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In this review article we focus on research methodologies for detecting the actual activity
of cell assemblies, which are populations of functionally connected neurons that encode
information in the brain. We introduce and discuss traditional and novel experimental
methods and those currently in development and briefly discuss their advantages
and disadvantages for the detection of cell-assembly activity. First, we introduce the
electrophysiological method, i.e., multineuronal recording, and review former and recent
examples of studies showing models of dynamic coding by cell assemblies in behaving
rodents and monkeys. We also discuss how the firing correlation of two neurons reflects
the firing synchrony among the numerous surrounding neurons that constitute cell
assemblies. Second, we review the recent outstanding studies that used the novel
method of optogenetics to show causal relationships between cell-assembly activity
and behavioral change. Third, we review the most recently developed method of
live-cell imaging, which facilitates the simultaneous observation of firings of a large
number of neurons in behaving rodents. Currently, all these available methods have
both advantages and disadvantages, and no single measurement method can directly
and precisely detect the actual activity of cell assemblies. The best strategy is to
combine the available methods and utilize each of their advantages with the technique
of operant conditioning of multiple-task behaviors in animals and, if necessary, with
brain–machine interface technology to verify the accuracy of neural information detected
as cell-assembly activity.

Keywords: cell assembly, multineuronal recording, optogenetics, live cell imaging, brain-machine interface

INTRODUCTION

The hypothesis of cell assemblies, functional groups of neurons, was first proposed by the
psychologist Hebb (1949). This hypothesis arising from psychological experiments and insights
during the days, when neuronal activities could not be recorded, is now much more noticed and
driving the field of the neuroscience of memory. The starting point for Hebb’s awareness of issues
was the ‘‘organization of perception’’ and not memory. Organization was originally one of the
functions proposed by Gestalt psychology. For example, triangles of various shapes and sizes have
different physical characteristics; thus, different stimulation points on the retina, as well as different
neurons in the primary visual cortex, can be ignited. However, it is a function that is perceived
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as a unit called the ‘‘triangle.’’ Hebb tried to explain the
organization of this perception with the findings of Lorente
de Nò (1934), who suggested that feedback circuits exist in
the nervous system. The center consists of a functional neuron
population that is created occasionally because of enhanced
functional synaptic coupling between simultaneously active
neurons (Hebb synapse). This functional neuron population was
termed cell assembly. In other words, even if different neurons
fire, the same perception (e.g., triangle) will occur if it leads to
the activity of the same cell assembly. If cell assemblies encode
information, i.e., what is represented and/or conveyed in the
brain to generate activity in mind, in this way, it is possible that
the perception and appearance of an entire image are established
by using fragmented stimuli only, and concepts are formed from
various pieces of information.

Similar principles can be applied to explain the formation
and transformation of memories, because memories are closely
connected with perception and images (Hebb, 1949). As many
cognitive psychology experiments have already shown, memory
is not a simple process of consolidating experienced events
but dynamic processes of organizing, modifying and relating
the experienced events with stored and new information
(e.g., Schank, 1999). For example, none of behavioral data
has proved that all memory storage permanently remain and
unchanged and ‘‘false memory’’ can be created sometime easily
(Loftus and Loftus, 1980; Loftus, 1997). Therefore, memory
and information processing are inseparable and ‘‘Memory
is determined by information processing’’ (Squire, 1987, p.
124). Such dynamic coding and processing of information in
memory, not just coding and retaining the information as an
engram, has been assumed to be explained by the function
of cell assembly. Actually, Hebb described ‘‘There may, then,
be a memory trace that is wholly a function of a pattern
of neural activity, independent of any structural change.’’
(Hebb, 1949, p. 61). If the cell assembly only forms a rigid
engram, it is the same as saving the information on a hard
disk, and information processing unique to memory, such as
the formation of memory by association, the recollection of
memories, and the dynamic organization of memory, cannot be
explained.

EXPERIMENTAL DETECTION 1
—MULTINEURONAL RECORDING

At present, the concept that is widely accepted for cell assembly
can be summarized as follows. It is a functional neuron
population that is formed at any time according to information,
and neurons constituting the group exhibit synchronous
firing. Individual neurons overlap and participate in different
cell assemblies, i.e., each neuron exhibits functional overlap.
Moreover, neurons change synchronous firing within a group
or among groups according to necessary information, i.e., there
is connection dynamics among neurons, and occasionally
form large and small cell assemblies. The synaptic strength
connecting neurons also occasionally changes according to
Hebb’s rule.

Thus, the most important characteristic of a cell assembly is
‘‘to be formed at any time according to necessary information.’’
To experimentally detect this process, multineuronal activity
should be simultaneously recorded from a brain that is coding
and processing multiple and changing information, such as
animals performing complicated tasks or multiple tasks (Sakurai,
1996, 1999; Roudi et al., 2015). In our previous research, we
recorded multineuronal activity from the hippocampus and the
neocortex of the same rat performing different tasks.We detected
two features that suggested the existence of cell assemblies,
i.e., the functional overlap of individual neurons seen between
different tasks and the dynamics of functional coupling between
neurons occurring between tasks. Therefore, we reported that
each cell assembly codes for the type of task being performed
(Sakurai, 1996, 2002; Figure 1).

