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When analyzing neural data it is important to consider the limitations of the particular

experimental setup. An enduring issue in the context of electrophysiology is the presence

of common signals. For example a non-silent reference electrode adds a common signal

across all recorded data and this adversely affects functional and effective connectivity

analysis. To address the common signals problem, a number of methods have been

proposed, but relatively few detailed investigations have been carried out. As a result,

our understanding of how common signals affect neural connectivity estimation is

incomplete. For example, little is known about recording preparations involving high

spatial-resolution electrodes, used in linear array recordings.We address this gap through

a combination of theoretical review, simulations, and empirical analysis of local field

potentials recorded from the brains of fruit flies. We demonstrate how a framework that

jointly analyzes power, coherence, and quantities based on Granger causality reveals

the presence of common signals. We further show that subtracting spatially adjacent

signals (bipolar derivations) largely removes the effects of the common signals. However,

in some special cases this operation itself introduces a common signal. We also show

that Granger causality is adversely affected by common signals and that a quantity

referred to as “instantaneous interaction” is increased in the presence of common

signals. The theoretical review, simulation, and empirical analysis we present can readily

be adapted by others to investigate the nature of the common signals in their data.

Our contributions improve our understanding of how common signals affect power,

coherence, and Granger causality and will help reduce the misinterpretation of functional

and effective connectivity analysis.

Keywords: common signals, Granger causality, coherence, local field potential (LFP), bipolar signals, unipolar

signals
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INTRODUCTION

Understanding how brain areas communicate is one of the
fundamental goals of neuroscience. Such neuroscientific
investigations often examine communications between
brain areas by assessing functional connectivity or effective
connectivity. Here we use the term functional connectivity
to refer to correlational (or undirected) relationships and
the term effective connective to refer to causal (or directed)
relationships as in Bressler and Seth (2010). Functional and
effective connectivity are thought to be involved in fundamental
processes such as attention (Gregoriou et al., 2009; Bosman
et al., 2012; Rosenberg et al., 2016) and arousal (Boveroux et al.,
2010; Supp et al., 2011; Lee et al., 2013; Cohen et al., 2016, 2018;
Hudetz and Mashour, 2016) and may also be altered in several
brain disorders (Horwitz and Horovitz, 2012). Such connectivity
analysis may focus on different spatiotemporal scales, from
brain-wide connectivity in the order of seconds, as revealed by
functional magnetic resonance imaging (Van den Heuvel and
Hulshoff Pol, 2010), to micrometer and millisecond resolution
in cortical laminar recordings (Maier et al., 2010; Van Kerkoerle
et al., 2014).

However, methodological issues regarding the estimation of
functional and effective connectivity are a matter of continuing
debate (see Barnett et al., 2017; Stokes and Purdon, 2017, for a
recent example). An enduring issue in functional and effective
connectivity analysis is the adverse effect of common signals in
the data. In the context of electrophysiology, the common signals
maybe due to electrical activity at the reference electrode, volume
conduction from another electrical source, or a combination
of both (Bastos and Schoffelen, 2016; Trongnetrpunya et al.,
2016). The common signals can substantially alter the results
of functional or effective connectivity analysis (Rappelsberger,
1989; Nunez et al., 1997; Essl and Rappelsberger, 1998; Bastos
and Schoffelen, 2016; Trongnetrpunya et al., 2016). To this end,
numerous techniques of varying complexity have been suggested
for reducing the effect of common signals (Nunez et al., 1997;
Nolte et al., 2004; Yao et al., 2005; Hu et al., 2010; Brookes et al.,
2012; Hipp et al., 2012; Madhu et al., 2012; Drakesmith et al.,
2013; Colclough et al., 2015; Huang et al., 2017, and others). One
of the simplest and most commonly used techniques is to simply
subtract nearby signals, known as bipolar derivations.

Even though the adverse effects of common signals on
functional and effective connectivity analysis are well recognized,
relatively few studies have investigated these effects in depth. In
a recent effort to address this, Shirhatti et al. investigated how
different referencing techniques (including bipolar derivations)
affect the estimation of different neurophysiological metrics
using local field potentials (LFPs) recorded from the visual
areas of monkeys (Shirhatti et al., 2016). They found that a
measure of functional connectivity known as phase coherence
was substantially affected by the choice of the referencing
scheme. In particular, they claimed that bipolar derivations can
result in artifactually high phase coherence for specific signal
pairs. On the other hand, with respect to effective connectivity,
Trongnetrpunya et al. used simulations and analysis of LFPs
from rats, monkey, and human to claim that bipolar derivations

are effective at removing the adverse effect of common signals
for Granger causality analysis (Trongnetrpunya et al., 2016).
The issue of which referencing scheme is advantageous and
disadvantageous in distinct analysis methods remains an open
question.

As reviewed above, to date, in-depth studies of the effects
of common signals have been carried out separately for
functional connectivity (or coherence) and effective connectivity
(or Granger causality), not in a unified manner. This may be a
significant oversight because coherence andGranger causality are
in fact analytically related (Ding et al., 2006; Wen et al., 2013). In
this paper, we focus on coherence and Granger causality because
these are two of the most commonly used functional and effective
connectivity metrics. Through the joint analysis of coherence and
Granger causality, we obtain novel theoretical insights into the
nature of the common signals and provide empirical guidelines
on how to assess and reduce them.

The paper has two major components; “Theoretical
background” and “Results from analysis of fly LFPs.” In
the Theoretical background sections we review a simple
mathematical framework that explains how common signals
affect power, coherence and Granger causality. The mathematical
framework for power and coherence is based on well-known
results from linear dynamics (e.g., Bendat and Piersol, 2000)
and has been reported elsewhere (e.g., Rappelsberger, 1989;
Nunez et al., 1997; Essl and Rappelsberger, 1998; Yao et al.,
2005; Hu et al., 2010; Trongnetrpunya et al., 2016). A more
detailed treatment on Granger causality analysis can be found in
Ding et al. (2006), Dhamala et al. (2008), Nalatore et al. (2009),
Chicharro (2012), Wen et al. (2013). These “Theoretical
Background” sections do not contain novel theoretical
development, but serve to aggregate these known results in
the context of neuroscience in a single manuscript and using
unified terminology. We take great care to present the material
in the simplest possible way, making it suitable for readers
with minimal technical background. Further methodological
details are presented in the accompanying Methods section. We
complement the theoretical concepts with illustrative simulation
designed to clarify the important points.We base our simulations
on simple autoregressive processes. Autoregressive processes
are the basis of the spectral formulation of Granger causality
developed in Geweke (1982, 1984), which we investigate here.
For a review of this most widely adopted formulation of Granger
causality, see Bressler and Seth (2010). For more recent variants
of Granger causality that can deal with non-linear, point-process
or otherwise complex dynamics (see e.g., Kim et al., 2011;
Quinn et al., 2011; Barnett and Seth, 2014; Sheikhattar et al.,
2018). In addition, for autoregressive processes, power and
coherence can also be calculated directly from the autoregressive
parameters, which further simplifies the simulations. Others
have also used autoregressive processes to investigate Granger
causality (e.g., Ding et al., 2006; Dhamala et al., 2008; Nalatore
et al., 2009; Chicharro, 2012; Wen et al., 2013) and coherence
(Rappelsberger, 1989). Codes for running the simulations are
made publicly available.

The second component of the paper corresponds to the
analysis of LFPs recorded from the brains of flies. The analysis is
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carried out in parallel to, and immediately following, the relevant
Theoretical background sections. This structure highlights the
relationship between theory and experiment. We emphasize that
the purpose of the analysis is not to suggest a new way for
removing common signals, for which a plethora of methods
of varying complexity already exists (e.g., Rappelsberger, 1989;
Nunez et al., 1997; Essl and Rappelsberger, 1998; Yao et al.,
2005; Nalatore et al., 2007, 2009; Hu et al., 2010; Brookes et al.,
2012; Madhu et al., 2012; Drakesmith et al., 2013; Faes et al.,
2013; Friston et al., 2014; Colclough et al., 2015). Rather, our
purpose is to investigate whether substantial common signals are
indeed present in our preparation, which involves flies and high-
resolution electrodes with spacing in the order of 0.01mm using
a combination of theory, simulation, and empirical analysis.

We show that common signals are present in our preparation
and that the bipolar derivations are largely free of these. However,
in our theoretical analysis and simulation, we also show that
in some special cases the bipolar derivation actually introduces
common signals. In addition, we show that a quantity referred
to as “instantaneous interaction” is increased in the presence
of common signals and may serve as a useful indicator for
checking for common signals in other recording preparations.
Taken together the manuscript provides a holistic treatment of
the effects of common signals on power, coherence and Granger
causality using theory, simulation, and empirical analysis.

