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Bladder-related pain is one of the most common forms of visceral pain, and visceral pain
is among the most common complaints for which patients seek physician consultation.
Despite extensive studies of visceral innervation and treatment of visceral pain, opioids
remain a mainstay for management of bladder pain. Side effects associated with opioid
therapy can profoundly diminish quality of life, and improved options for treatment of
bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA) and
2-arachidonoylglycerol (2-AG), are endogenously-produced fatty acid ethanolamides
with that induce analgesia. Animal experiments have demonstrated that inhibition of
enzymes that degrade AEA or 2-AG have the potential to prevent development of
visceral and somatic pain. Although experimental results in animal models have been
promising, clinical application of this approach has proven difficult. In addition to
fatty acid amide hydrolase (FAAH; degrades AEA) and monacylglycerol lipase (MAGL;
degrades 2-AG), cyclooxygenase (COX) acts to metabolize endocannabinoids. Another
potential limitation of this strategy is that AEA activates pro-nociceptive transient
receptor potential vanilloid 1 (TRPV1) channels. Dual inhibitors of FAAH and TRPV1 or
FAAH and COX have been synthesized and are currently undergoing preclinical testing
for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder
may be viable options to reduce pain associated with cystitis with fewer systemic
side effects, but this has not been explored. Further investigation is required before
manipulation of the endocannabinoid system can be proven as an efficacious alternative
for management of bladder pain.
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INTRODUCTION

Despite the exceedingly common occurrence of visceral pain, far less is known about the anatomy
and physiology that underlie visceral pain relative to that associated with somatic pain. An
excellent recent review of the physiology of visceral pain pointed out that afferent innervation
of viscera consists of ‘‘either vagal and spinal nerves or two anatomically distinct sets of spinal
nerves’’ (Gebhart and Bielefeldt, 2016). The diffuse and somewhat sparse nature of afferent visceral
innervation results in poorly localized discomfort that is often perceived as pain referred to somatic
structures, possibly as a result of cross-communication between afferent visceral and somatic
nerves as they comingle in peripheral ganglia, dorsal root ganglia, the spinal cord, or higher centers
(Pierau et al., 1984; Arendt-Nielsen et al., 2000; Craig, 2003; Farrell et al., 2014; Luz et al., 2015;
Lovick, 2016).

Patients with visceral pain thought to arise from specific organs, such as the bladder or bowel
are treated with a variety of analgesics, including opioids, but failure to respond, alterations in pain
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sensitivity, decreased bowel motility and addiction are
unfortunately common in these patients (Quang-Cantagrel
et al., 2000; Brock et al., 2012; Wang et al., 2017; Weber et al.,
2017). Alternative therapies such as electrostimulation of nerves,
immunotherapy and homeopathic remedies have been used with
mixed, but typically poor or transient, results in these patients
(Farhadi et al., 2001; John et al., 2003; Capodice et al., 2005;
Brock et al., 2008; Mykoniatis et al., 2017).

Treatment of visceral pain thought to arise specifically from
the bladder has included instillation of compounds into the
bladder or distention of the bladder. The efficacy of various
intravesical treatments was recently reviewed (Zhang et al., 2017).
This report observed that botulinum toxin A, bacillus Calmette-
Guerin, and pentosan polysulfate showed the greatest promise.
Distention of the bladder provides transient relief in some
patients, but the mechanism for this remains unknown. Data in
support of the efficacy of this treatment are relatively weak, and
duration of positive effects are relatively short-lived (Erickson
et al., 2007; Hoke et al., 2017; Olson et al., 2018). Translation
of experimental findings generated in rodent models of acute
or chronic bladder inflammation to clinical practice has proven
difficult in patients with persistent bladder pain of long duration.

Recent developments in legalization of cannabis or
cannabinoid products has increased interest in these compounds
as an alternative therapy for pain. Systemic administration of
exogenous cannabinoids to control pain appears to be most
efficacious in patients with cancer-related pain (Tateo, 2017).
The capacity of cannabinoids to decrease nausea and pain
in cancer patients has been described by multiple authors,
albeit often in the presence of side effects relating to altered
mentation (Johnson et al., 2010; Abrams and Guzman, 2015;
Davis, 2016). A recent meta-analysis found that pre-clinical
studies using animal models of pain strongly supported the
capacity of cannabinoids to reduce opioid doses, but clinical
trials to date have failed to support this observation (Nielsen
et al., 2017). Similarly, a meta-analysis of studies revealed that
relief of non-cancer pain by cannabinoids was extremely weak
and accompanied by significant side effects in these patients
(Allende-Salazar and Rada, 2017). Short-term adverse side effects
of smoked cannabis include anxiety, agitation, illusions, feelings
of depersonalization, hallucinations, paranoid ideation, temporal
slowing, impaired judgment/attention, red eyes, dryness of the
mouth, tachycardia and increased appetite (Zhang and Ho,
2015), and occasionally, hyperemesis and intestinal perforation
(Buyukbese Sarsu, 2016; Dezieck et al., 2017). An alternative to
management of bladder pain by administration of exogenous
cannabinoids is manipulation of endocannabinoids.