Cell assembly is a functional group that is created as needed
between a small number of neurons in close distance or between
large numbers of separate neurons (Eichenbaum, 1993). We
noticed that it was difficult to detect the cell assembly made by
adjacent neurons. This is because it was almost impossible to
accurately separate the firing of neighboring multiple neurons
and, therefore, to detect synchronous firing among the neurons
by the extracellular recording method, which records neuronal
activity for a long time in free-moving animals. However, it
became possible by using the spike-sorting method utilizing
independent component analysis (ICA; Takahashi et al., 2003).
It was demonstrated that approximately 80% of the neuron pairs
in the prefrontal cortex in monkeys showed firing correlation
and jitters of spike times of 1–5 ms. Furthermore, the firing
correlation of some of the neuron pairs appeared or disappeared
according to the type of the memory task being performed
(Sakurai and Takahashi, 2006). The reason for the substantial
proportion of neuron pairs showing firing correlation (∼80%)
might be due to the detection of firings from closely neighboring
neurons by spike sorting with ICA. Recent live-cell imaging
studies (e.g., Dombeck et al., 2010) reported that many of the
neighboring neurons were firing together. This result shows
that many neighboring neurons of the frontal association area
are functioning by making local cell assemblies (Sakurai and
Takahashi, 2008).

The above experiments identified that cell assemblies
are generated at any time depending on the information
processing of memory; however, the details of information
conversion between cell assemblies during the processing
of memory were completely unknown. However, Miyashita’s
Lab in University of Tokyo successfully showed the process
of information conversion between cell assemblies as being
responsible for retaining and recalling information. The team
used a combination of a monkey’s paired association memory
task with fractal figures, the recording of multineuron activity,
and Granger Causality Analysis to demonstrate that recalling the
other figure of a pair could represent information conversion
between cell assemblies (Takeuchi et al., 2011; Hirabayashi
et al., 2013). In these studies, they first identified the flow
of information between the cortical layers in the temporal
lobe electrophysiologically. Then, they demonstrated that the
signal flows through the cortical layer IV → layer II and
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FIGURE 1 | (A) A model of cell assemblies presented in Sakurai (1996), which shows the functional overlap of individual neurons and functional connectivity of the
neurons. The circles represent cell assemblies, each of which codes the auditory, visual, or configural discrimination task. These cell assemblies consist of
task-related single neurons (A, V, C, AV, AC, VC, and AVC). A, Neurons related to the auditory discrimination task (A task); V, neurons related to the visual
discrimination task (V task); C, neurons related to the configural auditory–visual discrimination task (C task); AV, neurons related to A and V tasks; AC, neurons related
to A and C tasks; VC, neurons related to V and C tasks; AVC, neurons related to all tasks. (B) A model of cell assemblies presented in Sakurai (2002). The circles
represent cell assemblies, each of which codes the pitch or duration discrimination task. These cell assemblies consist of the task-related single neurons (P and DP).
P, neurons related to the pitch discrimination task. DP, neurons related to both duration and pitch discrimination tasks. From Sakurai (1996, 2002) with permission.

layer III→layer V/VI when the monkey viewed the figures
as cues that should be memorized and that the signal flows
conversely through layer V/VI→ layer II/III when recalling the
figures (Takeuchi et al., 2011). They simultaneously recorded
the activity of multiple neurons in different cortical layers and
identified the signal flows between the recorded neurons. They
also demonstrated that the activity of the neuron population (cell
assembly), which retains the image of the cue figures, activates
the cell assembly that codes the figure to be recalled and these
cell assemblies are partially overlapped (Hirabayashi et al., 2013;
Figure 2). These studies experimentally show the information
conversion between cell assemblies during the information
processing of memory, which is a very big progress.

Besides the above studies of neocortical cell assemblies,
the hippocampal literature of cell-assembly research has made
great progress. In addition to the well-known literature of
hippocampal place cells and cell assembly (e.g., Dragoi and
Buzsáki, 2006), various new frameworks of electrophysiological
analyses and simulation showed the existence of cell assemblies
in the rat hippocampus (e.g., Lopes-dos-Santos et al., 2013).
Recent studies in rats suggest that the hippocampal cell assembly
encodes different information one after another according to the
theta rhythm when processing specific memory (Terada et al.,
2017).

WHAT TWO-NEURON CORRELATION
REFLECTS

On the basis of the above experimental examples of
multineuronal recording, it was concluded that the correlation
between two neurons constitutes evidence of the activity of cell
assembly. Although several methods have been devised and used
in experiments to detect and display correlations among three
or more neurons at once (Holscher and Munk, 2009; Gruen
and Rotter, 2010), among which Hidden Markov modeling

(e.g., Eddy, 2004) might become a standard, many researches
have adopted a convenient method of sequentially selecting two
neurons from multiple neurons and examining the respective
synchronous firings (e.g., Tatsuno, 2015).

