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Altered functional connectivity (FC) between the medial prefrontal cortex (mPFC)
and amygdala is widely implicated as a neural mechanism explaining risk for
psychopathology among those exposed to early life trauma. Nonetheless, contemporary
neuroimaging research has shifted toward large-scale network models of brain function,
and it is not clear how this common bi-nodal finding fits into larger-scale network
models. Here, using dynamic functional connectivity (DFC) approaches combined
with large-scale network analyses, the larger role of bi-nodal FC between mPFC
and amygdala among a sample of adolescent girls is investigated. The sample was
comprised of 30 healthy control girls and 26 girls exposed to either physical or sexual
assault who underwent a resting-state scan during 3T MRI. DFC using a sliding window
approach was used to create weighted, undirected, graphs from the resting-state data
following parcellation with a 215 regions-of-interest (ROI) atlas. Using a priori ROI, the
predicted finding of lessor FC between mPFC and amygdala as a function of early life
trauma was replicated in this sample. By contrast, early life trauma was associated
with greater large-scale network modularity. Using a dynamic FC approach, it is also
demonstrated that within-subject variability in this bi-nodal FC closely tracks within-
subject fluctuations in large-scale network patterns, including connectivity between a
limbic and default mode network (in which the amygdala and mPFC nodes belong,
respectively) as well as overall modular organization. These results suggest that bi-nodal
FC, such as amygdala-mPFC FC, may generally reflect larger-scale network patterns.
Future research is necessary to understand whether these associations between nodal
FC and large-scale network organization better reflect top-down processes (larger-scale
network organization drives bi-nodal FC) or bottom-up processes (bi-nodal FC drives
larger-scale network organization) and the related impact of early life trauma.
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INTRODUCTION

A central role for the functional connectivity (FC) between the amygdala and medial prefrontal
cortex (mPFC) is ubiquitous in neurocircuitry models of trauma and PTSD (Rauch et al., 2006;
Pitman et al., 2012; Admon et al., 2013). Within the context of these models, amygdala activity is
conceptualized as reflecting threat processing, and mPFC activity is conceptualized as reflecting
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an emotion regulation/inhibition process (Rauch et al., 2006;
Pitman et al., 2012; Admon et al., 2013). Weakened FC between
these nodes is conceptualized as weakened top-down control
of the amygdala by the mPFC and is theorized to mediate
over-expression of negative affectivity and under-expression
of emotion regulation (e.g., implicit emotion regulation, fear
extinction learning, etc) among individuals with PTSD (Rauch
et al., 2006; Patel et al., 2012; Pitman et al., 2012). Consistent with
these models’ predictions, there is consistent data suggesting that
altered amygdala-mPFC FC at rest scales with degree of early
life trauma and additionally predicts internalizing symptoms
and cortisol levels (Burghy et al., 2012; Herringa et al., 2013;
Pagliaccio et al., 2015). As such, the strength of amygdala-mPFC
FC appears to be a potent mechanism explaining risk for PTSD
and related affective psychopathology among those exposed to
early life trauma.

The purpose of the current study is to examine this common
finding of altered amygdala-mPFC connectivity among those
exposed to early life trauma within the context of large-
scale network models of human brain function. Network-level
approaches to human functional brain organization demonstrate
spatially distributed networks consisting of brain regions
with greater within-network temporal covariance compared to
between-network temporal covariance (Bullmore and Sporns,
2009; Bressler and Menon, 2010; Rubinov and Sporns, 2010;
Menon, 2011). The spatial organization of these networks
is remarkably consistent across studies, which demonstrate
canonical motor, salience, default mode, frontoparietal, and
visual networks (Damoiseaux et al., 2006; Smith et al., 2009).
From the perspective of larger-scale networks in the human
brain, it is interesting to consider how to conceptualize a single
bi-nodal connection, such as between the amygdala and mPFC.
That is, the mPFC often is found to be part of a default
mode network (DMN) (Raichle, 2015) while the amygdala is
found to be part of a limbic network (Smith et al., 2009;
Onoda and Yamaguchi, 2013; Cisler et al., 2016; Schlesinger
et al., 2017). It is relevant to mention here that, while the
amygdala is often regarded intuitively as belonging to the salience
network (Bressler and Menon, 2010), the salience network is most
consistently characterized by dorsal anterior cingulate cortex and
bilateral anterior insular cortex (Uddin, 2015). Nonetheless, the
interesting aspect of focusing on bi-nodal connectivity remains:
if the two regions belong to different networks, does altered
connectivity between them simply reflect connectivity between
the larger networks in which the nodes belong? Similarly,
modularity is a growing concept in network-level approaches to
brain organization in the past few years and refers to the degree to
which a network can be sub-divided into functionally specialized
modules (Hartwell et al., 1999; Meunier et al., 2009; Rubinov and
Sporns, 2010; Onoda and Yamaguchi, 2013; Cisler et al., 2016;
Schlesinger et al., 2017). Modularity is formally defined as the
difference between the number of observed connections within
modules and the number of connections expected given chance
distribution (Newman, 2006). Greater values reflect networks
with more cleanly segregated modules. From this perspective,
the intriguing question regarding amygdala-mPFC FC is whether
degree of connection between these nodes belonging to different

