi: 10.1111/ejn.13101

Bharmauria, V., Bachatene, L., Cattan, S., Chanauria, N., Rouat, J., and
Molotchnikoff, S. (2015). Stimulus-dependent augmented gamma oscillatory

activity between the functionally connected cortical neurons in the
primary visual cortex. Eur. J. Neurosci. 41, 1587–1596. doi: 10.1111/ejn.
12912

Boehler, C. N., Schoenfeld, M. A., Heinze, H. J., and Hopf, J. M. (2008). Rapid
recurrent processing gates awareness in primary visual cortex. Proc. Natl. Acad.
Sci. U S A 105, 8742–8747. doi: 10.1073/pnas.0801999105

Boly, M., Garrido, M. I., Gosseries, O., Bruno, M.-A., Boveroux, P., Schnakers, C.,
et al. (2011). Preserved feedforward but impaired top-down processes
in the vegetative state. Science 332, 858–862. doi: 10.1126/science.
1202043

Bosman, C. A., Lansink, C. S., and Pennartz, C. M. A. (2014). Functions of
gamma-band synchronization in cognition: from single circuits to functional
diversity across cortical and subcortival systems. Eur. J. Neurosci. 39,
1982–1999. doi: 10.1111/ejn.12606

Brunet, N., Bosman, C. A., Roberts, M., Oostenveld, R., Womelsdorf, T.,
De Weerd, P., et al. (2015). Visual cortical gamma-band activity
during free viewing of natural images. Cereb. Cortex 25, 918–926.
doi: 10.1093/cercor/bht280

Bullier, J. (2001). Integratedmodel of visual processing. Brain Res. Rev. 36, 96–107.
doi: 10.1016/s0165-0173(01)00085-6

Burke, J. F., Sharan, A. D., Sperling, M. R., Ramayya, A. G., Evans, J. J.,
Healey, M. K., et al. (2014). Theta and high-frequency activity mark
spontaneous recall of episodic memories. J. Neurosci. 34, 11355–11365.
doi: 10.1523/jneurosci.2654-13.2014

Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers.
Neuron 68, 362–385. doi: 10.1016/j.neuron.2010.09.023

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origins of extracellular
fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,
407–420. doi: 10.1038/nrn3241

Capaday, C., Ethier, C., Van Vreeswijk, C., and Darling, W. G. (2013). On the
functional organisation and operational principles of the motor cortex. Front.
Neural Circuits 7:66. doi: 10.3389/fncir.2013.00066

Frontiers in Systems Neuroscience | www.frontiersin.org 14 April 2017 | Volume 11 | Article 22

https://doi.org/10.1093/cercor/bhn125
https://doi.org/10.1016/j.neuron.2012.06.006
https://doi.org/10.1523/JNEUROSCI.2051-12.2012
https://doi.org/10.1523/JNEUROSCI.2051-12.2012
https://doi.org/10.3389/fnhum.2016.00310
https://doi.org/10.1371/journal.pcbi.1000462
https://doi.org/10.1371/journal.pcbi.1000462
https://doi.org/10.1016/j.neuron.2012.07.008
https://doi.org/10.1111/ejn.13101
https://doi.org/10.1111/ejn.12912
https://doi.org/10.1111/ejn.12912
https://doi.org/10.1073/pnas.0801999105
https://doi.org/10.1126/science.1202043
https://doi.org/10.1126/science.1202043
https://doi.org/10.1111/ejn.12606
https://doi.org/10.1093/cercor/bht280
https://doi.org/10.1016/s0165-0173(01)00085-6
https://doi.org/10.1523/jneurosci.2654-13.2014
https://doi.org/10.1016/j.neuron.2010.09.023
https://doi.org/10.1038/nrn3241
https://doi.org/10.3389/fncir.2013.00066
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Orpwood Information and Qualia

Carpenter, G. A., and Grossberg, S. (1987). A massively parallel architecture for
a self-organising neural pattern recognition machine. Comput. Vis. Graphics
image Proc. 37, 54–115. doi: 10.1016/s0734-189x(87)80014-2

Chalmers, D. J. (1996). The Conscious Mind. New York, NY: Oxford University
Press.