However, it is often suggested that the neuron population
containing the two selected neurons does not necessarily have a
functional connection with each other even if the two neurons
are synchronously firing. Functional connection (connectivity)
is different from structural synaptic connection and defined as
the temporal correlation of activity between distributed neurons
and neuronal groups, expressed as deviation from statistical
independence (Friston et al., 1993; Fingelkurts et al., 2005). Then,
it should be asked what does it mean for two neurons to be
‘‘functionally connected’’? (Stevenson et al., 2008). Aertsen et al.
(1989) suggests that it is impossible to uniquely determine the
‘‘true’’ functional connectivity of a network without recording
from all elements, because unobserved elements in the network
can always confound connectivity estimates (Horwitz, 2003).
Typical such elements are ‘‘unobserved common inputs’’
(Stevenson et al., 2008) to the neurons showing firing synchrony
to each other. If you assume that there is a neuron Z sending
output to both neurons X and Y (common input), these two
neurons will fire synchronously when Z fires and activates
them (Figure 3A; see Ratte et al., 2013 for more discussion on
physiology of common inputs). In the end, the synchronous
firing of X and Ymight only reflect the firing of one neuron Z and
does not mean any ‘‘true’’ functional connection to each other.

However, we should remember that the functional coupling
between individual neurons is originally very weak (Schneidman
et al., 2006). The probability that one neuron, which receives
input from another neuron, fires when the output neuron fires
is very low. Such probability is called synapse ‘‘contribution,’’
and it is known to be only a few percent in most synapses in
cortical areas (Abeles, 1988). As shown in Figure 3A, even if
Z fires 100 times, the number of times X or Y fires is only
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FIGURE 2 | Schematic of the functional microcircuitry in the perirhinal cortex in retrieval of object association memory presented in Hirabayashi et al. (2013). Cyan
and magenta neurons are cue-holding and pair-recall neurons, respectively. The blue and red arrows between neurons depict the directed interactions identified in
the study. The lines between neurons represent functional couplings. The results suggest that during memory retrieval, cue information is transmitted from the CH cell
assembly to the PR cell assembly to convert the representation in the microcircuit from the cue to the sought target. From Hirabayashi et al. (2013) with permission.

FIGURE 3 | (A) A cross-correlogram showing a sharp central peak (purple) indicating precise firing synchrony between the two neurons reflects not firing of a driving
neuron, which sends a common input to them, but precise firing synchrony of many neighboring neurons (in dashed lines) sending many common inputs (B) or many
individual inputs (C) to them. See main text for detail.

a few times, and the number of times X and Y fire together
is much smaller. In other words, it is actually impossible that
the exact synchronous firing of neurons X and Y is controlled
only by the firing of neuron Z. In reality, one neuron has
thousands of synaptic inputs. Therefore, even if the input from

one neuron does not have a large effect, the next neuron will
fire well, and the neuronal signal will be reliably transmitted
when many of the inputs act simultaneously. When synchronous
firing is seen between two neurons, it reflects that a number of
neurons have functional connections to the two neurons that
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are outputting simultaneously (Figures 3B,C). Consequently,
synchronous firing between two neurons means that a huge
number of surrounding neurons are also synchronously firing,
and these neurons have functional connections to the neurons
that exist behind them.

Multineuronal recording is the only method that can
measure spikes and their synchrony in neuron activity in
real time. Therefore, the recording and analytical methods of
multineuronal activities are still developing (Lopes-dos-Santos
et al., 2013; Roudi et al., 2015). On the other hand, the number
of neurons that can be recorded simultaneously is limited, the
exact position of each neuron is unknown, and the distance
between neurons can be estimated only as far or close, though
the exact physical location of recorded neurons may not be
important in understanding the function of a neuronal group.
However, multi-contact silicon probes and similar devices have
been used by a number of laboratories to examine anatomical
organization and/or topographical arrangement of neurons
and their functional responses to some extent. For example,
Hampson et al. (1999) reported the anatomical organization

of dorsal hippocampal neurons according to spatial/non-spatial
events and Sakata and Harris (2009) suggested the laminar
structure of populations of neurons in the auditory cortex in
relation to spontaneous and sensory-evoked activity.