THEORETICAL BACKGROUND AND
RESULTS FROM ANALYSIS OF FLY LFPS

The theoretical results we present for power and coherence
follow from linear dynamics (e.g., Bendat and Piersol, 2000)
and have been reported elsewhere (e.g., Rappelsberger, 1989;
Nunez et al., 1997; Essl and Rappelsberger, 1998; Yao et al., 2005;
Hu et al., 2010; Trongnetrpunya et al., 2016). The theoretical
results for Granger causality analysis can be found in Ding et al.
(2006), Dhamala et al. (2008), Chicharro (2012), and Wen et al.
(2013). Our purpose here is (1) to present these results in a
single framework, (2) to illustrate the theoretical concepts using
simple simulations, and (3) to demonstrate how these relate to
analysis of empirical data. For the analysis of empirical data
we use LFPs recording from flies (see Methods for details). We
have previously presented analysis results from this dataset in
the context of arousal modulation (general anesthesia) (Cohen
et al., 2018). In that work we restricted our analysis to bipolar
derivations. Here we exclusively focused on the comparison
between unipolar signals and bipolar derivations and their
relation to the presence of common signals. For neuroscientific
insights obtained from this experiment we refer the reader to
Cohen et al. (2016, 2018).

Power: Theoretical Background
Unipolar Power
We consider the general case in which the signal recorded by
some electrode i at time t yi(t) represents the difference of two
other signals; the neural activity of interest near the electrode xi(t)

and a common signal u(t) that is subtracted from all electrodes

yi(t) = xi(t)− u(t) (1)

We refer to yi(t) as a unipolar signal. This framework has
been used extensively to investigate the case where the physical
mechanisms for the common signal is electrical activity at
the reference electrode (i.e., non-silent reference Nunez et al.,
1997; Essl and Rappelsberger, 1998; Yao et al., 2005; Hu et al.,
2010; Trongnetrpunya et al., 2016). Another mechanism for
common signals is volume conduction (Bastos and Schoffelen,
2016; Trongnetrpunya et al., 2016). We consider the distinction
between the two mechanisms in the coherence section of this
paper (Section Distinguishing Between Common Signals Due to
Electrical Activity at the Reference Electrode and Due to Volume
Conduction)

In the frequency domain Equation (1) becomes

Yi(ω) = Xi(ω)− U(ω) (2)

whereYi(ω), Xi(ω) and U(ω) are the Fourier transforms of yi(t),
xi(t) and u(t) respectively.

The power of the unipolar signals (unipolar power) is given by

Sii(ω) = Yi(ω)Y
∗
i (ω) = (Xi(ω)− U(ω))(Xi(ω)− U(ω))∗

= Xi(ω)X
∗
i (ω)− 2 Re(Xi(ω)U

∗(ω))+ U(ω)U∗(ω) (3)

where Re(Xi(ω)U
∗(ω)) denotes taking the real part of the cross-

spectrum, also known as the co-spectrum. The co-spectrum
captures the effect of zero-lag correlations on the power
spectrum. If the common signal is uncorrelated with the neural
activity (as may be expected from a noisy common signal from
the reference electrode) then the co-spectrum vanishes and the
unipolar power is the sum of the power of the neural and
common signals

Sii(ω) = Xi(ω)X
∗
i (ω)+ U(ω)U∗(ω) (4)

In this case the unipolar power is an over-estimate of the power
of the neural signal.

Bipolar Derivations Power
The experimenter typically only has access to the unipolar signals
yi(t), not directly to the neural signal xi(t) or the common signal
u(t). The challenge is thus to try and remove, or at least reduce,
the contribution of the common signal.

When unipolar activity is simultaneously recorded at two
nearby locations one can use the additional signal to reduce
the effect of the common signal. The simplest strategy is to
take the difference between unipolar signals recorded by nearby
electrodes. Specifically, given two nearby unipolar signals yi(t)
and yi+1(t) the bipolar derivation byi(t) is defined as

byi(t) = yi(t)− yi+1(t) (5)

If the contribution of the common signal to nearby unipolar
signals is identical, then

byi(t) = (xi(t)− u(t))− (xi+1(t)− u(t)) (6)

= xi(t)− xi+1(t)
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Thus, bipolar derivations can provide an estimate of local
neural activity that is free from the effect of the common
signal.

In the frequency domain Equation (6) becomes

bYi(ω) = Xi(ω)− Xi+1(ω) (7)

The power of the bipolar derivations (bipolar power) is
given by

bSii(ω) = bYi(ω)bY
∗
i (ω) = (Xi(ω)− Xi+1(ω))(Xi(ω)− Xi+1(ω))

∗

= Xi(ω)X
∗
i (ω)− 2Re(Xi(ω)X

∗
i+1(ω))+ Xi+1(ω)X

∗
i+1(ω) (8)

It is useful to compare the expression for the unipolar
(Equation 3) and bipolar power (Equation 8). In general,
to completely characterize the unipolar (Sii(ω)) and bipolar
(bSii(ω)) power, we would need to know (1) the power of
neural signals (Xi(ω)X

∗
i (ω) and Xi+1(ω)X

∗
i+1(ω)), (2) the power

of the common signal (U(ω)U∗(ω)), and (3) the relevant co-
spectra [Re(Xi(ω)X

∗
i+1(ω)) and Re(Xi(ω)U

∗(ω))]. For example,
assuming that the co-spectra are negligible in both cases, a
stronger common signal [U(ω)U∗(ω)] than the power of neural
signals [Xi+1(ω)X

∗
i+1(ω)] can result in greater unipolar than

bipolar power. Another interesting case is when the neural signals
recorded by nearby electrodes are very similar, [i.e., Xi(ω) ∼
Xi+1(ω)]. In this case, the bipolar power is obviously close
to zero, while the unipolar power can be much greater than
zero.

In the context of neurophysiology, both scenarios are possible
(e.g., substantial non-silent reference, highly similar recordings
by nearby electrodes). Under these circumstances we would
expect the unipolar signals power to be greater than the bipolar
derivations power. Theoretically speaking, however, it is entirely
possible for the bipolar power to be greater than the unipolar
power. For example if the power of the neural signals is equal,
Xi+1(ω)X

∗
i+1(ω) = Xi(ω)X

∗
i (ω) = P and if the neural signals

are independent Re(Xi(ω)X
∗
i+1(ω)) = 0, then the power of the

bipolar derivation is bSii(ω) = 2P. If the common signal is
comparatively small, e.g., U(ω)U∗(ω) = P/2, then the power of
the unipolar signals is Sii(ω) = P + P

2 .

Power: Results From Analysis of Fly LFPs
Unipolar Power Is Greater Than Bipolar Power
The mathematical framework we presented demonstrates that
in the presence of a common signal the unipolar power can

be either greater or lesser than the bipolar power. Next we
empirically quantified unipolar and bipolar power for LFPs
recorded with a micro-electrode linear array inserted in the

brains of behaving flies (Figure 1, see Methods for details).
We considered signals recorded with respect to a reference
electrode inserted in the body (thorax) of the fly as unipolar
(Figure 1B). We obtained bipolar derivations by subtracting
adjacent unipolar signals (Figure 1C, see Methods for details).
In our data we expected unipolar to be greater than bipolar
power because (1) there is likely to be electrical activity at the
reference electrode in the flies’ thorax (2) neighboring electrodes
are likely to reflect at least some similar neural activity due to the
proximity of the electrodes (i.e., 25µm). Consistent with this we
found that unipolar was indeed greater than the bipolar power
(Figure 1D).