modules only reflects larger modular organization patterns of
the network. For example, a network with greater separation
between modules (i.e., more pronounced modular organization)
would by definition be expected to have weaker connections
between nodes belonging to different modules. As such, perhaps
the weaker amygdala-mPFC observed among those exposed to
early life trauma simply reflects greater overall modularity.

One means of addressing these questions regarding the role
of bi-nodal connectivity within larger-scale network patterns is
to examine dynamic functional connectivity (DFC) (Calhoun
et al., 2014). DFC is a relatively newer approach to FC
analysis and is based on the concept that the degree to
which brain regions are connected is not static and instead
connectivity between brain regions can fluctuate depending on
various factors such as context, experimental task, alertness,
etc (Hutchison et al., 2013; Calhoun et al., 2014; Gonzalez-
Castillo et al., 2015). This approach frequently uses a sliding
window in which FC is defined repeatedly across the scan
(Allen et al., 2014). For example, using a window length
of 30 TRs, one would define connectivity between regions
(or voxels or networks) from TR 1 to TR 30, then shift
the window forward and redefine connectivity between TR
6 and 35, and so forth throughout the scan. Using this
approach to address the current questions allows for a within-
subject analysis of the degree to which temporal fluctuations
in amygdala-mPFC connectivity track temporal fluctuations
in larger-network patterns. At a second-level (group-level) of
analysis, the consistency of these within-subject effects can be
tested, as can any moderating role of early life trauma-exposure
on these analyses across network-levels. Accordingly, the DFC
approach is used here to test the alternative hypothesis that
amygdala-mPFC connectivity during rest reflects larger patterns
of network organization.

MATERIALS AND METHODS

Participants and Assessment
The initial sample consisted of 68 adolescent girls, aged 11–17.
Twelve participants were removed for either head motion (n= 8;
detailed below) or poor coverage (n = 4; e.g., excessive OFC
dropout, lack of coverage in dorsal motor cortex, etc) during
image acquisition, leaving a final sample of 56 adolescent girls.
Table 1 describes clinical and demographic data for the sample.
The control group consisted of 30 girls with no history of
trauma-exposure, no current mental health disorders, and were
not currently taking psychotropic medication. The assaulted
adolescent group consisted of 26 girls who experienced either
physical or sexual assault.

All participants’ mental health was assessed with either
the K-SADS (Kaufman et al., 1997) (n = 36) or MINI-
KID (Sheehan et al., 2010) (n = 22). Both are widely used
structured clinical interviews for most Axis I disorders found
in childhood and adolescence. Assaultive trauma histories were
characterized using the trauma assessment section of the National
Survey of Adolescents (NSA) (Kilpatrick et al., 2000, 2003), a
structured interview used in prior epidemiological studies of
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TABLE 1 | Clinical and demographic characteristics of the sample.