Clark, A. (2013). Whatever next? Predictive brains, situated agents,
and the future of cognitive science. Behav. Brain Sci. 36, 181–204.
doi: 10.1017/s0140525X12000477

Clark, A., and Karmiloff-Smith, A. (1993). The cognizer’s innards: a psychological
and philosophical perspective on the development of thought. Mind Lang. 8,
487–519. doi: 10.1111/j.1468-0017.1993.tb00299.x

Cleeremans, A. (2008). The radical plasticity thesis. Prog. Brain Res. 168, 19–33.
doi: 10.1016/S0079-6123(07)68003-0

Cossell, L., Iacaruso, M. F., Muir, D. R., Houlton, R., Sader, E. N., Ko, H., et al.
(2015). Functional organisation of excitatory synaptic strength in primary
visual cortex. Nature 518, 399–403. doi: 10.1038/nature14182

Crone, N., Korzeniewska, A., and Franaszczuk, P. J. (2011). Cortical gamma
responses: searching high and low. Int. J. Psychophysiol. 79, 9–15. doi: 10.1016/j.
ijpsycho.2010.10.013

Dehaene, S., Kerszberg, M., and Changeux, J. P. (1998). A neuronal model of a
global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. U S A 95,
14529–14534. doi: 10.1073/pnas.95.24.14529

Doesburg, S. M., Roggeveen, A. B., Kitajo, K., and Ward, L. M. (2008). Large-scale
gamma-band phase synchronisation and selective attention. Cereb. Cortex 18,
386–396. doi: 10.1093/cercor/bhm073

Edelman, G.M. (1992). Bright Air, Brilliant Fire: On theMatter ofMind.NewYork,
NY: Basic Books.

Fernández-Ruiz, A., and Herreras, O. (2013). Identifying the synaptic origin of
ongoing neuronal oscillations through spatial descrimination of electric fields.
Front. Comput. Neurosci. 7:5. doi: 10.3389/fncom.2013.00005

Fisch, L., Privman, E., Ramot, M., Harel, M., Nir, Y., Kipervasser, S., et al.
(2009). Neural ‘‘ignition’’: enhanced activation linked to perceptual awareness
in human ventral stream visual cortex. Neuron 64, 562–574. doi: 10.1016/j.
neuron.2009.11.001

Flanagan, O. (1992). Consciousness Reconsidered. Cambridge, MA: MIT Press.
Fries, P., Nikolic, D., and Singer, W. (2007). The gamma cycle. Trends Neurosci.

30, 309–316. doi: 10.1016/j.tins.2007.05.005
Gaillard, R., Dehaene, S., Adam, C., Clémenceau, S., Hasboun, D., Baulac, M.,

et al. (2009). Converging intracranial markers of conscious access. PLoS Biol.
7:e1000061. doi: 10.1371/journal.pbio.1000061

Graziano, M. S. A., and Kastner, S. (2011). Human consciousness and its
relationship to social neuroscience: a novel hypothesis. Cogn. Neurosci. 2,
98–113. doi: 10.1080/17588928.2011.565121

Groppe, D. M., Bickel, S., Keller, C. J., Jain, S. K., Hwang, S. T., Harden, C., et al.
(2013). Dominant frequencies of resting human barin activity as measured by
the electrocorticogram. Neuroimage 79, 223–233. doi: 10.1016/j.neuroimage.
2013.04.044

Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma
oscillations in human primary somatosensory cortex reflect pain perception.
PLoS Biol. 5:e133. doi: 10.1371/journal.pbio.0050133

Grossberg, S. (1999). The link between brain learning, attention, and
consciousness. Conscious. Cogn. 8, 1–44. doi: 10.1006/ccog.1998.0372

Guzowski, J., Knierim, J. J., and Moser, E. I. (2004). Ensemble dynamics of
hippocampal regions CA3 and CA1. Neuron 44, 581–584. doi: 10.1016/j.
neuron.2004.11.003

Harris, K. (2012). Cell assemblies of the superficial cortex. Neuron 76, 263–265.
doi: 10.1016/j.neuron.2012.10.007

Harris, K. (2005). Neural signatures of cell assembly organisation. Nat. Rev.
Neurosci. 6, 399–407. doi: 10.1038/nrn1669

Harris, K., and Shepherd, G. (2015). The neocortical circuit: themes and variations.
Nat. Neurosci. 18, 170–181. doi: 10.1038/nn.3917