Coherence: Theoretical Background
Unipolar Coherence
Coherence between signalsYi(ω) andYj(ω) measures the extent
of linear dependency at each frequency (Bendat and Piersol,
2000) and is defined as:

Cij(ω) =
abs(Yi(ω)Y

∗
j (ω))

2

(Yi(ω)Y
∗
i (ω))(Yj(ω)Y

∗
j (ω))

(9)

As we will show, in the presence of a common signal,
coherence can be non-zero even when the neurophysiological
signals [Xi(ω) and Xj(ω)] themselves are independent.
To see the effect of a common signal on unipolar signals
coherence we substitute Equation (2) into (9), obtaining:

Cij(ω) =
abs((Xi(ω)− U(ω))(Xj(ω)− U(ω))∗)

2

(Xi(ω)− U(ω))(Xi(ω)− U(ω))∗(Xj(ω)− U(ω))(Xj(ω)− U(ω))∗
(10)

If the common signal and neural signals are independent then
the cross-spectrum between the two vanishes and Equation (10)
becomes

Cij(ω) =
abs(Xi(ω)X

∗
j (ω)+ U(ω)U∗(ω))2

(Xi(ω)X
∗
i (ω)+ U(ω)U∗(ω))(Xj(ω)X

∗
j (ω)+ U(ω)U∗(ω))

(11)

Because we do not have direct access to each of the individual
quantities we cannot in general assess the contribution
of the common signal to coherence. Here we suggest
using prior knowledge of the system in question to try
and isolate the relative contribution of the common
signal. For example, for neural systems we would not
expect genuine neurophysiological coupling for very high
frequencies. That is, for high frequencies ωh we assume
that Xi(ωh)X

∗
j (ωh) = 0. In this case Equation (11) becomes

Cij(ω) =
abs(U(ωh)U

∗(ωh))
2

(Xi(ωh)X
∗
i (ωh)+ U(ωh)U∗(ωh))(Xj(ωh)X

∗
j (ωh)+ U(ωh)U∗(ωh))

(12)

This shows that a common signal can render a non-zero
coherence even when the neurophysiological sources themselves
are not coherent at all.
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FIGURE 1 | Unipolar power is greater than bipolar power in fly LFP. (A) Microelectrode recordings of LFPs from flies. Adjacent electrodes are separated by 25µm.

(B) Example of unipolar signals from one fly. The unipolar signals were recorded with reference to the thorax (location shown on schematic on the right). The example

clearly shows that the signals are highly correlated across electrodes but that any neighboring pairs are not the same. (C) Example of bipolar derivations obtained from

two adjacent unipolar signals. The bipolar derivations are smaller in magnitude and appear less correlated than the unipolar signals. Two bipolar derivations (by1 and

by2) that share a unipolar signal (y2 in B) in their derivation are shown in bold. (D) Group average unipolar (solid) and bipolar (dashed) power (N = 13, shading reflects

standard error of the mean across flies). The much greater unipolar than bipolar power is consistent with substantial common signals and the highly similar neural

activity of adjacent unipolar signals. Peaks at 50 and 150Hz reflect line noise and its harmonic.
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Observing (implausibly) high coherence in (implausibly) high
frequencies would indicate that a common signal is present,
and is likely to affect all frequencies [as described by Equation
(11)]. Having observed high coherence in high frequencies
in a given dataset would therefore warrant extra care when
interpreting coherence in lower frequencies, for which there may
be some genuine neurophysiological coupling. We also note that
what constitutes such “high frequencies” depends on the system
in question. For example coherence at frequencies >100Hz
has been reported in mammals (see (Buzsáki and Schomburg,
2015), for discussion of high frequency coherence). Whether
these reports were affected by the presence of common signals
is unknown. To date, coherence above 100Hz has not been
reported in flies.

Note, however, that as per Equation (12), if the (squared)
power of the common signal (numerator) is much smaller than
the (product of the) sums of the power of neural signals and
common signal (denominator), then we would obtain close to
zero coherence. Thus, the absence of high coherence in high
frequencies could also be consistent with a common signal that
only has low frequency power.

Equation (12) can be further simplified. First, we define the

Neural to Common signal Ratio as NCRi(ωh) =
Xi(ωh)X

∗
i (ωh)

U(ωh)U
∗(ωh)

Second, assuming that the NCR is comparable across
all electrodes (NCRi(ωh) ∼ NCRj(ωh) = NCR(ωh)) we
obtain coherence as a function of a single parameter, NCR(ωh),

Cij(ωh) =
1

(

NCR(ωh)+ 1
)2

(13)

Using Equation (13) we can get an estimate of the NCR only using
the observed coherence values

NCR(ωh) =
1

√

Cij(ωh)
− 1 (14)

Distinguishing Between Common Signals Due to

Electrical Activity at the Reference Electrode and Due

to Volume Conduction
The simple theoretical framework we reviewed assumes that
a single common signal u(t) enters all electrodes equally. This
situation most directly reflects a common signal due to electrical
activity at the reference electrode, as this is subtracted from
all channels. Another mechanism for common signals is the
conduction of electrical activity from some other electrical
source to two or more electrodes, known as volume conduction
(Bastos and Schoffelen, 2016). One potential source for such
electrical activity is muscular activity. For example, in human
scalp and intracranial EEG, eye movements and blinks generate

electrical activity that maybe conducted through the scalp or
neural tissue and manifest as a common signal (Kovach et al.,
2011). In the context of our fly preparation, the non-neuronal
electrical activity may be due to the heart muscle (Paulk et al.,
2013; Yap et al., 2017). The difference between the common
signal from the electrical activity at the reference and common
signals due to volume conduction is that the latter are likely to
affect nearby electrodes more than electrodes that are far apart,
since the contribution from volume conduction decays with
increasing distance (Nunez et al., 1997). This spatial-dependence
would violate our assumption that the same common signal
affects all electrodes. A general way to include a distance-
dependent effect such as that from volume conduction into the
framework is to decompose the common signals contribution
u(t) into the difference of a “global” common signal r(t),
reflecting activity at the reference electrode, and an electrode-
dependent signal vci(t), reflecting common signals due to
Volume Conduction. The resulting expression for the unipolar
signals is

yi(t) = xi(t)− ui(t)

= xi(t)+ vci(t)− r(t) (15)

Then, coherence is given by

Cij(ω) =
abs((Xi(ω)+ VCi(ω)− R(ω))(Xj(ω)+ VCj(ω)− R(ω))∗)

2

(Xi(ω)+ VCi(ω)− R(ω))(Xi(ω)+ VCi(ω)− R(ω))∗(Xj(ω)+ VCj(ω)− R(ω))(Xj(ω)+ VCj(ω)− R(ω))∗
(16)

Unfortunately, even if we make the same two simplifying
assumptions as before, namely that the common signal from
the reference electrode [r(t)] is independent of the neural
signals (xi(t) and xj(t)) and that the neural signals themselves
are independent for high frequencies, then the expression
for coherence remains complicated (see Appendix A in
Supplementary Materials).

Using more advanced analysis it may be possible to
mathematically estimate the distance-dependent effect in
neuronal data, though this is beyond the scope of our current
paper. For the purpose of our paper, the qualitative prediction
from these theoretical considerations is that in the presence of
volume conduction coherence in high frequencies will decrease
with increasing separation between the signals (see Appendix A
in Supplementary Materials).

Bipolar Coherence
We can investigate the effects of bipolar derivation on coherence
in a similar way to the unipolar signals. Substituting Equation (7)
into Equation (9) we get the following expression for coherence
between bipolar derivations (bipolar coherence) bCij(ω)

bCij(ω) =
abs(bYi(ω)bY

∗
j (ω))

2

bYi(ω)bY
∗
i (ω)bYj(ω)bY

∗
j (ω)

=
abs((Xi(ω)− Xi+1(ω))(Xj(ω)− Xj+1(ω))

∗)
2

(Xi(ω)− Xi+1(ω))(Xi(ω)− Xi+1(ω))
∗(Xj(ω)− Xj+1(ω))(Xj(ω)− Xj+1(ω))

∗
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=
abs(Xi(ω)X

∗
j (ω)− Xi(ω)X

∗
j+1(ω)− Xi+1(ω)X

∗
j (ω)+ Xi+1(ω)X

∗
j+1(ω))

2

(Xi(ω)X
∗
i (ω)− 2 Re(Xi(ω)X

∗
i+1(ω))+ Xi+1(ω)X

∗
i+1(ω))(Xj(ω)X

∗
j (ω)− 2 Re(Xj(ω)X

∗
j+1(ω))+ Xj+1(ω)X

∗
j+1(ω))

(17)

Note that if all combinations of the neural signals are
independent [i.e., when i 6= j, Xi(ω)X

∗
j (ω) = Xi(ω)X

∗
j+1(ω) =

Xi+1(ω)X
∗
j (ω) = Xi+1(ω)X

∗
j+1(ω) = 0] then the cross-

spectra in the numerator all vanish and coherence will equal
zero. This is in contrast to unipolar coherence, which can
be above zero even if the neural signals are independent
(Equation 12).