Variable Control
(n = 30)

Assaulted
(n = 26)

Group difference
p-value

Age 14.7 (1.92) 15.2 (1.52) 0.3

Ethnicity 73% Caucasian
23% African American

3% other

58% Caucasian
35% African American

4% Asian
4% Native American

0.23

Direct assaults – 3.39 –

PTSD diagnosis – 38% –

UCLA PTSD RI 2.0 (4.8) 21 (17.1) <0.001

Childhood Trauma Questionnaire total score 37.7 (9.4) 57.6 (15.5) <0.001

Verbal IQ 107.53 (19.07) 99.35 (13.67) 0.07

Psychotropic medication – 42% –

Short mood and feelings questionnaire 3.0 (3.2) 8 (7.0) 0.001

UCLA PTSD RI = UCLA PTSD Reaction Index.

assault and mental health functioning among adolescents that
uses behaviorally specific dichotomous questions to assess sexual
assault, physical assault, severe abuse from a caregiver, and
witnessed violence. Participants also completed a more inclusive
assessment of childhood maltreatment via the Childhood Trauma
Questionnaire (CTQ) (Bernstein and Fink, 1998), a widely used
self-report measure assessing separate physical abuse, physical
neglect, emotional abuse, emotional neglect, and sexual abuse
domains of childhood trauma. Analyses here used multiple
regression in which each of these CTQ subscales were entered
simultaneously as predictors, allowing for an investigation of
unique variance in brain function attributable to the individual
subscale. Higher scores on the CTQ represent more severe
trauma histories. The assessments also included measures of
verbal IQ (receptive one word picture vocabulary test; Brownell,
2000), PTSD symptom severity (UCLA PTSD Reaction Index;
Steinberg et al., 2004, 2013), and depression severity (Short Mood
and Feelings Questionnaire; SMFQ; Angold et al., 1995).

Resting-State Task
Participants were presented with a fixation cross and instructed
to try and keep their eyes open and look at the cross and to let
their minds wander naturally and not try to think about anything
specific. The resting-state scan lasted 450 s.

MRI Acquisition
For 36 participants (n = 17 directly assaulted adolescents), a
Philips 3T Achieva X-series MRI system with an 8-channel
head coil (Philips Healthcare, USA) was used to acquire imaging
data. Anatomic images were acquired with a MPRAGE sequence
(matrix = 256 × 256, 160 sagittal slices, TR/TE/FA= 2600ms/
3.02ms/80, final resolution= 1 mm× 1 mm× 1 mm resolution).
Echo planar imaging (EPI) sequences were used to collect the
functional images using the following sequence parameters:
TR/TE/FA = 2000ms/30ms/900, FOV = 240 mm × 240mm,
matrix = 80 × 80, 37 oblique slices (parallel to AC-PC plane to
minimize OFC signal artifact), slice thickness= 3mm, interleaved
acquisition sequence.

For 22 participants (n = 9 directly assaulted adolescents),
image acquisition parameters were slightly different. A 32-
channel head coil was used to acquire the imaging data. Anatomic
images were collected using identical sequences and parameters.
The EPI images were collected using identical parameters except
slice thickness was 2.5 mm with a 0.5 mm gap in between slices
and collected in an ascending order and resampled during
preprocessing to a final resolution = 3 mm × 3 mm × 3 mm.
Importantly for the present analyses, image acquisition
methodology was not correlated with CTQ (r = 0.14, p = 0.3)
nor did it differ between assaulted and control adolescents
(χ2
= 0.03, p= 0.87).

Image Preprocessing
Image preprocessing followed standard steps and was completed
using AFNI software. In the following order, images underwent
despiking, slice timing correction, deobliquing, motion
correction using rigid body alignment, alignment to participant’s
normalized anatomical images, spatial smoothing using a 8 mm
FWHM Gaussian filter (AFNIs 3dBlurToFWHM that estimates
the amount of smoothing to add to each dataset to result in the
desired level of final smoothing), detrending, bandpass filtering
with frequencies of 0.1 and 0.01 Hz, and rescaling into percent
signal change. Images were normalized using the MNI 452
template brain. Following recent recommendations (Power et al.,
2014; Siegel et al., 2014), we corrected for head motion related
signal artifacts by using motion regressors derived from Volterra
expansion, consisting of [R R2 Rt−1 R2