ENDOCANNABINOID METABOLISM

As the name implies, endocannabinoids are endogenously
synthesized fatty acids with chemical structures similar
to those of biologically active exogenous cannabinoids.
Endocannabinoids are hydrophobic, neutral lipids that are
not stored within cells but rather are produced on demand
(Marsicano et al., 2003). Post-synaptic neurons rapidly
synthesize endocannabinoids that bind to cannabinoid 1

(CB1) and 2 (CB2) receptors on presynaptic neurons to
inhibit signaling; endocannabinoids are then metabolized by
enzymes within presynaptic neurons (Piomelli et al., 1998;
Alhouayek and Muccioli, 2012; Kohnz and Nomura, 2014).
N-arachidonoyl ethanolamine (anandamide or AEA) and
2-arachidonoylglycerol (2-AG) are the most widely recognized
and best characterized endocannabinoids, and 2-AG is the most
abundant endocannabinoid identified to date (Palmer et al.,
2002; Di Marzo et al., 2004; Kogan and Mechoulam, 2006). The
presence and activity of endocannabinoids are tightly controlled
by enzymatic degradation (Ahn et al., 2008); 2-AG is primarily
degraded by monoacylglycerol lipase (MAGL) and AEA by fatty
acid amide hydrolase (FAAH; Bisogno et al., 1997; Thomas et al.,
1997; Goparaju et al., 1999). Strategies for testing management
of visceral pain (and other types of pain) by endocannabinoids
have primarily focused on inhibition of degradation of AEA or
2-AG by administration of compounds that inhibit the function
of FAAH and MAGL or generation of mice lacking functional
FAAH or MAGL.

Cyclooxygenase 1 and 2 (COX1 and COX2), but primarily
COX2, also participate in degradation of AEA and 2-AG
by oxygenation of these compounds to the corresponding
PGH2 analogs (Kozak et al., 2000, 2001; Weber et al., 2004;
Goodman et al., 2018). The primary function of COX is
conversion of arachidonic acid to prostaglandins that promote
inflammation and pain, and inhibition of COX has become
standard first line therapy for acute inflammatory pain (Smith
et al., 2000; Fleckenstein et al., 2016). However, COX antagonists
alone do not adequately control visceral pain (Fleckenstein et al.,
2016). Interestingly, it has been reported that nonsteroidal drugs
that inhibit COX activity may also suppress the function of
FAAH (Fowler et al., 1997, 1999), and intrathecal administration
of COX inhibitors suppressed in vivo pain induced by
subcutaneous formalin injection in the rat (Guhring et al., 2002;
Ates et al., 2003), as well as release of calcitonin gene-related
peptide (pro-algesic neuropeptide) in response to in vitro
exposure of rat spinal cord to capsaicin (Seidel et al., 2003). The
salient effects of COX antagonists in both studies were inhibited
by administration of an antagonist to CB1. A dual inhibitor of
FAAH and both isoforms of COX suppressed experimentally-
induced gastrointestinal inflammation, as well as pain and edema
due to subcutaneous injection of carrageenan in mice (Sasso
et al., 2015). This compound is particularly interesting, because
its chemical structure is such that it also has high efficacy in
inhibition of degradation of 2-AG by COX (Goodman et al.,
2018).

CANNABINOID RECEPTORS

Endocannabinoids inhibit nociception primarily by binding to
G-protein coupled receptors, CB1 and CB2, in peripheral tissue,
spinal cord and brain. CB1 and CB2 have also been identified
in the bladders of mice, rats, monkey and humans, primarily
within the urothelium and afferent and cholinergic nerves within
the bladder wall (Hayn et al., 2008; Gratzke et al., 2009, 2010;
Tyagi et al., 2009; Merriam et al., 2011; Bakali et al., 2013,
2016; Wang et al., 2013). The function of CB1 and CB1 located
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on nerves has been extensively investigated, but the functional
purpose of expression of cannabinoid receptors by non-neuronal
tissue remains largely unknown. A summary of studies reporting
localization of cannabinoid receptors in the bladder has been
published (Hedlund, 2014).