Coherence between bipolar derivations that are obtained from
a shared unipolar signal (Figure 1C) bCi,i+1(ω) constitutes a
special case,

bCi,i+1(ω) =
abs((Xi(ω)− Xi+1(ω))(Xi+1(ω)− Xi+2(ω))

∗)
2

(Xi(ω)− Xi+1(ω))(Xi(ω)− Xi+1(ω))
∗(Xi+1(ω)− Xi+2(ω))(Xi+1(ω)− Xi+2(ω))

∗ (18)

By noting that coherence is invariant with respect to scalar
multiplication of the signals, we can use bYi+1(ω) →

−bYi+1(ω) = Xi+2(ω)− Xi+1(ω). Equation (18) becomes

bCi,i+1(ω) =
abs((Xi(ω)− Xi+1(ω))(Xi+2(ω)− Xi+1(ω))

∗)
2

(Xi(ω)− Xi+1(ω))(Xi(ω)− Xi+1(ω))
∗(Xi+2(ω)− Xi+1(ω))(Xi+2(ω)− Xi+1(ω))

∗ (19)

=
abs(Xi(ω)X

∗
i+2(ω)− Xi(ω)X

∗
i+1(ω)− Xi+1(ω)X

∗
i+2(ω)+ Xi+1(ω)X

∗
i+1(ω))

2

(Xi(ω)X
∗
i (ω)− 2 Re(Xi(ω)X

∗
i+1(ω))+ Xi+1(ω)X

∗
i+1(ω))(Xi+1(ω)X

∗
i+1(ω)− 2 Re(Xi+1(ω)X

∗
i+2(ω))+ Xi+2(ω)X

∗
i+2(ω))

This expression is identical to the case of unipolar coherence
(Equation 10) where the common signal U(ω) has been replaced
with the neural signal Xi+1(ω). Intuitively, the shared signal
Xi+1(ω) acts as a common signal.

If the signals Xi(ωh), Xi+1(ωh) and Xi+2(ωh) are independent
for high frequencies ωh, then

bCi,i+1(ωh) =
abs(Xi+1(ωh)X

∗
i+1(ωh))

2

(Xi(ωh)X
∗
i (ωh)+ Xi+1(ωh)X

∗
i+1(ωh))(Xi+2(ωh)X

∗
i+2(ωh)+ Xi+1(ωh)X

∗
i+1(ωh))

Thus, coherence between bipolar derivations that share a
unipolar signal in their derivation can be above zero even if
neural activity is independent. For example, if the power of the
neural activity is equal across channels i, i + 1 and i + 2 [i.e.,
Xi(ωh)X

∗
i (ωh) = Xi+1(ωh)X

∗
i+1(ωh) = Xi+2(ωh)X

∗
i+2(ωh)] then

bCi ,i+1(ωh) = 0.25.

Example Simulations: The Effect of a
Common Signal on a
Unidirectionally-Connected and a
Disconnected System
The theoretical framework describes how a common signal
can affect coherence. We next use simple simulations to
illustrate how the presence of a common signal may manifest
in the analysis of real data. To do this we considered four
scenarios (Figures 2A–D). Scenarios 1 and 2 correspond to a
unidirectionally-connected and a disconnected neural system
(meaning that the cross-spectrum between the signals is zero
for all frequencies). These two scenarios represent the “ground

truths”. Scenarios 3 and 4 represent the same two systems but in
the presence of a common signal that is uncorrelated with both
components of the system.

We modeled the unidirectionally-connected system as a
bivariate autoregressive process (see Methods for details)

y1(t) = ay1(t − 1)+ η(t)

y2(t) = cy2(t − 1)+ dy1(t − 1)+ ε(t) (20)

where a, c, and d are the autoregressive coefficients and ε(t)
and η(t) represent uncorrelated white Gaussian noise sources.
For autoregressive systems such as this, power, coherence,

and Granger causality can all be directly calculated from the
autoregressive parameters (see Methods for details).

We set the parameters of the autoregressive process such
that the power spectra of the unidirectionally connected system
decays with frequency, roughly reflecting a biological system
(Figure 2E). We intentionally constructed the disconnected

system such that its power spectrum is identical to the
unidirectionally-connected system (Figure 2F, see Methods for
details). Thus, the two systems are indistinguishable based on
their power spectra alone.

The effect of the uncorrelated common signal on power
is given by Equation (4). This effect corresponds to an
increase in power equal to the power of the common signal.
Note that Equation (4) is independent of the connectivity
of the system. This means that the effect of the common
signal on power is identical for the unidirectionally-
connected (Figure 2G) and disconnected systems (Figure 2H).
Thus, power analysis alone cannot distinguish the two
systems.

Next we assessed coherence. The parameters of the
autoregressive process result in low coherence values that
decay with frequency for the unidirectionally-connected system
(Figure 2I). For the disconnected system coherence is zero, as
expected (Figure 2J). The common signal increases coherence
for the unidirectionally-connected system (more so for lower
frequencies) (Figure 2K). Importantly, the common signal
introduces above-zero coherence even for the disconnected
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FIGURE 2 | The effect of a common signal on coherence is highly dependent on the spectral characteristics of the system. (A-D) Schematics of four simulated

scenarios corresponding to a unidirectionally-connected system without a common signal (A), a disconnected system without a common signal (B), a

unidirectionally-connected system with a common signal (C) and a disconnected system with a common signal (D). (E–H) The power of the signals for each scenario

(arbitrary units). The systems were constructed to have identical power spectra (E vs. F and G vs. H). The effect of the common signal on power (G,H) is an increase

equal to the power of the common signal (UU*, horizontal red line). (I–L) Coherence between the signals for each scenario. Coherence for the

unidirectionally-connected system is low and decays with frequency (I) and coherence for the disconnected system is zero (J). When a common signal is added to

the unidirectionally-connected system coherence values increase overall but still decay with frequency (K). When a common signal is introduced to the disconnected

system coherence values also increase, but now coherence increases with frequency (L). This unexpected increase is explained by the Neural to Common signal

Ratio (NCR) of this particular system (Equation 13). (M) NCR1 (blue) and NCR2 (brown) refer to the NCR of nodes one and two respectively. Because the NCRs for

this system decrease with frequency, coherence increases with frequency. From the observed coherence in (L), we can also estimate the NCR using Equation (14).

The estimated NCR is shown here in red, which falls between the value of NCR1 and NCR2.

system (Figure 2L). For both the connected and disconnected
systems (Figures 2K,L), this simulation clearly demonstrates that
a common signal can lead to an overestimation of coherence.

Note that in the disconnected system (Figure 2L) the common
signal increased coherence with frequency. This frequency-
dependent increase would be hard to understand without the

theoretical framework. However, our theoretical framework
actually explains it as a consequence of our choice of parameters.
Specifically, Equation (13) dictates that coherence is inversely
related to Neural Signal to Common signal Ratios (NCRs). In
our disconnected system, the NCRs of both signals decrease with
frequency (as a consequence of the power spectra that decays with
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increasing frequency). In such a case, Equation (13) explains that
coherence should increase with frequency, as we see here.

In fact, if we assume that the NCR of both signals are identical
then we can use coherence to estimate the NCR (Equation 14).
In our disconnected system, the NCRs of both signals are similar,
thus the assumption roughly holds and the resulting estimate is
meaningful (Figure 2M).

In sum, our simulations demonstrate how the mathematical
framework we presented may manifest in empirical analysis.
We however highlight that the effects of a common signal on
coherence are dependent on the specific spectral characteristics
of the system and common signal. (See Appendix B in
SupplementaryMaterials for a simulation using a common signal
with a 1/f-like spectrum instead of a uniform spectrum).

Coherence: Results From Analysis of Fly
LFPs
LFPs Recorded in Flies Show Very High Coherence

With Unipolar Referencing
Based on the theoretical framework and as demonstrated in
our simulation (Figure 2), we expect that coherence between
unipolar signals, recorded from biological brains, to present
the following characteristics. First, we do not expect to find
significant coherence in high frequencies [to our best knowledge,
coherence for LFPs in flies has not been reported for frequencies
greater than 100Hz (Van Swinderen and Greenspan, 2003; Paulk
et al., 2013, 2015; Cohen et al., 2016)]. Conversely, high coherence
in high frequencies indicates the presence of common signals.
Second, common signals would exert stronger influence on
coherence between unipolar signals recorded by closer pairs
of electrodes than those that are far apart (due to volume
conduction in addition to electrical activity at the reference
electrode).

We analyzed coherence as a function of the distance between
the unipolar signals. To do this we averaged coherence over
unipolar signal pairs separated by 25, 50, 75–150, and 175–
325µm (Figure 3A). We found high coherence values across all
unipolar pairs. Coherence values were near unity for adjacent
unipolar signals (separated by 25µm) in low frequencies. For
these pairs, coherence values decreased with frequency before
plateauing at very high values of around 0.8. These very
high coherence values in high frequencies in which we would
not expect genuine neurophysiological coupling indicate the
presence of common signals, which are likely to be affecting all
frequencies.