t−1], where R refers to
each of the six motion parameters, and separate regressors for
mean signal in the CSF and WM. This step was implemented
directly after motion correction and normalization of the EPI
images in the image preprocessing stream. Additionally, we
censored TRs from the first-level analyses based on threshold
of framewise displacement (FD) > 0.5. FD refers to the sum of
the absolute value of temporal differences across the six motion
parameters; thus, a cut-off of 0.5 results in censoring TRs where
the participant moved, in total across the six parameters, more
than ∼0.5 mm plus the immediately following TR (to account
for delayed effects of motion artifact). Additionally, we censored
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isolated TRs where the preceding and following TRs were
censored, and we censored entire runs if more than 50% of TRs
within that run were censored, leading to the removal of eight
participants from all analyses.

fMRI Data Analysis
Group-Level Modular Brain Organization
First, the group-level modular brain organization for the sample
was defined. For computational tractability, the 250 regions-of-
interest (ROI) functional atlas was used (Craddock et al., 2012).
After accounting for individual differences in spatial coverage
across participants, 215 ROIs were retained in the parcellation.
For each individual, the mean time course of voxels within
each ROI was calculated, excluding voxels within an ROI that
may be outside the brain for a given individual, resulting in
a 225 × 215 matrix for each individual. These matrices were
concatenated across participants and then correlated and r-to-
z transformed, resulting in a single 215 × 215 square weighted
matrix. The diagonals and negative values were set to zero
(Rubinov and Sporns, 2010). The Brain Connectivity Toolbox
(Rubinov and Sporns, 2010) implemented in Matlab was used
to detect the community (module) structure of the group-
level weighted matrix (the ‘community_louvain.m’ function).
Given that the gamma resolution parameter for the Louvain
algorithm is a free parameter that needs to be selected, a data-
driven approach was used to identify the optimal resolution
parameter that resulted in greatest partition similarity across
repeated Louvain algorithm iterations. A range of resolution
parameters between 1 and 2 in 0.1 increments was tested, and for
each resolution parameter, the Louvain algorithm was conducted
250 times to identify 250 network partitions and the average
Rand z-scored index of similarity (Traud et al., 2011) across
these partitions was calculated. The results for the average Rand
z-scored index of similarity are depicted in Supplementary
Figure S1. While a resolution parameter = 1 was associated
with marginally higher similarity across partitions compared
to the next highest parameter of 1.7, the resolution parameter
of 1 only identified 3 modules (motor cortex, visual cortex,
with everything combined into a remaining module) that does
not map onto canonical human brain functional networks. By
contrast, a resolution parameter = 1.7 identified 10 modules
that mapped onto well-known large-scale networks in the human
brain. We accordingly selected the resolution parameter of 1.7 as
the parameter that optimizes both similarity across partitions as
well as correspondence with known functional networks.

We identified a stable partition with the 1.7 gamma
resolution parameter using the procedure described by Cohen
and D’Esposito, 2016. In this approach, the Louvain algorithm is
performed 300 times, identifying 300 partitions. An agreement
matrix is then calculated using the agreement_weighted.m
function from the Brain Connectivity Toolbox, characterizing
the degree of agreement across partitions. An iterative procedure
then begins in which the Louvain algorithm is performed 300
times on this agreement matrix, a new agreement matrix is
calculated, and this process repeats until either there is perfect
agreement in partitions across iterations or performance (i.e.,

degree of agreement) stops improving across iterations. This
approach resulted in a network partition with 10 modules that
correspond well with known functional networks and is depicted
in Figure 1.

Dynamic Functional Connectivity
In this work, a sliding window of 44 s (22 TRs) was used,
shifting each window by 5 TRs, across the entire resting-state
scan. Prior work has used a sliding window length of as small
as 10 s (Thompson et al., 2013) and as long 180 s (Gonzalez-
Castillo et al., 2015). The rationale here for a moderate-length
sliding window length was to simultaneously maximize statistical
power within the window (number of time points with which to
correlate) while also maximizing statistical power for cross-level
analyses (e.g., number of FC observations to correlate between
the bi-nodal amygdala-mPFC FC and modularity Q-values).
Importantly, amygdala-mPFC defined using a static approach
was strongly related to median amygdala-mPFC FC across the
sliding windows (r = 0.78, p < 0.001), as were static modularity
Q-values and median modularity Q-values across the sliding
windows (r= 0.93, p< 0.001), suggesting that the window length
used here was not fundamentally altering the bi-nodal FC or the
larger network organization patterns within or across subjects.