EXPERIMENTAL DETECTION 2
—OPTOGENETICS

For correspondence between memory and cell assembly,
significant progress was made recently by experiments that
reactivated the cell assemblies that encode memory by utilizing
optogenetics. As one of the pioneering works in Tonegawa’s
Lab in RIKEN, Liu et al. (2012) conducted a contextual fear
conditioning experiment whereby an electric shock within a
specific experiment box was applied to c-fos-tTA genetically
modified mice. The virus vector TRE-channelrhodopsin-2
(ChR2)-EYFP was injected into the hippocampus of these mice,
and ChR2 was synthesized only in the neurons that were
active in contextual fear conditioning. Thereafter, the day after
conditioning, when the mice were placed in the same experiment

FIGURE 4 | Illustration of the results presented in Ohkawa et al. (2015). They found that the coincident firing of distinct cell assemblies generates a link between
these cell assemblies, thus leading to an association of originally independent memory episodes. From Ohkawa et al. (2015) with permission.
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box as the previous day, they showed a freezing response.
Conversely, when the mice were placed in a different experiment
box, they showed no freezing response. In other words, the
mice memorized the experiment box and the surrounding
environment that they had experienced fear in. However, when
light stimulation was applied to the hippocampus of mice placed
in an experiment box that was different from the previous day,
the neuron population that was active during the conditioning
procedure on the previous day was activated again, and the mice
showed a fear response. This result indicates that the neuron
population, which was active during fear conditioning, is a cell
assembly that codes for fear memory.

The reactivation experiments of cell assemblies that code
for such stored information have further advanced the field.
By using the same c-fos-tTA genetically modified mice as
before, Inokuchi’s Lab in Toyama University conducted a
unique experiment (Ohkawa et al., 2015). They synthesized
ChR2 in the neuron population X of the hippocampus and
the amygdala, which was active when the mouse was placed
in a safe cylindrical box, and in the neuron population Y of
the hippocampus and the amygdala, which was active when
the mouse was placed briefly in a cubic box in which it
experienced an electric shock. The following day, when the
mouse was in the home cage, light stimulation was given to the
hippocampus and the amygdala to activate neuronal populations
X and Y simultaneously. Thereafter, even though the mouse
was placed in the cylindrical box, in which the mouse never
received an electric shock, it showed a fear response (Figure 4).
If population X overrides population Y by their simultaneous
activation, the mouse will also show a fear response in the
cylindrical box. However, populations X and Y are independent
cell assemblies that code different memories, and there is no up-
and-down relationship between them. Therefore, it is reasonable
to conclude that by simultaneously activating different cell
assemblies that respectively code the two unrelated memories
of the cylindrical box and fear experience, a new cell assembly
that associates those memories was successfully created. This
finding is quite interesting because it is consistent with Hebb’s
theory (Figure 5), which states that new information is created by
associating different cell assemblies by synchronous activities and
becoming a new large cell assembly, thus leading to ‘‘concept’’
formation.

The reactivation experiments of such cell assemblies are
possible not only by optogenetics but also by other genetic
modifications and pharmacological manipulations (Matsuo,
2015; Yoshii et al., 2016). Therefore, there is no doubt that
further studies of the causal relationship between cell-assembly
activity and behavior will further advance. However, a few more
considerations are needed to interpret and evaluate the results
of optogenetic stimulation studies. First, we should carefully
examine the correspondence between behaviorally-triggered
patterns of neuronal ensemble activity with that induced
by optogenetic stimulation. In addition to such examination
of the technical accuracy of the genetic modification and
ChR2 synthesis, the neuronal networks in the working brain
are continuously changing by experiences and time passage,
inevitably causing functional changes of the individual neurons

FIGURE 5 | Schematic of Hebb’s postulate presented in Hebb (1949). This
schematic illustrates the possibility that a subsystem C may act as a link
between two systems (conceptual complexes). One concept is represented
by A1, A2 and C, and the second concept is represented by B1, B2 and C.
The two systems have a subsystem C in common to provide a basis of
prompt association to generate a new system (a new concept). From Hebb
(1949) with permission.

and their networks. Therefore, the activated neurons when
the animals were trained and those when optogenetically
stimulated later might not have the same functions in a strict
sense. Second, a recent advanced study using multineuronal
recording with 512-channel tetrode system combined with
Cre-lox neurogenetics and optogenetics reported that localized
optogenetic manipulation disrupted network oscillations and
caused changes in single-unit firing patterns in a brain-wide
manner (Xie et al., 2016b). This result raises the caution of
the interpretation of optogenetically manipulated behaviors,
indicating the possibility that optogenetically elicited behaviors
are caused not by reactivation of the previous or associated cell
assemblies but by newly excited activity patterns in a wide range
of the brain.

Third, most studies have so far used behavioral tasks that
can be learned in one experience, such as contextual fear
conditioning, to instantaneously synthesize ChR2 only for a
specific neuron population in the hippocampus. Given that the
contextual fear conditioning does depend on the hippocampus,
cued fear conditioning depends not on the hippocampus but
mainly on the amygdala (e.g., LeDoux, 2000; Wolff et al.,
2014) and/or the prelimbic cortex (e.g., Paré and Quirk, 2017).
Considering those earlier and elaborated works of fear memory,
it could be suggested that the neuronal circuits underlying
fear memory for context might be partly related to the
amygdala and/or the prelimbic cortex besides the hippocampus.
Concerning Ohkawa et al. (2015) introduced above, the
simultaneous and repeated stimulation of the respective cell
assemblies could consolidate the associative memory—likely
represented by a new cell assembly, and the conjunctive
representation of context B plus foot shock might exist in a
subset of amygdala or prelimbic cortical neurons, whose synaptic
connections strengthen as a result of the coincident activation.
Further, it could be the consolidation of these synaptic strength
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changes that promotes more robust fear responses during the
subsequent test session.