Hauck, M., Lorenz, J., and Engle, A. K. (2007). Attention to painful stimuli
enhances α-band activity and synchronisation in human sensorimotor
cortex. J. Neurosci. 27, 9270–9277. doi: 10.1523/JNEUROSCI.2283-
07.2007

Haynes, J. D., Driver, J., and Rees, G. (2005). Visibility reflects dynamic changes
of effective connectivity between V1 and fusiform cortex. Neuron 46, 811–821.
doi: 10.1016/j.neuron.2005.05.012

Hermes, D., Miller, J. K., Wandell, B. A., and Winower, J. (2015). Stimulus
dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25,
2951–2959. doi: 10.1093/cercor/bhu091

Herrmann, C. S., Munk, M. H., and Engle, A. K. (2004). Cognitive functions
of gamma-band activity: memory match and utilisation. Trends Cogn. Sci. 8,
347–355. doi: 10.1016/j.tics.2004.06.006

Hofer, S. B., Ko, H., Pichler, B., Vogelstein, J., Ros, H., Zeng, H., et al. (2011).
Differential connectivity and response dynamics of excitatory and inhibitory
neurons in visual cortex. Nat. Neurosci. 14, 1045–1052. doi: 10.1038/nn.2876

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U S A 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Jacobs, J., and Kahana, M. J. (2010). Direct brain recordings fuel advances in
cognitive electrophysiology. Trends Cogn. Sci. 14, 162–171. doi: 10.1016/j.tics.
2010.01.005

Kaiser, J., Hertrich, I., Ackermann, H., and Lutzenberger,W. (2006). Gamma-band
activity over early sensory areas predicts detection of changes in audiovisual
speech stimuli. Neuroimage 30, 1376–1382. doi: 10.1016/j.neuroimage.2005.
10.042

Kerr, J. N., and Denk, W. (2008). Imaging in vivo: watching the brain in action.
Nat. Rev. Neurosci. 9, 195–205. doi: 10.1038/nrn2338

Knieren, J. J., and Zhang, K. (2012). Attractor dynamics of spatially correlated
neural activity in the limbic system. Annu. Rev. Neurosci. 35, 267–285.
doi: 10.1146/annurev-neuro-062111-150351

Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates
of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321.
doi: 10.1038/nrn.2016.22

Lachaux, J. P., Axmacher, N., Mormann, F., Halgren, E., and Crone, N. E.
(2012). High-frequency neural activity and human cognition: past, present and
possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301.
doi: 10.1016/j.pneurobio.2012.06.008

Lachaux, J. P., George, N., Tallon-Baudry, C., Martinerie, J., Hugueville, L.,
Minotti, L., et al. (2005). The many faces of gamma band response to complex
visual stimuli. Neuroimage 25, 491–501. doi: 10.1016/j.neuroimage.2004.
11.052

Lachaux, J. P., Jung, J., Mainy, N., Dreher, J. C., Bertrand, O., Baciu, M.,
et al. (2008). Silence is golden:transient neural deactivation in the
prefrontal cortex during attentive reading. Cereb. Cortex 18, 443–450.
doi: 10.1093/cercor/bhm085

Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness.
Cogn. Neurosci. 1, 204–220. doi: 10.1080/17588921003731586

Lamme, V. A. F., and Roelfsema, P. R. (2000). The distinct modes of vision
offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579.
doi: 10.1016/s0166-2236(00)01657-x

Lamme, V. A. F., and Spekreijse, H. (2000). Modulations of primary visual cortex
activity representing attentive and conscious scene perception. Front. Biosci. 5,
D232–D243. doi: 10.2741/a507

Lee, W.-C. A., Bonin, V., Reed, M., Graham, B. J., Hood, G., Glattfelder, K., et al.
(2016). Anatomy and function of an excitatory network in the visual cortex.
Nature 532, 370–374. doi: 10.1038/nature17192

Lee, S., and Jones, S. R. (2013). Distinguishing mechanisms of gamma frequency
oscillations in human current source signals using a computational model of a
laminar neocortical network. Front. Hum. Neurosci. 7:869. doi: 10.3389/fnhum.
2013.00869