Within each individual, the 215 × 215 r-to-z transformed
square weighted matrix was calculated at each window. This
allowed modularity Q-values (again using the community_
louvain.m function with a gamma value of 1.7) and between-
module FC to be calculated at each window. Between-module
FC was calculated within each individual using the group-level
network partitions (Figure 1), with the module time course
defined as the mean time course of all ROIs within the module.

Functional connectivity between the amygdala and mPFC
was additionally calculated at each window using a priori ROIs
identified in a meta-analysis of regions demonstrating altered
functional activation in PTSD (Patel et al., 2012). This meta-
analysis identified a single ROI in the left amygdala, which was
used to place a 6 mm spherical ROI with MNI coordinates of
X = −20, Y = 5, Z = −15. While the meta-analysis reported
two rostral anterior cingulate clusters, only one was located in
the pregenual anterior cingulate cortex (pgACC), and this cluster
was used to define a 10 mm spherical ROI (10 mm to capture
both left and right pgACC centered at MNI coordinates of X = 0,
Y = 42, Z= 4). The mean time course of voxels within these ROIs
were calculated within each individual and then FC between these
ROIs was calculated at each window.

This DFC approach allowed for a within-subject investigation
of the degree to which temporal fluctuations in amygdala-mPFC
FC tracks larger-scale fluctuations in the network. Here, the
amygdala and mPFC ROIs fall within the limbic and DMNs,
respectively, thus there are three within-subject time courses of
interest: (1) amygdala-mPFC FC, (2) limbic – DMN FC, and (3)
modularity Q-values. This is illustrated in Figure 2 for a single
representative participant. These time courses are then correlated
and fisher r-to-z transformed within each subject, allowing
group-level analyses of the distributions of the correlations and
whether they differ as a function of early life trauma. We tested
whether these relationships differed between the assaulted and
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FIGURE 1 | The group-level community structure projected into anatomical space (Left). A heat map depicting the group-level connectivity matrix sorted by
module (Right).

FIGURE 2 | An illustration of the within-subject characterization of modularity Q-values (red), limbic-DMN FC (orange), and amygdala-mPFC FC (blue)
at each time window, allowing tests of window-by-window associations between these different levels of network analysis. The x-axis represents each
time window in which the functional connectivity or Q-value was estimated. The y-axis represents the functional connectivity index of z-scored Q-value.

control participants with multiple regression analyses, in which
a dummy coded regressor representing assault exposure and
the covariates of age, verbal IQ, and mean FD were entered as
simultaneous predictors of the group-level distributions of Fisher
r-to-z-transformed correlations.

ROI Specificity Analyses
To examine the specificity of any identified network relationships
with the left amygdala, additional analyses were conducted
using the bilateral caudate as an alternative ROI within the
limbic network. In parallel to analyses using the left amygdala

specifically, identical analyses were conducted with a left (ROI
# 38 in the parcellation mask) and right (ROI # 198 in the
parcellation mask) caudate ROI. The time courses of the left and
right caudate were collapsed into a mean time course given that
there was no a priori reason to select either the right or left
caudate.

Exploratory Analysis of Network–Network
Interactions Related to Amygdala-mPFC Connectivity
Finally, given that analyses here were mostly focused on
understanding the relationships between amygdala-mPFC
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connectivity as a function of limbic-DMN connectivity, a
complimentary analysis was conducted to test the degree to
which amygdala-mPFC is attributable to other network–network
interactions. In this approach, linear support vector regression
(SVR) is used on a within-subject basis to quantify the degree
to which all network–network interactions (10 × 10 network
connectivity matrix = 45 unique network–network interactions)
across the 41 time windows were predictive of the degree of
amygdala-mPFC FC. Variables were z-scored prior to analyses,
the SVR used a cost function = 1 implemented with LIBSVM
(Chang and Lin, 2011), and performance was defined as the
correlation between model predicted amygdala-mPFC FC vs
observed amygdala-mPFC FC using a leave-one-out cross-
validation approach. For each participant, model performance
(correlation coefficient) and feature weights associated with each
network–network interaction, which represent the degree to
which the feature contributes to the SVR decision function, were
stored for subsequent group-level analyses.