On the other hand, higher and positive memory is mostly
formed by learning with rewards for longer periods and
there are many hippocampus-dependent higher learning tasks.
Therefore, there is a high possibility that higher memory requires
cell-assembly mechanisms different from those for fear memory.
In the near future, it will be necessary to find a way to explore
the causal relationships between the formation of diverse and
higher-order memories by using rewards and cell assembly
activities.

In recent years, a new genetically encoded neuron
perturbation method, called ‘‘chemogenetics,’’ has been
developed to control neuronal firing using small molecules
that activate engineered receptors that can be targeted to cell
types (Wess et al., 2013; Sternson and Roth, 2014). This method
avoids the invasive nature of optogenetics, for which fibers for
light stimulation are chronically implanted in the brains, like
for electrophysiological recording, to activate or inhibit neurons
electrical activity. Receptors with several cellular functions
have been developed to facilitate the selective pharmacological
control over a diverse range of neuronal signaling and firing for
molecularly defined cell types. Chemogenetics has already been
used widely to investigate the causal relationship between brain
activity and behavior. For example, Vetere et al. (2017) reported
that in vivo chemogenetic silencing of different network nodes
(vertices) impaired fear memory consolidation in mice. This
method can reveal specific influences for molecularly defined
cell types that are often intermingled with neuronal populations
having different functions (Sternson and Roth, 2014), suggesting
that it could be applied to detect and activate specific cell
assemblies in behaving animals.

EXPERIMENTAL DETECTION 3
—LIVE-CELL IMAGING

The optogenetics can identify cell assemblies that encode
memory by clarifying the causal relationship between the activity
of a specific neuron population and behavior change (Tonegawa
et al., 2015a,b). However, it is impossible to measure in real time
the changes that occur in the cell assembly due to changes in
memory. Even the multineuronal recording, already described
above, the ‘‘real image’’ or ‘‘real structure’’ of cell assemblies
cannot be detected. In other words, we can detect the cell
assembly as a static memory engram or activity of a partial group
of neurons of it, but we cannot see the dynamics of the full
picture of the cell assembly, which changes rapidly according to
the information processing of memory.

To compensate for the weakness of the methods of
optogenetics and electorophysiology, a measurement method
called live-cell imaging was developed recently (Figure 6). This
method visualizes individual neuron activity as a function of
changes in Ca2+ levels by using two-photonmicroscopy (Wallace
and Kerr, 2010; Grienberger and Konnerth, 2012). Several
years ago, when it became possible to measure the activity of
hundreds of neurons in real time from awake and head-fixed
mice ‘‘navigating’’ in virtual environments (Dombeck et al.,
2010), this method began to be used for in vivo experiments
in many labs (e.g., Sato et al., 2016). Although Dombeck
et al. (2010) is surely the pioneering study of in vivo live-cell
imaging and the simultaneous visualization of many place cells
in the hippocampus is compelling, comparative evaluation with
the electrophysiological place-cell studies should be carefully
discussed. A concern of this study is that the virtual navigation
limits the degree to which the vestibular system is engaged during

FIGURE 6 | Combined functional and anatomical methods of live-cell imaging for studying cell assemblies (Wallace and Kerr, 2010). Recordings of neuronal activity
(Ca2+-transients) recorded from a population of neurons using in vivo multiphoton microscopy and subsequent identification of the same neurons in a histological
section. (A) Cut-away, three-dimensional representation of tissue imaged in vivo. Neurons appear green and astrocytes appear yellow. The horizontal exposed
surface shows the imaging plane from which functional data were collected. (B) Ca2+ imaging traces from the neurons identified by the yellow, red and blue circles in
(A). (C) A histological section from the tissue shown in (A), in which two of the neurons from which functional activity was recorded were identified. Neurons appear
red, while astrocytes appear green. White arrowheads in (A,C) indicate matched neurons. The brown arrowhead highlights an astrocyte visible in both panels.
Modified from Wallace and Kerr (2010) with permission.
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navigation, as would be the case during active exploration ofmice
in a real-world environment. Therefore, the picture of neuronal
ensembles supporting virtual navigation may not fully reflect
the dynamic nature of cell-assembly responses during real-world
navigation.