Leutgeb, J. K., Leutgeb, S., Treves, A., Meyer, R., Barnes, C. A., McNaughton, B. L.,
et al. (2005). Progressive transformation of hippocampal neuronal
representations in ‘‘morphed’’ environments. Neuron 48, 345–358.
doi: 10.1016/j.neuron.2005.09.007

Linares, D., and López-Moliner, J. (2006). Perceptual asynchrony between
color and motion with a single direction change. J. Vis. 6, 974–981.
doi: 10.1167/6.9.10

Lowet, E., Roberts, M. J., Bosman, C. A., Fries, P., and De Weerd, P. (2016).
Areas V1 and V2 show microsaccade-related 3-4 Hz covariation in gamma
power and frequency. Eur. J. Neurosci. 43, 1286–1296. doi: 10.1111/ejn.
13126

Madhaven, R., Millman, D., Tang, H., Crone, N. E., Lenz, F. A., Tierney, T. S., et al.
(2015). Decreases in gamma-band activity tracks sequence learning. Front. Syst.
Neurosci. 8:222. doi: 10.3389/fnsys.2014.00222

Frontiers in Systems Neuroscience | www.frontiersin.org 15 April 2017 | Volume 11 | Article 22

https://doi.org/10.1016/s0734-189x(87)80014-2
https://doi.org/10.1017/s0140525X12000477
https://doi.org/10.1111/j.1468-0017.1993.tb00299.x
https://doi.org/10.1016/S0079-6123(07)68003-0
https://doi.org/10.1038/nature14182
https://doi.org/10.1016/j.ijpsycho.2010.10.013
https://doi.org/10.1016/j.ijpsycho.2010.10.013
https://doi.org/10.1073/pnas.95.24.14529
https://doi.org/10.1093/cercor/bhm073
https://doi.org/10.3389/fncom.2013.00005
https://doi.org/10.1016/j.neuron.2009.11.001
https://doi.org/10.1016/j.neuron.2009.11.001
https://doi.org/10.1016/j.tins.2007.05.005
https://doi.org/10.1371/journal.pbio.1000061
https://doi.org/10.1080/17588928.2011.565121
https://doi.org/10.1016/j.neuroimage.2013.04.044
https://doi.org/10.1016/j.neuroimage.2013.04.044
https://doi.org/10.1371/journal.pbio.0050133
https://doi.org/10.1006/ccog.1998.0372
https://doi.org/10.1016/j.neuron.2004.11.003
https://doi.org/10.1016/j.neuron.2004.11.003
https://doi.org/10.1016/j.neuron.2012.10.007
https://doi.org/10.1038/nrn1669
https://doi.org/10.1038/nn.3917
https://doi.org/10.1523/JNEUROSCI.2283-07.2007
https://doi.org/10.1523/JNEUROSCI.2283-07.2007
https://doi.org/10.1016/j.neuron.2005.05.012
https://doi.org/10.1093/cercor/bhu091
https://doi.org/10.1016/j.tics.2004.06.006
https://doi.org/10.1038/nn.2876
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/j.tics.2010.01.005
https://doi.org/10.1016/j.tics.2010.01.005
https://doi.org/10.1016/j.neuroimage.2005.10.042
https://doi.org/10.1016/j.neuroimage.2005.10.042
https://doi.org/10.1038/nrn2338
https://doi.org/10.1146/annurev-neuro-062111-150351
https://doi.org/10.1038/nrn.2016.22
https://doi.org/10.1016/j.pneurobio.2012.06.008
https://doi.org/10.1016/j.neuroimage.2004.11.052
https://doi.org/10.1016/j.neuroimage.2004.11.052
https://doi.org/10.1093/cercor/bhm085
https://doi.org/10.1080/17588921003731586
https://doi.org/10.1016/s0166-2236(00)01657-x
https://doi.org/10.2741/a507
https://doi.org/10.1038/nature17192
https://doi.org/10.3389/fnhum.2013.00869
https://doi.org/10.3389/fnhum.2013.00869
https://doi.org/10.1016/j.neuron.2005.09.007
https://doi.org/10.1167/6.9.10
https://doi.org/10.1111/ejn.13126
https://doi.org/10.1111/ejn.13126
https://doi.org/10.3389/fnsys.2014.00222
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Orpwood Information and Qualia

Martinovic, J., and Busch, N. A. (2011). High frequency oscillations as a correlate
of visual perception. Int. J. Psychophysiol. 79, 32–38. doi: 10.1016/j.ijpsycho.
2010.07.004

Mathis, D. M., and Mozer, M. C. (1996). ‘‘Conscious and unconscious perception:
a computational theory,’’ in Proceedings of the Eighteenth Annual Conference
of the Cognitive Science Society, ed. G. Cottrell (Hillsdale, NJ: Erlbaum),
324–328.