RESULTS

Modular Brain Organization
The group-level community structure detected by the Louvain
algorithm included 10 functional networks (Figure 1)
corresponding to lateral visual, default mode, medial visual,
limbic, posterior insula/somatosensory, bilateral superior
temporal sulci, frontoparietal, motor, salience, and precuneus
networks.

Amygdala-mPFC FC and Large-Scale
Network Modularity as a Function of
Early Life Trauma
The median FC between the amygdala and mPFC across windows
was significantly negatively correlated with the emotional abuse
subscales of the CTQ (Figure 3; Left) when controlling for age,
verbal IQ, and head motion (mean FD across the scan).

The median modularity Q-values across windows was
significantly positively correlated with the emotional abuse
subscale of the CTQ (Figure 3; Right) when controlling for age,
verbal IQ, and head motion.

Role of Amygdala-mPFC FC within
Larger Network Patterns
To investigate the role of the bi-nodal FC between the amygdala
and mPFC within larger network patterns, the group-level
distributions (Figure 4) were examined for the within-subject
correlations between (1) dynamic amygdala-mPFC FC with
dynamic limbic – DMN FC, (2) dynamic amygdala-mPFC FC
with dynamic modularity Q-values, and (3) dynamic limbic –
DMN FC with dynamic modularity Q-values. Group-level t-tests
demonstrated that within-subject fluctuations in amygdala-
mPFC tracked positively with the connectivity between the
modules in which these ROIs belong, such that the amygdala
and mPFC were more connected when the limbic and DMNs
were more connected. By contrast, the amygdala and mPFC were
less connected when overall network modularity was greater, and
similarly the limbic and DMNs were less connected when the
overall network modularity was greater.

The Role of Amygdala-mPFC FC within
Larger Network Patterns as a Function
of Childhood Trauma
It was next tested whether the role of the bi-nodal amygdala-
mPFC FC in the larger network patterns differed between
assaulted and control adolescent girls. All subsequent analyses
controlled for age, verbal IQ, and head motion. It was
observed that assaulted adolescent girls demonstrated lessor
correspondence between left amygdala-mPFC FC and dynamic
limbic-DMN FC, though the direction of the effect was the same
in both groups (Figure 4). There were not differences between
groups in the correspondence between dynamic limbic-DMN

FIGURE 3 | (Left) Scatterplot depicting the negative relationship between the emotional abuse CTQ subscale score (log-transformed and z-scored) and median
within-subject FC between the amygdala and mPFC. (Right) Scatterplot depicting the positive relationship between the emotional abuse CTQ subscale score
(log-transformed and z-scored) and median within-subject Q-values (Right). For both scatterplots, B coefficients and p-values come from regression models in
which all CTQ subscales, along with age, verbal IQ, and head motion, were entered as covariates.
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FIGURE 4 | (Top) Histograms depicting the group-level distributions of the within-subject relationships between the amygdala-mPFC FC and limbic-DMN FC (Top
Left), amygdala-mPFC FC and modularity Q-values (Top Middle), and limbic-DMN FC and modularity Q-values (Top Right). (Bottom) Comparisons in the
corresponding indices between the assaulted and control participants. The x-axis of the top histograms all correspond to fisher r-to-z transformed correlation
coefficients between the network indices, which corresponds directly to the y-axis in the bottom bar graphs.

FC and modularity Q-values or in the correspondence between
amygdala-mPFC FC and modularity Q-values.

Testing the Association between
Caudate-mPFC FC and Network
Organization
As a test of the specificity of observed relationships between
amygdala-mPFC FC and network organization, parallel analyses
were conducted with functional connectivity between the caudate
and mPFC.

As indicated in Figure 5, and similar to the network patterns
identified for FC between the amygdala and mPFC, the degree
of FC between caudate and mPFC was also significantly related
to degree of limbic-DMN FC as well as with degree of overall
modularity Q-values.