The method of live-cell imaging itself has a problem.
The sampling rate of imaging, i.e., the time resolution, is
relatively low. When hundreds of neurons are measured
simultaneously, the sampling rate is 30–60 Hz, and single-
neuron spikes (–1 ms) cannot be accurately detected. Therefore,
synchronization at the submillisecond level between adjacent
neurons seen in the prefrontal cortex and hippocampus (Sakurai
and Takahashi, 2006; Takahashi and Sakurai, 2009; Diba et al.,
2014), i.e., the activity of a local cell assembly (Sakurai and
Takahashi, 2008), cannot be detected either. It will be difficult
in principle to detect spikes in real time in a manner similar
to multineuronal recording because live-cell imaging depends
on changes in Ca2+ levels. Furthermore, when monitoring the
cellular activity of structures below the cortical surface, e.g., the
hippocampus, it is necessary to largely remove the overlying
cortex by aspiration to enable direct imaging by two-photon
microscopy (Denk and Svoboda, 1997). The effects of such
large cortical lesions (windows for chronic imaging) on the
cellular activity of the subcortical structures should be checked
carefully.

Despite the limitations of this technique, as described above,
the ability tomonitor the activity of a large population of neurons
in awake, behaving animals is surely important for further
research on cell assemblies. For instance, the pioneering study
(Dombeck et al., 2010) collected time-series movies (–64 ms per
frame) of fields of view (–200 × 100 µm) in the CA1 region of
the hippocampus containing −80 to 100 neurons and optically
identified and characterized populations of place cells. The
authors determined a correlation between the location of their
place fields in the virtual environment and their anatomical
location in the local circuit. Such a correlation in a population
of neurons is intriguing and cannot be determined by any other
techniques using behaving animals.

Recent studies (Driscoll et al., 2017; Grewe et al., 2017)
have demonstrated the merits of this technique in detecting
both the dynamics and stability of neuronal representations
across days in some brain regions. Driscoll et al. (2017)
recorded two-photon images and tracked the activity of
several hundred cells in the posterior parietal cortex for a
month as mice performed a virtual-navigation task. They
found that the relationship between cell activity and task
features was mostly stable on single days but underwent
major reorganization over weeks. Although individual neurons
informative about task features (trial type and maze locations)
changed across days, the cells’ population activity had statistically
similar properties each day and had stable information for
over a week. They proposed that dynamic neuronal activity
patterns could balance plasticity for learning and stability for
memory. Their notion is very important because it could
suggest a mechanism by which cell assemblies simultaneously
realize the dynamics and stability of neural representation.
Grewe et al. (2017) also recorded two-photon images and

tracked the dynamics of ensembles of more than a hundred
of amygdala neurons during fear learning and extinction
over 6 days. They found that the reshaping of the neural
ensemble representation of the conditioned stimulus (CS)
became more similar to the unconditioned stimulus (US)
representation after conditioning, and the CS representation
became more distinctive without reverting to its original
form during extinction training. They concluded that these
findings support a supervised learning model in which the
activation of US representation guides the transformation of
CS representation. This study also indicates that the technique
is effective to observe the transformation occurred over time
in ensemble activity of neurons that are part of the same cell
assembly.

Another recent work (Wilson et al., 2016) using two-photon
imaging of individual neurons in primary visual cortex has
revealed that summation of synaptic inputs can predict the given
neuron’s orientation selectivity; however, cannot accurately
or reliably predict differences across neurons. This work
suggests that there is a significant contribution of non-linearity
within the input-output relationship of cell assemblies encoding
fundamental properties of the visual world. The result indicates
that there are additional characteristics of cell assemblies
representing concepts and is related to precise synchrony
of firing of neurons, beyond those captured in Figure 3,
an extremely simple illustration of functional connectivity of
neurons comprising a cell assembly.

Progress for this technique is continuing (e.g., Song et al.,
2017), and time resolution will definitely show improvements.
Even the low sampling rate at present, particularly if the
imaging is of calcium, can indeed allow for burst detection
with very high calcium influx to cells (e.g., Vogelstein et al.,
2009). This means that although single-neuron spikes cannot be
accurately monitored in real time, the synchronous burst firing
of many cells constituting a cell assembly can be monitored by
this method. The combinatorial application of multineuronal
recording and live-cell imaging to respectively monitor the spikes
of smaller groups of neurons and the burst firing of larger
populations of neurons will be an ideal recoding technique for
cell assembly research using behaving animals.

WHAT AND HOW CELL ASSEMBLIES
ENCODE

It is very likely that the cell assembly codes individually stored
information, i.e., memory engram as the optogenetics studies
have shown, which can create unique functions of memory
such as recall and association. However, what needs to be
further clarified at present and in the future is what and
how the cell assembly actually codes in memory function.
The idea that individual cell assemblies code individual and
unimodal information is the easiest to understand. For example,
the research of Miyashita’s Lab introduced in ‘‘Experimental
Detection 1’’ (Takeuchi et al., 2011; Hirabayashi et al., 2013)
clearly demonstrates the existence of a cell assembly that codes
each of the held visual (figure) information and the recalled figure
information.
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FIGURE 7 | A hypothesis of dual coding by single neurons and cell
assemblies. Modified from Sakurai (1999) with permission.