Matsuzaki, N., Juhász, C., and Asano, E. (2012). Oscillatory modulations in human
fusiform cortex during motion induced blindness: intracranial recording. Clin.
Neurophysiol. 123, 1925–1930. doi: 10.1016/j.clinph.2012.02.085

Mattia, M., Pani, P., Mirabella, G., Costa, S., Del Giudice, P., and Ferraina, S.
(2013). Heterogenous attractor cell assemblies for motor planning in premotor
cortex. J. Neurosci. 33, 11155–11168. doi: 10.1523/JNEUROSCI.4664-12.2013

Mel, B. W. (1992). NMDA-based pattern descrimination in a modelled cortical
neuron. Neural Comput. 4, 502–517. doi: 10.1162/neco.1992.4.4.502

Merker, B. H. (2013). Cortical gamma oscillations: the functional key is activation,
not cognition. Neurosci. Biobehav. Rev. 37, 401–417. doi: 10.1016/j.neubiorev.
2013.01.013

Merker, B. H. (2016). Cortical gamma oscillations: details of their genesis preclude
a role in cognition. Front. Comput. Neurosci. 10:78. doi: 10.3389/fncom.2016.
00078

Miller, S. M. (2014). Closing in on the constitution of consciousness. Front.
Psychol. 5:1293. doi: 10.3389/fpsyg.2014.01293

Miller, J. E., Ayzenshtat, I., Carrillo-Reid, L., and Yuste, R. (2014). Visual stimuli
recruit intrinsically generated cortical assemblies. Proc. Natl. Acad. Sci. U S A
111, E4053–E4061. doi: 10.1073/pnas.1406077111

Moutoussis, K., and Zeki, S. (1997). Functional segregation and temporal
hierarchy of the visual perceptive systems. Proc. Biol. Sci. 264, 1407–1414.
doi: 10.1098/rspb.1997.0196

Mozer, M. (2009). ‘‘Attractor networks,’’ in The Oxford Companion to
Consciousness, eds T. Bayne, A. Cleermans and P. Wilken (Oxford: Oxford
University Press), 86–89.

Orpwood, R. D. (1994). A possible neural mechanism underlying consciousness
based on the pattern processing capabilities of pyramidal neurons in the
cerebral cortex. J. Theor. Biol. 169, 403–418. doi: 10.1006/jtbi.1994.1162

Orpwood, R. D. (2010). Perceptual qualia and local network
behavior in the cerebral cortex. J. Integr. Neurosci. 9, 123–152.
doi: 10.1142/s021963521000241x

Orpwood, R. D. (2013). Qualia could arise from information processing in local
cortical networks. Front. Psychol. 4:121. doi: 10.3389/fpsyg.2013.00121

Pascual-Leone, A., andWalsh, V. (2001). Fast backprojections from the motion to
the primary visual area necessary for visual awareness. Science 292, 510–512.
doi: 10.1126/science.1057099

Pasquali, A., Timmermans, B., and Cleeremans, A. (2010). Know thyself:
metacognitive networks and measures of consciousness. Cognition 117,
182–190. doi: 10.1016/j.cognition.2010.08.010

Pockett, C. (2014). Problems with theories that equate consciousness with
information or information processing. Front. Syst. Neurosci. 8:225.
doi: 10.3389/fnsys.2014.00225

Porcaro, C., Ostwald, D., Hadjipapas, A., Barnes, G. R., and Bagshaw, A. P. (2011).
The relationship between the visually evoked potential and the gamma band
investigated by blind and semi-blind methods. Neuroimage 56, 1059–1071.
doi: 10.1016/s1388-2457(11)60233-2

Poucet, B., and Save, E. (2005). Attractors in memory. Science 308, 799–800.
doi: 10.1126/science.1112555