The relationship between caudate-mPFC FC, dynamic limbic-
DMN FC, and dynamic modularity Q-values were then
compared between groups. There was no evidence of group
differences in degree of correspondence between dynamic
caudate-mPFC FC and dynamic limbic-DMN FC. There was only
a trend for a lessor relationship between caudate-mPFC with
modularity Q-values among assaulted compared to control girls
(Figure 5).

Exploratory Analysis of Dynamic
Network–Network Interactions that
Scale with Amygdala-mPFC Connectivity
The within-subject SVR analyses demonstrated excellent model
fit, defined by leave-one-out cross-validation, across participants

(Figure 6). One-sample t-tests were then conducted on the
feature weights to identify which network–network interactions
were consistently predictive of amygdala-mPFC FC across
participants. A heat map of all one-sample t-test t-values is
provided in Figure 6. Using a threshold of p < 0.01 given the
exploratory nature of this network-wide analysis, there were only
three network–network interactions consistently predictive of
dynamic amygdala-mPFC FC: limbic-DMN FC, DMN-superior
temporal sulcus FC, and salience-superior temporal sulcus FC.
Whereas limbic-DMN FC and DMN-superior temporal sulcus
FC had positive relationships with amygdala-mPFC FC, salience-
superior temporal sulcus FC was negatively related to amygdala-
mPFC FC. Notably, there were no significant interactions with
the frontoparietal network that were related to amygdala-
mPFC FC.

DISCUSSION

The purpose of this study was to investigate the degree to which
a specific bi-nodal functional connectivity pattern, amygdala-
mPFC, was associated with larger-scale network patterns. The
commonly reported finding and predicted observation based on
neurocircuitry models of trauma and PTSD of weakened static FC
between amygdala-mPFC and childhood trauma (Rauch et al.,
2006; Burghy et al., 2012; Herringa et al., 2013) was replicated
in the current sample, such that the median FC between the
amygdala and mPFC across the time windows was negatively
correlated with the continuous emotional abuse subscale of
the CTQ, as has been previously reported (Dannlowski et al.,
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FIGURE 5 | (Top) Histograms depicting the group-level distributions of the within-subject relationships between the caudate-mPFC FC and the limbic-DMN FC and
the caudate-mPFC FC with modularity Q-values. (Bottom) Comparisons in the corresponding indices between the assaulted and control participants. The x-axis of
the top histograms all correspond to fisher r-to-z transformed correlation coefficients between the network indices, which corresponds directly to the y-axis in the
bottom bar graphs.

2012). Additionally, it was also observed that greater emotional
abuse was associated with heightened modularityQ-values. Given
that modularity Q-values are defined based on the patterns of
within- vs. between-network connections, and that the amygdala
and mPFC belong to different networks, it would be expected
that early life trauma would have opposing relationships with
these two indices of brain function. Indeed, these opposing
relationships beg the question of how, on a within-subject
basis, bi-nodal FC relates to larger-scale patterns of brain
function.

With respect to the role of the bi-nodal amygdala-mPFC FC
within the larger-network patterns, it was observed that this
bi-nodal FC closely tracked both the FC of the networks to
which the nodes belong as well as to the larger-network patterns.
Moreover, the observed effects were in the expected directions
from a network-level perspective. That is, the amygdala and
mPFC ROIs belong to the limbic and DMN sub-networks,
respectively, and as such, it would be expected that the bi-nodal
FC track the overall degree of FC between these networks.

Similarly, network modularity Q-values are defined by the
degree to which edges lie within, as opposed to between,
communities, and as such, it would be expected that as
modularity Q-values increase, FC between nodes in different
modules would necessarily decrease. These group-level findings
ostensibly confirm the larger concept that perhaps one should
not interpret a single bi-nodal FC pattern without considering
the modules in which the nodes belong and the larger network
patterns. From this perspective, one might re-conceptualize
weakened amygdala-mPFC FC, such that instead of inferring
that weakened FC between these nodes suggests a weakened
inhibitory effect of the mPFC on the amygdala, one might
instead infer less overall communication between the DMN
and the limbic system or greater overall network partitioning.
This difference in inference would seemingly have a significant
downstream impact on clinical efforts to correct/modify the
observed bi-nodal FC findings, such as targeting the larger
network patterns rather than targeting anything specific about
amygdala-mPFC connectivity.
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FIGURE 6 | (Left) Histogram depicting the group-level distributions of the support vector regression model fits for each participant. The model fit indices are the
pearson correlation coefficients between the observed amygdala-mPFC FC and model predicted values. (Right) Heat map depicting t-values of the one-sample
t-tests on the support vector regression feature weights for each network–network interactions. These t-values represent how strongly, and in which direction, each
network–network interaction predicted amygdala-mPFC FC across participants. Network–network interactions that were strongly predictive (p < 0.01) of
amygdala-mPFC FC are further depicted in the below bar graphs.