We further found that coherence between unipolar signals
decreased with increasing distance between the signals. In low
frequencies this reduction may reflect a genuine reduction in
neurophysiological coupling with increasing distance. However,
the reduction in coherence with distance between the signals
was also observed for high frequencies and thus likely to reflect,
at least in part, a reduction in the influence of the common
signals. This suggests that the properties of the common signals
are not constant across all electrodes, consistent with common
signals due to volume conduction (see Section Distinguishing
between common signals due to electrical activity at the reference

electrode and due to volume conduction and Appendix A in
Supplementary Materials).

Unipolar signal pairs that are far apart (175–325µm) are
less likely to be affected by volume conduction. However, we
found that coherence values were still around 0.5 for these far
apart pairs, even for high frequencies for which we would not
expect genuine neurophysiological coupling. A likely reason for
this high coherence for signals that are far apart is a common
signal due to electrical activity at the reference electrode. Under
some further simplifying assumptions we can use the coherence
values to estimate the Neural signal to Common signal Ratio
(see Equation 14 and Figure 2M). Under these assumptions,
coherence values of 0.5 translate to an NCR of approximately
0.41, which means that neural activity is less than half of the
magnitude of the common signal. Thus, the coherence analysis
strongly indicates the presence of a substantial common signal
due to electrical activity at the reference electrode located in the
flies’ thorax (Figure 1B).

Coherence Between Bipolar Derivations Is Low, as

Per the Theoretical Prediction, but Coherence

Between Adjacent Pairs Increases With Frequency
Our analyses so far (both power and coherence) strongly indicate
that the unipolar signals contain substantial common signals.
According to the mathematical framework, bipolar derivations
can reduce the effect of common signals on coherence (see
section Bipolar coherence and Appendix A in Supplementary
Materials). With bipolar derivations, we would expect lower
coherence values overall and, in particular, coherence would be
near zero for very high frequencies for which we do not expect
genuine neurophysiological coupling.

To test this, we repeated the coherence analysis using
the bipolar derivations (Figure 3B). We found that bipolar
coherence was indeed much lower than unipolar coherence.
For bipolar derivations separated by 50–325µm coherence
values for low frequencies were in the range 0.025–0.15.
Crucially, for higher frequencies we observed near-zero
coherence. Taken together these observations suggest that
bipolar derivations are largely free from common signals. Bipolar
coherence also decreased as the distance between the bipolar
derivations increased, potentially indicating a reduction in
neurophysiological coupling with increasing distance.

Further, coherence between bipolar derivations separated
by 25µm actually increased with frequency. However, the
mathematical framework we provided can fully account for
this apparently surprising finding. Bipolar derivations separated
by 25µm are derived from a shared unipolar signal, whereas
bipolar derivations separated by 50µm or more are derived from
distinct unipolar signals (Figures 1B,C). Coherence between
bipolar derivations that share a unipolar signal in their derivation
constitutes a special case, in which the shared unipolar signal
effectively acts as a common signal (Equation 19). Coherence in
the presence of a common signal can be above zero even if the
neural signals themselves are independent.

Recall, further, that coherence also increased with frequency
in our simulation of a disconnected system in the presence of a
common signal (Figure 2L). In that case, we explained it in terms
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FIGURE 3 | Unipolar and bipolar coherence. (A,B) Unipolar (A) and bipolar (B) coherence averaged across signal pairs separated by 25 (brown), 50 (blue), 75–150

(pink), 175–325µm (black) (see Methods for details). The very high unipolar coherences are consistent with the presence of strong common signals. Bipolar

derivations that share a unipolar signals in their derivation are separated by 25µm (see Figure 1). Horizontal line at C = 0.25 represents theoretical coherence value

when the NCR = 1. Peaks at 50 and 150Hz are due to line noise and its harmonic. Shaded area represents sem across flies (N = 13).

of the analytical relationship between coherence and the NCRs
(Figure 2M). We note here that if we assume that the power of
the neural signals is equal, then the NCRs equal 1 and coherence
equals 0.25 (Equation 13). As can be seen, coherence approached
but never reached this value (Figure 3B, horizontal a black line
in), potentially indicating that some assumptions, for example
that the power of the neural signals is equal, are not completely
satisfied.

Granger Causality: Theoretical Background
Here we examine how the presence of a common signal can
be incorporated into the Granger causality framework. The
mathematical specifics of Granger causality have been discussed
extensively (e.g. Geweke, 1982, 1984; Lütkepohl, 2005; Dhamala
et al., 2008; Chicharro, 2012; Wen et al., 2013; Wibral et al., 2014;
Seth et al., 2015). We cover the relevant details to our analysis in
the Methods section. More complete details can be found in the
literature above and citations therein.

In the context of our analysis, the key analytical result is the
relationship

− ln(1− Cij(ω)) = fi↔j(ω)+ fi·j(ω) (21)

where fi↔j(ω) represent the sum of Granger causal influences
from i to j and j to i, termed total Granger causality,
and fi·j(ω) represents zero-lag or instantaneous effect, termed
instantaneous interaction. This result demonstrates that a
simple transformation of coherence [left side of (21)] can be
decomposed into total Granger causality [first term on the right
side (21)], which capture lagged influences, and instantaneous
interaction [second term on the right side of (21)], which
captures any remaining instantaneous influences, possibly due
to exogenous sources (Ding et al., 2006; Wen et al., 2013;

Bastos and Schoffelen, 2016; Trongnetrpunya et al., 2016). We
acknowledge concerns about the interpretability of instantaneous
interaction since it can become negative in certain situations
(Ding et al., 2006; Chicharro, 2012; Wen et al., 2013). However,
this quantity may still be useful for empirical analysis. In
particular, instantaneous interaction may be increased in the
presence of common signals, as we describe below.

The frequency domain representation of the unipolar signals
under the Granger causality framework is

(

Yi(ω)
Yj(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

(22)

where

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)

is the transfer function representation

of the autoregressive process and

(

ε(ω)
η(ω)

)

represents the Fourier

transforms of the noise terms (see Methods for details).
Combining the frequency domain representation with the

expression of the unipolar signals (2) gives

(

Xi(ω)
Xj(ω)

)

−

(

U(ω)
U(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

In terms of the neural signals we get

(

Xi(ω)
Xj(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

+

(

U(ω)
U(ω)

)

(23)

Cast this way we see that the common signalU(ω) is exogenous to
the system. We thus expect that the presence of a common signal
will manifest as increased instantaneous interaction. However,
whether the common signal will also distort the estimation of
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total Granger causality [which has been shown for the related case
of measurement noise (Nalatore et al., 2007)] is less clear.

The same reasoning applies to the case of bipolar derivations
that share a unipolar signal in their derivation. Substituting the
expression for bipolar derivations [Equation (7) into (22)] we get

(

Xi(ω)
Xi+1(ω)

)

−

(

Xi+1(ω)
Xi+2(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

By noting that spectral Granger causality is invariant under
scalar multiplication (Geweke, 1982) we can use bYi+1(ω) →
−bYi+1(ω) = Xi+2(ω) − Xi+1(ω). Rearranging in terms of the
neural signals Xi(ω) and Xi+2(ω) we get

(

Xi(ω)
Xi+2(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

+

(

Xi+1(ω)
Xi+1(ω)

)

(24)

Equation (24) above has the same form as Equation (23).
Thus, we expect that instantaneous interaction will be increased
for bipolar derivations that share a unipolar signal in their
derivation.

Example Simulations: A Common Signal
Increases Instantaneous Interaction
We next used simple simulations to illustrate how the
decomposition in Equation (21) may manifest in empirical
analysis. To do this we investigated the same four scenarios as for
the coherence analysis in Figure 2; a unidirectionally-connected
system and a disconnected system with no common signal,
and the same two systems in the presence of an uncorrelated
common signal (Figure 4). For each scenario we assessed the
quantities in the decomposition in Equation (21); transformed
coherence− ln(1− C(ω)), total Granger causality [f1↔2(ω)] and
instantaneous interaction [f1·2(ω)].

For the unidirectionally-connected system (scenario 1) we
have already seen that coherence values were low and decreased
with frequency (Figure 2B). In order to decompose this system
into total Granger causality and instantaneous interaction we first
transformed coherence values into− ln(1−C(ω)). The transform
is unlikely to affect interpretability of the results as it simply
“stretches” coherence values. For example coherence values in
the (0.01–0.99) range are stretched to the range (0.0101–4.6052).
For the low values of coherence for scenario 1 the effect of the
transform is minimal (Figure 4A).