Raizada, R. D. S., and Grossberg, S. (2003). Towards a theory of the laminar
architecture of cerebral cortex: computational clues from the visual system.
Cereb. Cortex 13, 100–113. doi: 10.1093/cercor/13.1.100

Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., and Hsiao, S. S. (2008a).
Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local
field potentials and their implications in electrocorticography. J. Neurosci. 28,
11526–11536. doi: 10.1523/JNEUROSCI.2848-08.2008

Ray, S., Niebur, E., Hsiao, S. S., Sinai, A., and Crone, N. E. (2008b). High-frequency
gamma activity (80–150 Hz) is increased in human cortex during selective
attention. Clin. Neurophysiol. 119, 116–133. doi: 10.1016/j.clinph.2007.09.136

Rees, G. (2007). Neural correlates of the contents of visual awareness in humans.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 877–886. doi: 10.1098/rstb.20
07.2094

Rees, G., Krelman, G., and Koch, C. (2002). Neural correlates of
consciousness in humans. Nat. Rev. Neurosci. 3, 261–270. doi: 10.1038/
nrn783

Rey, H. G., Fried, I., and Quian Quiroga, R. (2014). Timing of single-neuron and
local field potential responses in the human medial temporal lobe. Curr. Biol.
24, 299–304. doi: 10.1016/j.cub.2013.12.004

Rieder, M. K., Rahm, B., Williams, J. D., and Kaiser, J. (2011). Human
gamma-band activity and behaviour. Int. J. Psychophysiol. 79, 39–48.
doi: 10.1016/j.ijpsycho.2010.08.010

Rolls, E. T. (1996). A theory of hippocampal function in memory. Hippocampus
6, 601–620. doi: 10.1002/(SICI)1098-1063(1996)6:601::AID-HIPO5>3.0.
CO;2-J

Rolls, E. T., and Treves, A. (1998). Neural Networks and Brain Function. Oxford:
Oxford University Press.

Schulz, E., Zherdin, A., Tiemann, L., Plant, C., and Ploner, M. (2012). Decoding
an individual’s sensitivity to pain from the multivariate analysis of EEG data.
Cereb. Cortex 22, 1118–1123. doi: 10.1093/cercor/bhr186

Self, E. (2014). Color-motion asynchrony assessed along the chromatic axes
and with luminance variation. Atten. Percept. Psychophys. 76, 2184–2188.
doi: 10.3758/s13414-014-0773-5

Shannon, C. E. (1948). A mathematical theory of communication. Bell. Syst. Tech.
J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Shepherd, G. M. (2007). Perspectives on olfactory processing, conscious
perception and orbitofrontal cortex. Ann. N Y Acad. Sci. 1121, 87–101.
doi: 10.1196/annals.1401.032

Silvanto, J., Cowey, A., Lavie, N., and Walsh, V. (2005). Striate cortex (V1)
activity gates awareness of motion. Nat. Neurosci. 8, 143–144. doi: 10.1038/
nn1379

Swettenham, J., Muthukumaraswamy, S. D., and Singh, K. D. (2009). Spectral
properties of induced and evoked gamma oscillations in human early visual
cortex to moving and stationary stimuli. J. Neurophysiol. 102, 1241–1253.
doi: 10.1152/jn.91044.2008

Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition.
J. Physiol. Paris 97, 355–363. doi: 10.1016/j.jphysparis.2003.09.009

Tononi, G. (2004). An information integration theory of consciousness. BMC
Neurosci. 5:42. doi: 10.1186/1471-2202-5-42

Tsodyks, M. (1999). Attractor neural network models of spatial maps
in hippocampus. Hippocampus 9, 481–490. doi: 10.1002/(SICI)1098-
1063(1999)9:4;481::AID-HIPO14>3.3.CO;2-J

Van Vugt, M. K., Chakravarthi, R., and Lachaux, J. P. (2014). For whom the
bell tolls: periodic activation of sensory cortex in the gamma band as a
substrate of visual working memorymaintenance. Front. Hum. Neurosci. 8:696.
doi: 10.3389/fnhum.2014.00696

Wallace, D. J., and Kerr, J. N. (2010). Chasing the cell assembly. Curr. Opin.
Neurobiol. 20, 296–305. doi: 10.1016/j.conb.2010.05.003

Wang, X.-J., and Buzsaki, G. (1996). Gamma oscillation by synaptic
inhibition in a hippocampal interneuronal network model. J. Neurosci. 16,
6402–6413.