Nonetheless, it is relevant to note the results of the control
analyses with the caudate. On the one hand, the network analyses
demonstrated similar relationships between caudate-mPFC FC
with the limbic-DMN FC and overall modularity Q-values,
supporting the inference that bi-nodal FC is related to larger-scale
network patterns. On the other hand, there was no evidence that
the caudate-mPFC FC differed between groups. The latter result
suggests specificity of the effect of early life trauma on amygdala-
mPFC FC and that there is not a generic relationship between
any node in the limbic network with the DMN. Future research
is clearly needed to continue to probe the degree of bi-nodal FC
independence from larger network function, and the associated
impact of early life trauma.

As an exploratory analysis, a complimentary data-driven
approach was used to characterize which network–network
interactions were consistently predictive of degree of amygdala-
mPFC connectivity. This approach demonstrated three network–
network interactions consistently related to amygdala-mPFC FC:
(1) as expected, the limbic-DMN FC was positively predictive, (2)
the DMN-superior temporal sulcus FC was positive predictive,
while (3) the salience-superior temporal sulcus FC was negatively
predictive. There was no evidence that interactions with the
frontoparietal network were consistently related to degree of
amygdala-mPFC FC. Further, the limbic-DMN FC clearly, and
intuitively, was the strongest predictor and the only relationship
that would survive correction for multiple comparisons if set

stringently with FDR. These network-wide exploratory analyses
seemingly confirm inferences from the a priori analyses and
demonstrate the importance of understanding bi-nodal FC
within the context of the networks in which the individual nodes
belong.

There was not consistently strong evidence that the magnitude
of cross-level analyses differed between the assaulted and control
participants. There was a significantly lesser relationship between
amygdala-mPFC FC and limbic-DMN FC among the assaulted
girls, and there appeared to be trends toward similar effects
on the other cross-level analyses. Nonetheless, the direction of
the relationships (e.g., positive relationships between amygdala-
mPFC FC and limbic-DMN FC) was consistent in each group,
suggesting that the qualitative nature of the relationships did
not differ between groups. These within-group effects potentially
reinforce the inferences made in the preceding paragraph
regarding the importance of interpreting bi-nodal FC within the
context of larger-scale network organization.

While the data presented here shed light on the role of a
canonical bi-nodal FC findings within larger network patterns
and also on how early life trauma might disrupt or alter the
role a bi-nodal FC pattern within the larger network, the current
study is not without limitations. First, the sample is limited to
adolescent girls, and the degree to which the findings generalize
to male samples or adult samples needs to be addressed. Second,
the cross-sectional nature of the design precludes any causal
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inferences regarding the relationship between early life trauma
exposure and alterations in bi-nodal FC or larger network
patterns. Third, a relatively small parcellation of 250 ROIs was
used, whereas prior research from this lab has used a larger 824
ROI parcellation (Cisler et al., 2016). The reason for this is the
use of the DFC approach, such that repeating the community
detection algorithm on an 824 × 824 matrix with 25 iterations
at each of the 41 time windows for each of the 56 participants was
computationally expensive. In support of the smaller parcellation
approach used here, we observed networks that were highly
similar, though not identical, to that observed in the previous
report. Nonetheless, it remains possible that different results
regarding the role of amygdala-mPFC FC within larger network
patterns might be different if the larger network patterns were
defined using a larger parcellation. Future research is clearly still
needed to continue to understand how to interpret bi-nodal FC
patterns within the context of a network-level conceptualization
of human brain function.
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