Next we investigated instantaneous interaction. To do
this we used the non-parametric Granger causality approach
to decompose the spectral density matrix of the system
(see Methods). Because the only dependency between the
channels for the system is lagged, instantaneous interaction
is zero (Figure 4B). Correspondingly, total Granger causality
equals transformed coherence for this system (Figure 4C).
Because our main interest is in the relationship between
instantaneous interaction and coherence, we calculated the
percentage of transformed coherence that is accounted for

by instantaneous interaction (100 ∗
f1·2(ω)

− ln(1−C12(ω))
) Figure 4D).

Because instantaneous interaction is zero for this system, it
accounts for none of the transformed coherence. For the

disconnected system without a common signal (Figures 4E–G),
coherence, instantaneous interaction and Granger causality
are all zero (and % instantaneous interaction is undefined,
Figure 4H).

We next investigated how the introduction of a common
signal affects the estimation of instantaneous interaction and total
Granger causality for the unidirectionally-connected system. We
have seen that this results in an overall increase in coherences
(Figures 2K,L). As we expected, the common signal substantially
increased instantaneous interaction (Figure 4J, compared with
Figure 4B). Furthermore, introduction of the common signal
distorted the estimation of Granger causality; the total Granger
causality was reduced (Figure 4K, compared with Figure 4C).
Accordingly, the percentage of instantaneous interaction relative
to the transformed coherence was very high, showing that most
of the dependency between the channels is due to instantaneous
interaction (Figure 4L).

Finally, we investigated how the common signal affects
the estimation of instantaneous interaction and total Granger
causality for the disconnected system (Figures 4M–P). The
common signal increased coherence from 0 to 0.3 (Figure 4M,
compared with Figure 4E), and magnitude increased with
frequency (see also Figure 2L). Instantaneous interaction for
this scenario was very high (Figure 4N) and, correspondingly,
total Granger causality was very low (Figure 4O). As a result,
transformed coherence for this system was almost entirely
accounted for by instantaneous interaction (Figure 4P).

The key insight from these simple simulations is that
the decomposition in Equation (21) can be applied to the
analysis of real data. These simulations also demonstrate the
different ways in which a common signal can affect total
Granger causality and coherence. For example, we saw that a
common signal results in high coherence even for a disconnected
system (Figures 2L, 4M). In contrast, total Granger causality
for the same scenario remained near zero (Figure 4O). For the
unidirectionally-connected system the common signal increased
coherence (Figures 2K, 4I) but decreased total Granger causality
(Figure 4K). Thus, the effects of a common signal on Granger
causality do not directly follow from the effects of the common
signal on coherence. However, once instantaneous interaction, so
far neglected in empirical analysis, is also taken into account, the
decomposition in Equation (21) is completed and a much clearer
picture emerges.

Granger Causality: Results From Analysis
of Fly LFP
Instantaneous Interaction Accounts for the High

Coherence Observed for the Unipolar Signals
Our simulations demonstrate that a common signal may
manifest as increased instantaneous interaction. If the high
coherences we observed for unipolar signals (Figure 3A) are
a result of common signals then we would expect that these
would also manifest as increased instantaneous interaction.
To investigate this, we decomposed (transformed) coherence
into total Granger causality and instantaneous interaction
(Figures 5A–D). Due to the transformation, the original unipolar
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FIGURE 4 | Simulating the effect of a common signal on instantaneous interaction and total Granger causality. Simulation results for (A–D) the

unidirectionally-connected system without a common signal, (E–H) the disconnected system without a common signal, (I–L) the unidirectionally-connected system

with a common signal, (M–P) the disconnected system with a common signal. (A,E,I,M) Transformed coherence (red) and coherence (blue) plotted on the same

y-axis scale to facilitate comparison. (B,F,J,N) Instantaneous interaction. (C,G,K,O) Total Granger causality. (D,H,L,P) The percentage of transformed coherence that

is accounted for by instantaneous interaction, computed as (100 ∗
f1·2 (ω)

− ln(1−C12 )(ω))
). For (H), the percentage of transformed coherence is undefined due to the division

by zero.

coherence, ranging from ∼0.5 to 0.9 (Figure 3A), were re-scaled
to ∼0.7 to 3.0 (Figure 5A). Similar to coherence, transformed
coherence decreased with increasing distance between the

electrodes but remained high even for unipolar signals that
were far apart (175–325µm). Transformed coherence closely
resembled instantaneous interaction in all respects (Figure 5B).
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Correspondingly, we found that total Granger causality, which
captures only lagged effects, was relatively small (Figure 5C).
Further, total Granger causality values approached zero as
frequency increased, as we would expect if there was no genuine
neurophysiological coupling at those frequencies. In sum,
this suggests that most of the unipolar coherence was due to
instantaneous interaction, which we confirmed by calculating
the percentage of transformed coherence that is accounted
for by instantaneous interaction (Figure 5D). Together,
these findings strongly suggest the presence of common
signals and that these manifest as increased instantaneous
interaction.

Instantaneous Interaction Accounts for the

Increasing Coherence Between Bipolar Derivations

That Share a Unipolar Signal in Their Derivation
We have shown that the high unipolar coherences were
accounted for by instantaneous interaction, strongly indicating
the presence of common signals. Bipolar coherences were
generally lower (Figure 3B), which indicates that bipolar
derivations were largely free from common signals. However,
coherence for bipolar derivations that shared a unipolar
signal in their derivation increased with frequency. We
attribute this increase to the unipolar signal shared in their
derivation (Figure 3B). If this signal is the source of the
increasing coherence with frequency, then we would expect this
increase in coherence to be accounted for by instantaneous
interaction.

We repeated the analysis for the bipolar derivations
(Figures 5E–H). For the bipolar derivations, transformed
coherence was very similar to the original coherence, including
the important characteristic that transformed coherence
increased with frequency for bipolar derivations that shared a
unipolar signal in their derivation (25µm separation shown in
brown, Figure 5E). Instantaneous interaction (Figure 5F) was
much smaller than that for the unipolar signals (Figure 5B),
indicating that bipolar derivations were largely free from
common signals. We also found that instantaneous interaction
increased with frequency for bipolar derivations that share a
unipolar signal in their derivation, but not for pairs derived
from independent unipolar signals. This observation is in
line with our prediction that this increase was due to the
unipolar signal shared in their derivations. Consistent with this,
total Granger causality for these pairs did not increase with
frequency, indicating that the increase cannot be attributed
to any lagged influences (Figure 5G). Indeed, total Granger
causality appeared to decrease with increasing frequency for
all bipolar pairs. Figure 5H summarizes these results as the
percentage of transformed coherence that is accounted for
by instantaneous interaction. This clearly showed that the
increasing coherence with frequency for bipolar derivations
that share a unipolar signal is dominated by instantaneous
interaction. However, even for bipolar pairs separated by 50µm,
which were derived from independent unipolar signals (blue in
Figure 5H), instantaneous interaction substantially (∼40–60%)
contributed to transformed coherence. This could indicate

FIGURE 5 | Comparisons of the results for transformed coherence,

instantaneous interaction and total Granger causality computed from the

experimental data (A–D) for unipolar signals and (E–H) for bipolar derivations.

(A, E) Transformed coherence (B,F), instantaneous interaction, (C,G), total

Granger causality, and (D,H) the percentage of transformed coherence that is

accounted for by instantaneous interaction. The color of each line represents

the separation between signal pairs (brown for 25µm, blue for 50µm, pink for

75–150µm and black for 175–325µm, see Methods for details). Bipolar

derivations separated by 25µm share a unipolar signal in their derivation.

Peaks at 50Hz and 150Hz are due to line noise. Shaded area represents sem

across flies (N = 13).

that bipolar derivations are not completely free of common
signals.

We remind the reader that our Granger causality analysis
is based on autoregressive process. Autoregressive-based
application of Granger causality is the most common but does
involve assumptions regarding stationarity and linearity. It is
possible that causality estimation in our data using improved
methods that do not require such assumptions (e.g., Sheikhattar
et al., 2018) would be differently affected by common signals and
bipolar referencing.
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DISCUSSION

In this paper, we investigated the effects of common signals
on power, coherence and Granger causality. We did this
through a combination of theoretical review, simulations and
empirical analysis of fly LFPs. The theoretical background
sections aggregated known results in a simple way and using
unified terminology. The important theoretical concepts
were complemented by illustrative simulation using the
autoregressive framework on which Granger causality is based.
Basing the simulations on autoregressive processes also allowed
the estimation of power and coherence directly from the
autoregressive parameters, and is in line with previous Granger
causality (Ding et al., 2006; Dhamala et al., 2008; Nalatore et al.,
2009; Chicharro, 2012; Wen et al., 2013) and coherence work
(Rappelsberger, 1989). Codes for the simulations are publicly
available from https://github.com/DrorGitHub/A-unified-
framework-for-dissecting___simulations.