However, it is also certain that the cell assembly codes
various information from individual sensory inputs to a
‘‘context’’ that encompasses multiple sensory inputs in an
environment. In our previous research (Sakurai, 1996, 2002), as
discussed above, the cell assembly coded contextual information,
i.e., tasks (Figure 1). In the reactivation experiment of cell
assemblies (Liu et al., 2012; Ohkawa et al., 2015) introduced
in ‘‘Experimental Detection 2’’ the context information was
surely encoded precisely according to the name of conditioning.
Sensory input and context are different pieces of information
that can be encoded and stored jointly or separately in the
neural population. We should further investigate the possibility
of shared coding among different cell assemblies and double
coding between cell assemblies and single neurons to reveal
the joint and separate coding of sensory inputs and context
(Sakurai, 1999; Figure 7). This investigation can be performed
by observing and analyzing changes in the synchronous firings

of neurons that constitute various cell assemblies and in
the firing frequency of individual neurons within each cell
assembly.

Although this review article discusses experimental methods
for the detection of cell-assembly activity, it should be
noted that theoretical and computational consideration and
models based on experimental data are needed to make
advance of research of clarifying what a cell assembly
or cell assemblies encode. Huyck and Passmore (2013)
comprehensively introduce the previous experimental data
supporting the existence of cell assemblies and discusses the
traditional and recent theoretical models of cell assemblies
especially in relation to memory functions. Recently, Tsien
and his colleagues have published the series of intriguing
theoretical consideration based on their experimental data
and suggest the attractive models of cell-assembly coding
(Tsien, 2015; Li et al., 2016; Xie et al., 2016a). Their ‘‘theory
of connectivity’’ proposes a mathematical rule in organizing
the microarchitecture of cell assemblies into the specific-to-
general computational primitives that enable memories and
adaptive behaviors to emerge in the brain (Tsien, 2015;
Li et al., 2016). The theory specifies that within each
computational building block, termed ‘‘functional connectivity
motif’’ (FCM), the total number of principal projection-cell
cliques with distinct inputs should follow the ‘‘power-of-two-
based permutation logic’’ (Xie et al., 2016a; Figure 8). Each
FCM consists of principal projection neuron cliques receiving
specific inputs, as well as other principal projection neuron
cliques receiving progressively more convergent inputs that

FIGURE 8 | “Power-of-two based permutation logic” for governing the specific-to-general wiring and computational logic of cell assemblies. (A) The equation defines
the size of a cell assembly; the numbers of neural cliques within a cell assembly. The specific-to-general neural cliques shown in this subpanel illustrate the logic for
wiring non-recurrent networks (e.g., the hippocampal CA1). (B) Schematic “bar-code” illustrates the specific-to-general cell-assembly activation patterns, which can
be measured by electrodes or imaging techniques, from the 15 distinct neural cliques (N1–15), processing four distinct inputs (i1, i2, i3, i4). The orange color
represents the stimulus-triggered activation above the baseline state (in blue). The arrow on the right side illustrates the number of distinct neural cliques exhibiting
specific, sub-combinatorial, as well as generalized, responsiveness. Specific neural cliques encode specific features, whereas various permutation rule-based neural
cliques encode various convergent patterns, representing relational memories and generalized concepts. From Xie et al. (2016a) with permission.
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systematically cover every possible pattern using the power-of-
two-based permutation logic (Figure 8A).

MULTIPLE METHODS OF APPROACH

Currently, no single measurement method can directly and
precisely detect the actual activity of the cell assembly.
Multineuronal recording, optogenetics and live-cell imaging,
as discussed above, have both advantages and disadvantages.
Multineuronal recording has time resolution that can detect
neuron spike as it is, and it can record from any part of
the brain. However, it is impossible to record all neurons
constituting the cell assembly and the method is limited only
for the partial sampling of the cell assembly. On the other
hand, optogenetics can verify the causal relationship between
the activity of the cell assembly and the behavior change but
cannot detect the dynamic changes of the cell assembly. Finally,
in live-cell imaging, the entire cell assembly can be visualized
and changes can be measured in real time. However, the time
resolution is insufficient and accurate synchronization between
neurons, which is an important property of a cell assembly,
cannot be detected.

Therefore, it is probably the best strategy to combine and
utilize the advantages of these different methods (Figure 9).

First of all, the technology that is prerequisite for all
measurements is the training of animals to perform multiple
tasks, i.e., multiple-task behavior. The technique of operant
conditioning (Reynolds, 1975) is particularly indispensable for
the training of complicated tasks. By connecting multineuronal
recording, optogenetics, and live-cell imaging to that technology,
the cell assembly should reveal its actual activity and real
nature. Specifically, it is desirable to conduct multineuronal
recording and live-cell imaging for the same animal performing
multiple behavioral tasks. The former detects real spikes of many
neurons and their dynamic changes and the latter visualizes
spatial distribution of firing neurons and its transition according
to changes of the behavioral tasks (see Harris et al., 2016
for more comparison of live-cell imaging and multineuronal
recording). Although, at present, such a plan of applying the
two methods simultaneously to the same behaving animal
may be only imaginary, it deserves consideration of devising
a possible experiment. Using some symmetrical structures
in the hemispheres might be an idea to apply the two
methods simultaneously, e.g., recording multineuronal activity
from the right hippocampus and observing live-cell imaging
in the contralateral hippocampus. As anatomical symmetry
does not necessarily mean any functional symmetry and
the functional ‘‘asymmetry’’ of the hippocampus has been

FIGURE 9 | Multiple methods of research to clarify the actual dynamic activity of the cell assembly.
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reported in several studies (e.g., Sakaguchi and Sakurai, 2017),
functional symmetry and exact synchronization of activity of
the right and left hippocampi should be confirmed before the
experiments.