CB1 is particularly abundant in the brain and plays a
significant role in modulation of nociceptive signaling in the
central and peripheral nervous systems (Wilson and Nicoll,
2002; Agarwal et al., 2007; Lau et al., 2014). A majority of somatic
and visceral afferent nerve fibers express CB1 (Hohmann
and Herkenham, 1999; Ahluwalia et al., 2000; Agarwal et al.,
2007), and genetic deletion of CB1 from afferent nerves
renders mice sensitive to subthreshold stimuli (allodynia) and
enhances response to noxious stimuli (hyperalgesia; Agarwal
et al., 2007). We demonstrated that CB1 receptors have the
capacity to suppress the sensitizing effect of nerve growth factor
(NGF) on the response of mouse afferent neurons to capsaicin
in vitro (Wang et al., 2015a). Interestingly, we also showed
that intrathecal administration of the CB1 agonist arachidonyl-
2’-chloroethylamide (ACEA) blocked referred mechanical
hypersensitivity induced by inflammatory cystitis in rats (Jones
et al., 2015).

CB2 receptors are present on immune cells, as well as
within the brain, spinal cord and peripheral afferent nerves
(Galiegue et al., 1995; Ibrahim et al., 2003; Wotherspoon
et al., 2005; Anand et al., 2009; Graham et al., 2010). Multiple
studies have demonstrated analgesic effects of activation of
CB2 in neuropathic or inflammatory pain models (Ibrahim
et al., 2003; Nackley et al., 2004; Gutierrez et al., 2007;
Anand et al., 2008). We have previously reported inhibition of
increased referred mechanical sensitivity by systemic treatment
of mice with CB2 agonists administered prior to Wang
et al. (2013) or after Wang et al. (2014) induction of
bladder inflammation. Thus, our prior work has demonstrated
the capacity of activation of CB1 and/or CB2 receptors to

block increased peripheral mechanical sensitivity accompanying
inflammatory cystitis, and further that this may in part be due
to suppression of the sensitizing effects of NGF on afferent nerve
signaling.

INHIBITION OF FAAH

Suppression of FAAH activity by chemical inhibitors increases
abundance of AEA in humans (Li et al., 2012) or mice (Ahn
et al., 2011), and genetic deletion of functional FAAH in mice
also increases concentrations of AEA (Cravatt et al., 2001;
Lichtman et al., 2004). We observed increased AEA in bladders
of FAAH-deficient (knock out or KO) mice, but abundance
of 2-AG within the bladders of these mice was not affected
in controls or by bladder inflammation (Wang et al., 2015b;
Figure 1). Preclinical studies have demonstrated that increased
AEA suppresses nociception in models of somatic and visceral
pain when initiated prior to onset of pain (Cravatt et al., 2001;
Lichtman et al., 2004; Merriam et al., 2011; Aizawa et al.,
2016). We reported that severity of cyclophosphamide-induced
bladder inflammation and associated referred pain was decreased
in mice lacking FAAH (Wang et al., 2015b; Figure 2). We
also found that systemic treatment of rats with established
cystitis with a FAAH inhibitor given 1 h prior to testing
diminished referred mechanical hypersensitivity (Merriam et al.,
2011).

The analgesic effects of increased systemic AEA may be due
to actions within the central nervous system (CNS) or peripheral
tissues. Intravenous treatment of rats with URB937, a FAAH
inhibitor with minimal penetration of the CNS decreased activity
of bladder-specific afferent nerve in response to controlled filling
of the bladder (Aizawa et al., 2014), and similar results were
obtained by administration of URB937 prior to induction of
cystitis by intravesical instillation of prostaglandin E2 (Aizawa
et al., 2016).

FIGURE 1 | Bladder content of anandamide (AEA) (A) were consistently greater in fatty acid amide hydrolase (FAAH) knock out (KO) mice than wild-type (WT) mice
treated with saline (controls) or cyclophosphamide (CYP; 150 mg/kg) given intraperitoneally 3 h prior to sacrifice. Bladder content of 2-arachidonoylglycerol (2-AG; B)
was similar in both KO and WT and was unaffected by treatment. Mean ± SEM. ∗∗p < 0.01 KO vs. WT; n = 4 for each group. Reprinted by permission from the
publisher of Journal of Molecular Neuroscience, Nature/Springer/Palgrave; (Wang et al., 2015b).
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FIGURE 2 | Peripheral mechanical sensitivity determined by application of von
Frey monofilaments to hind paws 24 h after treatment with intraperitoneal
saline (controls) or CYP (150 mg/kg). Mean ± SEM. ∗∗p < 0.01; vs. saline
treated; n = 6–8. Reprinted by permission from the publisher of Journal of
Molecular Neuroscience, Nature/Springer/Palgrave; (Wang et al., 2015b).