Webb, T. W., and Graziano, M. S. (2015). The attention schema theory:
a mechanistic account of subjective experience. Front. Psychol. 6:500.
doi: 10.3389/fpsyg.2015.00500

Wills, T., Lever, C., Cacucci, F., Burgess, N., and O’Keefe, J. (2005). Attractor
dynamics in the hippocampal representation of the local environment. Science
308, 873–876. doi: 10.1126/science.1108905

Yoshimura, Y., Dantzker, J. L. M., and Callaway, E. M. (2005). Excitatory
cortical neurons form fine-scale functional networks. Nature 433, 868–873.
doi: 10.1038/nature03252

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Orpwood. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 16 April 2017 | Volume 11 | Article 22

https://doi.org/10.1016/j.ijpsycho.2010.07.004
https://doi.org/10.1016/j.ijpsycho.2010.07.004
https://doi.org/10.1016/j.clinph.2012.02.085
https://doi.org/10.1523/JNEUROSCI.4664-12.2013
https://doi.org/10.1162/neco.1992.4.4.502
https://doi.org/10.1016/j.neubiorev.2013.01.013
https://doi.org/10.1016/j.neubiorev.2013.01.013
https://doi.org/10.3389/fncom.2016.00078
https://doi.org/10.3389/fncom.2016.00078
https://doi.org/10.3389/fpsyg.2014.01293
https://doi.org/10.1073/pnas.1406077111
https://doi.org/10.1098/rspb.1997.0196
https://doi.org/10.1006/jtbi.1994.1162
https://doi.org/10.1142/s021963521000241x
https://doi.org/10.3389/fpsyg.2013.00121
https://doi.org/10.1126/science.1057099
https://doi.org/10.1016/j.cognition.2010.08.010
https://doi.org/10.3389/fnsys.2014.00225
https://doi.org/10.1016/s1388-2457(11)60233-2
https://doi.org/10.1126/science.1112555
https://doi.org/10.1093/cercor/13.1.100
https://doi.org/10.1523/JNEUROSCI.2848-08.2008
https://doi.org/10.1016/j.clinph.2007.09.136
https://doi.org/10.1098/rstb.2007.2094
https://doi.org/10.1098/rstb.2007.2094
https://doi.org/10.1038/nrn783
https://doi.org/10.1038/nrn783
https://doi.org/10.1016/j.cub.2013.12.004
https://doi.org/10.1016/j.ijpsycho.2010.08.010
https://doi.org/10.1002/(SICI)1098-1063(1996)6:6;601::AID-HIPO5>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1098-1063(1996)6:6;601::AID-HIPO5>3.0.CO;2-J
https://doi.org/10.1093/cercor/bhr186
https://doi.org/10.3758/s13414-014-0773-5
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1196/annals.1401.032
https://doi.org/10.1038/nn1379
https://doi.org/10.1038/nn1379
https://doi.org/10.1152/jn.91044.2008
https://doi.org/10.1016/j.jphysparis.2003.09.009
https://doi.org/10.1186/1471-2202-5-42
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4;481::AID-HIPO14>3.3.CO;2-J
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4;481::AID-HIPO14>3.3.CO;2-J
https://doi.org/10.3389/fnhum.2014.00696
https://doi.org/10.1016/j.conb.2010.05.003
https://doi.org/10.3389/fpsyg.2015.00500
https://doi.org/10.1126/science.1108905
https://doi.org/10.1038/nature03252
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	Information and the Origin of Qualia
	INTRODUCTION
	INFORMATION IN THE BRAIN
	Two Kinds of Information
	Transformations between Information Structures and Information Messages

	NETWORK INFORMATION TRANSFORMATIONS
	Basic Network Behavior
	Communication between Networks
	Attractor States
	Resonant Loops
	The Importance of Re-Entrant Activity

	THE GENERATION OF QUALIA
	IS THERE ANY EVIDENCE FOR THIS BEHAVIOR?
	Networks or Ensembles of Neurons
	Oscillatory Activity
	Attractors
	What Would be Needed to Provide Further Evidence?

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	REFERENCES