Our empirical analysis of LFPs recorded from the brains of
flies resulted in a number of novel findings. First, we showed
that substantial common signals were indeed present in the
linear array electrodes used for our experiments. The common
signals are likely to reflect electrical activity at the reference
electrode as well as volume conduction from other sources of
electrical activity. Second, we showed that bipolar derivations
largely removed the effects of these common signals. Third,
through theoretical analysis and simulation, we showed that in
special cases bipolar derivations can actually introduce another
common signal, due to a shared unipolar signal. These findings
establish that simple and well known techniques such as bipolar
derivations commonly used in the analysis of human EEG and
mammalian LFPs studies are also suitable for the analysis of
LFPs recorded using very closely spaced electrode arrays, and
that similar pitfalls should also be observed. We also showed that
instantaneous interaction increased in the presence of common
signals. We suggest therefore that instantaneous interactions can
serve as a useful indicator for checking for common signals in
other recording preparations.

Based on our review of theory, simulations and results from
the analysis of fly LFPs we suggest the following for checking
for the presence of common signals. First, substantially greater
unipolar than bipolar power is an indication of the presence
of common signals. Second, substantially greater unipolar than
bipolar coherence is an indication of the presence of common
signals. Third, substantially greater unipolar instantaneous
interaction than bipolar instantaneous interaction may indicate
the presence of common signals.

In particular, high coherence and/or instantaneous interaction
in high frequencies for which we would not expect genuine
neurophysiological coupling indicates the presence of common
signals. We observed all these criteria in our data, strongly
indicating the presence of common signals.

In our data unipolar coherence was high, even for
high frequencies for which we would not expect genuine
neurophysiological coupling (Figure 3A). Coherence in
high frequencies was highest for pairs separated by 25µm,
but remained well above zero even for pairs separated by

175–325µm. This demonstrates that common signals affect
even electrode pairs that are comparatively far apart, as would
be expected from a common signal due to electrical activity
at the reference. The reduction in unipolar coherence in high
frequencies with increasing separation between the signals is
consistent with common signals due to volume conduction
from other electrical sources. In the future, by modeling how
neural signals propagate through the brain (e.g., Bedard et al.,
2004; Rudolph and Destexhe, 2006; Gomes et al., 2016; Miceli
et al., 2017), we may be able to distinguish between the common
signals from electrical activity at the reference and those from
volume conduction of other electrical sources. Sub-network
analysis may also be adapted for this purpose (Elsegai et al.,
2015).

For the bipolar derivations, however, coherence in high
frequencies for electrode pairs, separated by 50µm to those
separated by 175–325µm was near zero (Figure 3B), indicating
that bipolar derivations largely removed the effects of the
common signals, irrespective of whether these were due to
electrical activity at the reference or due to volume conduction
from other electrical sources (see Appendix A in Supplementary
Materials for detail). Similar observations held for instantaneous
interaction (i.e., highest for pairs separated by 25µm, but
remained well above zero even for pairs separated by 175–
325µm, and substantially reduced for the bipolar derivations,
Figures 5B–F).

Aside from our empirical findings, one unique aspect of
our paper is the combined treatment of power, coherence and
Granger causality. While it is straightforward to assess the effect
of common signals on these quantities in isolation, empirical
studies often analyze all three quantities (Brovelli et al., 2004;
Barrett et al., 2012; Bastos et al., 2014; Fontolan et al., 2014;
Van Kerkoerle et al., 2014; Michalareas et al., 2016). This is
one reason we investigated all three quantities together. The
progression from the analysis of power to coherence to Granger
causality is natural in that it follows the progression in complexity
of these quantities. From a theoretical perspective, our review
demonstrates how the power of the common signals affects the
coherence estimate (Equation 12). Further, Equation (40) shows
how the power of the common signals affects the cross spectral
density matrix, and in turn the Granger causality estimates.
Finally, coherence and Granger causality are analytically related
(Equation 21). Indeed, our proposal to investigate instantaneous
interaction follows from the analytical relationship between these
quantities. Thus, we think that the combined analysis of power,
coherence, and Granger causality provides amore holistic picture
of the effects of the common signals.

We believe that our holistic treatment of the effects of
common signals on power, coherence and Granger causality
using theory, simulation and empirical analysis serves as a
solid foundation for analyzing empirical neural data. However,
the suitability of the framework’s assumptions for analyzing
empirical data requires care. First, the framework rests on the
assumption that the recorded activity can be represented as the
sum of ongoing neural activity and common signals. As such, the
framework is suited for guiding the analysis of spontaneous, not
evoked, activity, as it does not currently consider the presence of a
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stimulus. If the only data available corresponds to evoked activity
then “spontaneous” activity may be estimated by removing the
evoked component (by, for example, averaging across repeated
presentations). In such practice, however, care is required to
ensure that the resulting data may be reasonably treated as
“spontaneous” (Truccolo et al., 2002; Wang et al., 2008).

Second, in our mathematical treatment we have assumed that
the common signals are independent of the neural activity, as
this results in relatively simple expressions and is also in line
with previous work (e.g., Rappelsberger, 1989; Nunez et al.,
1997; Essl and Rappelsberger, 1998; Hu et al., 2010). In our
simulations (Figures 2, 4) we were able to satisfy this assumption
by construction. However, this may not always be reflective of
real data. For example if the reference electrode is located inside
the brain then the activity at the reference electrode is unlikely to
be independent of the neural activity of interest. Even in such a
case, the full expressions for power and coherence still hold [e.g.,
Equations (3), (10), and (17)], but inference about any common
signals will become more difficult. (See Strube-Bloss et al., 2012
for an alternative approach using PCA).

Third, we have assumed that instantaneous interaction is
physically meaningful. This assumption requires special care
because a formal link between instantaneous interaction and
common signals has not been demonstrated. However, we note
that some results are available for the related case ofmeasurement
noise (Nalatore et al., 2007). In addition, concerns about the
interpretability of instantaneous interaction have been expressed
because it can become negative in certain situations (Ding et al.,
2006; Chicharro, 2012; Wen et al., 2013). We acknowledge this
concern, but also point out that our work here suggests that this
quantity may be at least of empirical value. For example, it can be
used as a diagnostic for the presence of common signals, as we
showed here. It would be interesting to compare instantaneous
interaction with other methods used to assess instantaneous
influences in the context of Granger causality (Faes et al., 2013;
Vinck et al., 2015).

We also clarify that even though Granger causality quantifies
lagged effects, its estimation in the presence of common signals
maybe misleading (Nalatore et al., 2007; Friston et al., 2014;
Bastos and Schoffelen, 2016; Trongnetrpunya et al., 2016).
Indeed, in our simulations the presence of a common signal
resulted in lower Granger causality values (Figure 4K) than
the ground truth without a common signal (Figure 4C). With
our analysis of the unipolar data (which contained substantial
common signals), total Granger causality values in lower
frequencies (<50Hz) for adjacent pairs (separated by 25µm)
were actually smaller than those for pairs that were separated by
more than 50µm, which is physiologically highly questionable
(Figure 5C). With our analysis of the bipolar data (which
contained little common signals), however, higher total Granger
causality for closer pairs were observed in low frequency
range (<50Hz, Figure 5G), which is much more physiologically
plausible.

CONCLUSIONS AND FUTURE WORK

In this work we investigated the effects of common signals
through theory, simulation and empirical analysis of local field

potentials recorded using linear electrodes from the fly brain. In
particular, we investigated in detail the effects of common signals
on unipolar signals and bipolar derivations.