Besides the combination of multineuronal recording and
live-cell imaging, it is also desirable to conduct optogenetics with
them to verify the causal relationship between the activity of
neuronal populations and behavioral changes in the multiple
tasks. Although the simultaneous application of optogenetics
and live-cell imaging is being developed but not for behaving
animals yet (e.g., Bovetti et al., 2017), the combination of
optogenetics and multineuronal recording is being applied for
behaving animals. An excellent example of such studies is Stark
et al. (2013), which employed optogenetics and multineuronal
recording withmulti-contact silicon probes and used optogenetic
activation to trigger spiking in pyramidal cells or parvalbumin
(PV) interneurons in the hippocampus and neocortex of freely
behaving rodents. They showed a causal relationship between
activity of PV interneurons and pyramidal cell spiking resonance
in the intact cortical networks, elucidating a mechanism
of hippocampal theta rhythm related to the cell-assembly
coding.

In addition, brain–machine interfaces (BMIs) can be very
effective methods for verifying the authenticity and accuracy
of the information coded by the cell assembly detected by
multineuronal recording on the basis of the evaluation of the
movements of the machines being operated by the activity
of multiple neurons (Lebedev and Nicolelis, 2011; Lebedev,
2014). As the final goal of a BMI is to detect neuronal activity
representing information in the brain, BMI research inevitably
faces the problem of neural coding in the working brain (Sakurai,
2014). The early studies of BMIs (Chapin et al., 1999; Wessberg
et al., 2000) have already produced very important findings
of the neuronal coding, indicating that kinematic and kinetic
parameters are coded not by the activities of specific motor-
related neurons but by the activity of many distributed neurons
in the motor cortex. Subsequent BMI studies supported this
notion of neuronal coding (e.g., Carmena et al., 2003) and
indicate, as Nicolelis (2003) and Nicolelis and Lebedev (2009)
have suggested, that the BMI studies provide significant insights
on the actual state of dynamic coding by cell assemblies. At the
same time, the theory of cell assembly can be further verified
by BMI studies. We should recognize that the origin of research
motivation of Dr. Nicolelis, one of the pioneers of BMI research,
is the cell assembly (Nicolelis et al., 1997; Nicolelis and Lebedev,
2009).

Another interesting topic of BMIs related to research of
cell assemblies and memory is the ‘‘hippocampal memory
prosthesis,’’ a brain-machine interface device developed for

restoring or enhancing memory functions (Song et al., 2006).
It is designed to circumvent damaged hippocampal tissue by
reestablishing the ensemble coding of neuronal spikes performed
by a normal population of hippocampal neurons (Song and
Berger, 2015) and the objective is to restore memory function
using nonlinear dynamical models (Song and Berger, 2015).
Such an objective requires artificial reconstruction of functional
connections of neurons in a way that can be recognized by the
remaining normal circuitry, leading to promotion of appropriate
interactions of neurons and artificial reconstruction of the actual
dynamic coding by cell assemblies. For example, Berger et al.
(2011) and Hampson et al. (2012) showed that ensembles
of CA3 and CA1 hippocampal neurons, recorded from rats
performing a memory task, exhibited successful encoding of
trial specific information of events in the form of different
spatiotemporal firing patterns. Those patterns, extracted by a
specially designed nonlinear mathematical model, were used
to predict successful performance online via a closed loop
paradigm. The significance of their model as a neural prosthesis
has been demonstrated by substituting trains of electrical
stimulation pulses to mimic those same ensemble firing patterns.
This type of integrated experimental-modeling studies gives us
much information about the neural coding of memories and
contributes to the progress of research of cell assemblies.

CONCLUSION

The number of citations of Hebb’s original book (Hebb, 1949)
is still increasing, and reviews of cell assemblies have been
constantly published (e.g., Harris, 2005; Buzsáki, 2010; Sakurai
et al., 2013; Eichenbaum, 2017). Furthermore, studies of neuronal
activities and oscillation of electroencephalograms, in which
articles have been explosively increasing over the past decade, are
also often considered in relation to cell assemblies (e.g., Buzsáki
and Draguhn, 2004). Cell assembly is likely to be a basic
unit of higher brain function. For studies trying to elucidate
the mechanisms of memory including the association and
transformation of information, it is no exaggeration to say that
the cell assembly is a central dogma.
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