AEA has been shown to be an agonist of the TRPV1
pro-nociceptive channel (Tognetto et al., 2001). The degree
to which AEA activates TRPV1 varies among tissues and
models of pain, but this effect has decreased enthusiasm
for analgesic strategies entailing increased abundance of AEA
alone. Simultaneous administration of inhibitors of FAAH
and TRPV1, or compounds that act as antagonists against
both, has produced promising, but mixed, results (Costa
et al., 2010; de Novellis et al., 2011; Bashashati et al.,
2017). This may be due in part to the fact that the
relationship between CB1 and TRPV1 is far more complex
than previously appreciated, and this interaction may be
critically altered by tissue-specific metabolic factors (Fioravanti
et al., 2008; Kim et al., 2008; De Petrocellis and Di Marzo,
2009).

Clinical trials of FAAH inhibitors failed to alleviate pain
associated with osteoarthritis (Huggins et al., 2012). Of greater
concern is a recent report that described serious adverse effects
in a phase 1 trial of a FAAH inhibitor in humans, including
coma and death in one subject and hospitalization of five other
subjects, two with serious neurological symptoms (Mallet et al.,
2016).

INHIBITION OF MONOACYLGLYCEROL
LIPASE (MAGL)

Although 2-AG is far more abundant than AEA, less work has
been done investigating the therapeutic potential of inhibition
of MAGL to ameliorate visceral pain. In a mouse chronic
neurogenic pain model, MAGL inhibition alleviated neuropathic
pain (Kinsey et al., 2009; Ignatowska-Jankowska et al., 2015),
and MAGL inhibition displayed reduced cannabimimetic
effects compared to the CB1 receptor agonists (Ignatowska-

Jankowska et al., 2015). Interestingly, combining COX and
MAGL inhibition has shown a promising result of reducing
neuropathic pain with minimal side effects (Crowe et al.,
2015). MAGL inhibition increased paw skin 2-AG content
and suppressed pain and inflammation subsequent to injection
of formalin in the rat paw (Guindon et al., 2011; Ghosh
et al., 2013). These data have clearly demonstrated that
2-AG is capable of inhibiting neuropathic and inflammatory
pain.

A major obstacle to management of pain by inhibiting
MAGL is the observation that increased systemic 2-AG
actually results in enhanced response to painful stimuli
due to desensitization of CB1 (Schlosburg et al., 2010;
Kinsey et al., 2013; Ignatowska-Jankowska et al., 2014).
CB1 receptors play a key role in the analgesic effects of
endocannabinoids (Wilson and Nicoll, 2002; Agarwal et al.,
2007; Lau et al., 2014), and chronic exposure to high
concentrations of 2-AG results in CB1 desensitization and
loss of CB1 analgesic input (Chanda et al., 2010; Lichtman
et al., 2010; Ignatowska-Jankowska et al., 2014). There is
differential expression of 2-AG among various organs, and
it is possible that the degree of CB1 desensitization is
proportionate to 2-AG concentrations, being most profoundly
apparent in the brain (Lichtman et al., 2010). The observation
of lower concentrations of 2-AG in peripheral structures is
intriguing, because this raises the possibility of tissue-specific
regulation of MAGL function to achieve local increases in
2-AG without inducing CB1 desensitization. Further, it has
been reported that the anti-nociceptive and anti-inflammatory
effects of chemical inhibitors of MAGL are preserved when
these compounds are given chronically at low doses (Schlosburg
et al., 2010; Ignatowska-Jankowska et al., 2014) in the absence of
CB1 desensitization (Ghosh et al., 2013).

FIGURE 3 | Bladder content of mRNA for inflammatory mediators in male WT
and FAAH KO mice treated with saline (controls) or CYP (150 mg/kg) given
intraperitoneally 3 h prior to sacrifice. Total bladder RNA was extracted,
RT-PCR was performed, and results were normalized to signal for L19, a
ribosomal protein. ∗∗p < 0.05 CYP vs. saline for each genotype; #p < 0.05
CYP treated KO vs. CYP treated WT; n = 6–8 for each genotype and
treatment. Reprinted by permission from the publisher of Journal of Molecular
Neuroscience, Nature/Springer/Palgrave; (Wang et al., 2015b).
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ENDOCANNABINOIDS AND
INFLAMMATION

Endocannabinoids have been demonstrated to suppress
inflammation in bladder (Wang et al., 2015b), joints (Barrie and
Manolios, 2017), gut (Lee et al., 2016), skin (Lichtman et al.,
2004) and CNS (Krishnan and Chatterjee, 2014). Our laboratory
(Merriam et al., 2011) and others (Dinis et al., 2004) have
reported increased AEA in inflamed bladders of rats, but we did
not observe this in bladder inflammation in wild-type (WT) or
FAAH KO mice (Figure 1; Wang et al., 2015b), and whether or
not inflammation increases local synthesis of endocannabinoids
remains unclear.

Mechanisms of suppression of inflammation by
endocannabinoids are not completely understood, but AEA
has been shown to inhibit mitogen-induced T- and B-cell
lymphocyte proliferation by increasing apoptosis (Schwarz
et al., 1994). AEA inhibited lipopolysaccharide (LPS)-mediated
activation of NFκB (Nakajima et al., 2006) and has also
been shown to block TNFα-induced activation of NFκB by
suppression of I-κB kinase, the enzyme that mediates NFκB
activation (Sancho et al., 2003). We observed decreased
inflammation in bladders of FAAH-deficient (knock out or
KO) mice with cyclophosphamide-induced cystitis (Wang et al.,
2015b). Message COX2 and NGF were decreased in inflamed
bladders of FAAH KO mice relative to those of wild type mice
(Figure 3).

Binding of 2-AG to CB1 inhibits cyclooxygenase-2 in nerves
resulting in suppression of MAPK/NFκB signaling (Zhang
and Chen, 2008). 2-AG also prevented in vitro damage
to hippocampal slices exposed to β-amyloid by a process
mediated by CB1 binding that resulted in diminished ERK
1/2 phosphorylation, decreased NFκB activation, and reduced
COX-2 expression (Chen et al., 2011). It has also been reported
that AEA has the capacity to diminish Th-17 cell-mediated
delayed-type hypersensitivity through increased IL-10 synthesis
and subsequent microRNA production (Jackson et al., 2014). As
research in this area continues, it is highly probable that other
pathways by which endocannabinoids suppress inflammation
will be discovered.

Inflammation plays a key role in release of substances
that modulate nociception. Thus, it is highly likely that the
analgesic effects of endocannabinoids may in part be due to their
anti-inflammatory effects.

ENDOCANNABINOIDS AND BLADDER
PAIN

Evaluation of bladder pain in rodent models can be difficult,
and the presence of bladder pain is most often inferred by
evaluating referred mechanical sensitivity of the hind paws or
abdominal wall or activity of bladder afferent nerves (Sadler
et al., 2013; Stemler et al., 2013; Aizawa et al., 2014, 2016;
Wang et al., 2014, 2015a,b; Girard et al., 2016). Inhibition of
FAAH to increase AEA by systemic treatment with FAAH
inhibitors (Merriam et al., 2011; Aizawa et al., 2014, 2016)
or genetic disruption of function FAAH (Wang et al., 2015b)

has been shown to suppress surrogates measurements of pain
associated with bladder inflammation in rodents. However,
it is unclear whether or not strategies applied systemically
would be effective if adapted to tissue-specific (e.g., bladder)
application.

Bladders and associated afferent nerves were isolated
from mice treated in vivo with cyclophosphamide to induce
inflammatory cystitis (Walczak et al., 2009; Walczak and
Cervero, 2011). Afferent nerve activity was recorded during
increasing intravesical pressure in inflamed bladders ex
vivo in the presence or absence of intravesical cannabinoid
agonists, and it was determined that intravesical cannabinoids
suppressed afferent nerve fiber firing in inflamed bladders via
CB1 activation (Walczak et al., 2009; Walczak and Cervero,
2011). We have also observed that intravesical administration
of a CB1 agonist inhibited bladder responses to subsequent
instillation of NGF (Wang et al., 2015a). These studies
support the concept that intravesical manipulation of the
endocannabinoid system may have the capacity to alter
nociceptive signaling.

CONCLUSION

Manipulation of the endocannabinoid system has emerged as
an appealing alternative to opioids for management of severe
bladder pain. However, the potential for undesirable side effects
or lack of efficacy remain significant obstacles to advancement of
this therapy. Emergence of dual inhibitors of endocannabinoid
degradation and either activation of TRPV1 or COXmay address
many of the limitations of this approach. Information on the
activity of endocannabinoids synthesized in peripheral tissues
remains extremely limited. It remains unclear whether or not
strategies to address organ-specific pain by manipulation of
endocannabinoids is a viable option, but this is an intriguing
alternative that has the potential to provide effective analgesia
with minimal systemic side effects.
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