We did not consider numerous other techniques for reducing
common signals, such as other referencing techniques (e.g.,
Rappelsberger, 1989; Nunez et al., 1997; Essl and Rappelsberger,
1998), methods based on Independent or Principal Component
analysis (e.g., Yao et al., 2005; Hu et al., 2010; Madhu et al.,
2012) or other linear decompositions (Brookes et al., 2012;
Drakesmith et al., 2013; Colclough et al., 2015), or methods
based on more detailed modeling of the dynamics (e.g., Nalatore
et al., 2007, 2009; Faes et al., 2013; Friston et al., 2014). We
also did not consider multivariate approaches, such as partial
coherence (Kocsis et al., 1999; Bendat and Piersol, 2000) and
partial or conditional Granger causality (Guo et al., 2008; Wen
et al., 2013; Barnett and Seth, 2014). These methods can all
be used to address the adverse effects of common signals and
the possibility of dissecting inputs from other neural sources.
However, they also introduce their own complications. For
example, partialization on a third signal requires that that signal
is known or recorded. In the case of the effect of another
neural region, that may be often the case. However, we typically
do not have access to the electrical activity at the reference
electrode, and so we cannot directly partialize it out. Another
drawback of partialization is that it requires estimating more
parameters, making it inherently more complex compared to
pairwise analysis. In general, as the number of the variables
to estimate increases, the more data is required to achieve the
same level of estimation accuracy. There is also no guarantee
that partialization will be complete in its removal of common
signals. Compared to this, bipolar derivations+ pairwise analysis
are far simpler and more widely adopted, making them a
reasonable choice for investigation in the manuscript (Bastos
et al., 2014; Bastos and Schoffelen, 2016; Trongnetrpunya et al.,
2016). Nonetheless, we view the investigation of multivariate
techniques as a potentially important extension of our work.

We did not assess the many other functional and effective
connectivity techniques (e.g., Greenblatt et al., 2012; Wang
et al., 2014; Bastos et al., 2015). Thus, we do not claim
that our findings generalize to these other techniques. For
example, the Granger causality analysis we carried out is based
on autoregressive process. Autoregressive-based application
of Granger causality is the most widespread but involves
comparatively restrictive assumptions regarding stationarity and
linearity. Recent improvements in causal analysis methods can
handle non-stationarity and non-linearity and are potentially
better suited for the analysis of empirical data (e.g., Sheikhattar
et al., 2018). It is possible that causality estimation in our data
using these more advanced methods would be differently affected
by common signals and bipolar referencing.

We focused on bipolar derivations together with coherence
and autoregressive-based Granger causality metrics as these
are widely adopted (e.g., Chen et al., 2006; Ding et al., 2006;
Dhamala et al., 2008; Bressler and Seth, 2010; Blinowska, 2011;
Cimenser et al., 2011; Barnett and Seth, 2014; Buzsáki and
Schomburg, 2015; Seth et al., 2015; Bastos and Schoffelen, 2016;
Bowyer, 2016). In addition coherence and Granger causality can
be analytically related in a (relatively) straightforward manner.
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By exploiting analytic relationships between other connectivity
metrics it may be possible to gain an even deeper understanding
into the nature of any common signals. Our approach combined
with other methods for assessing common signals (Shahbazi
et al., 2010; Haufe et al., 2013; Elsegai et al., 2015; Winkler et al.,
2016) will reduce the chance of misinterpreting functional and
effective connectivity analysis, the key analysis techniques in
modern systems and cognitive neuroscience (Gregoriou et al.,
2009; Boveroux et al., 2010; Bressler and Seth, 2010; Supp et al.,
2011; Bosman et al., 2012; Horwitz and Horovitz, 2012; Hudetz
and Mashour, 2016; Rosenberg et al., 2016).

Methods
In the main text, we have provided the core theoretical
background, simulation, and analysis of the experimental data.
Here, we provide further methodological details. We first cover
the mathematical formulation of spectral Granger causality. We
then provide full details of the simulations, followed by complete
details of the LFPs data analysis.

Spectral Granger Causality
In this section we briefly recap the theoretical background
for spectral Granger causality. Here we focus on the lesser-
known relationship between coherence, Granger causality and
instantaneous interaction and we only rehearse the relevant
components to our analysis, generally following the treatment of
Ding et al. (2006), and Wen et al. (2013). More complete details
can be found inGeweke (1982, 1984), Lütkepohl (2005), Dhamala
et al. (2008), Chicharro (2012), Wen et al. (2013), Wibral et al.
(2014), and Seth et al. (2015).

In simple terms, a signal yi is said to Granger-cause a signal
yj if past values of yi improve predictions of future values of yj.
This notion is quantified using the framework of autoregressive
processes.

Consider two stationary time series represented by the
standard autoregressive process

yi(t) = −

∞
∑

l=1

a(l)yi(t − l)−

∞
∑

l=1

b(l)yj(t − l)+ ε(t)

yj(t) = −

∞
∑

l=1

c(l)yi(t − l)−

∞
∑

l=1

d(l)yj(t − l)+ η(t) (25)

where a, b, c, and d represent the autoregressive coefficients
and the index l represents the lag. ε(t) and η(t) are zero-mean
Gaussian noise sources with covariance matrix given by

6 =

(

6 γ

γ Ŵ

)

where var(ε(t)) = 6, var(η(t)) = Ŵ and cov(ε(t), η(t)) = γ .
To obtain the spectral formulation of Granger causality we

first express the autoregressive process in the frequency domain.
By introducing the polynomial lag operator,

ϕ(L) =

∞
∑

l=0

ϕ(l)Ll

where the operator Ll acts on a function yi(t) as, L
lyi(t) = yi(t−l).

With this notation, we can rewrite Equation (25) in matrix form
as

(

a(L) b(L)
c(L) d(L)

)(

yi(t)
yj(t)

)

=

(

ε(t)
η(t)

)

(26)

where a(0) = 1, b(0) = 0, c(0) = 0, d(0) = 1. Taking the
Fourier transform of both sides gives

(

a(ω) b(ω)
c(ω) d(ω)

)(

Yi(ω)
Yj(ω)

)

=

(

ε(ω)
η(ω)

)

(27)

By using

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)

=

(

a(ω) b(ω)
c(ω) d(ω)

)−1

we can rewrite

Equation (27) in transfer function format as

(

Yi(ω)
Yj(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

ε(ω)
η(ω)

)

(28)

The spectral density matrix is obtained by multiplying both sides
by the conjugate transpose of each side, denoted by ∗, yielding

(

Sii(ω) Sji(ω)
Sij(ω) Sjj(ω)

)

=

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)(

6 γ

γ Ŵ

)

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)∗

(29)

This can be compactly written in matrix form as

Q(ω) = H(ω)6H∗(ω) (30)

whereH(ω) =

(

Hii(ω) Hij(ω)
Hji(ω) Hjj(ω)

)

andQ(ω) =

(

Sii(ω) Sji(ω)
Sij(ω) Sjj(ω)

)

.

The diagonal elements of the spectral density matrix Q(ω)
correspond to the auto-spectra and the off diagonal elements
correspond to the cross-spectra (Wen et al., 2013). Note that
coherence can be directly calculated from the spectral density
matrix (Equation 9).

Spectral measures of total interdependence fi,j(ω), GC
influence from Yi to Yj fi→j(ω) and GC influence from Yj to Yi
fi←j(ω) are defined as

fi,j(ω) = ln
Sii(ω)Sjj(ω)

|Q(ω)|
(31)

fi→j(ω) = ln
Sjj(ω)

H̃jj(ω)ŴH̃
∗
jj(ω)

(32)

fi←j(ω) = ln
Sii(ω)

H̃ii(ω)6H̃∗ii(ω)
(33)

where H̃jj(ω) = Hjj(ω) + (γ /Ŵ)Hij(ω) and H̃ii(ω) = Hii(ω) +
(γ /6)Hji(ω). These transformations are irrelevant if γ = 0.
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A simple transform relates coherence and total
interdependence

fi,j(ω) = ln
Sii(ω)Sjj(ω)

|Q(ω)|

= ln

(

Sii(ω)Sjj(ω)

Sii(ω)Sjj(ω)− Sij(ω)S
∗
ij(ω)

)

= − ln

(

Sii(ω)Sjj(ω)− Sij(ω)S
∗
ij(ω)

Sii(ω)Sjj(ω)

)

(34)

= − ln

(

1−
Sij(ω)S

∗
ij(ω)

Sii(ω)Sjj(ω)

)

= − ln

(

1−
abs(Sij(ω))

2

Sii(ω)Sjj(ω)

)

= − ln(1− Cij(ω))

By subtracting fi→j(ω) and fi←j(ω) from fi,j(ω) we can get what
is known as “instantaneous causality” [fi�j(ω) (Ding et al., 2006;
Wen et al., 2013)]

fi·j(ω) = fi,j(ω)− fi→j(ω)− fi←j(ω)

= ln
(H̃ii(ω)6H̃∗ii(ω))(H̃jj(ω)ŴH̃

∗
jj(ω))

|Q(ω)|
(35)

However, we feel that the term instantaneous causality is
confusing in so far as (Granger) causality reflects time-lagged
influences. For this reason we refer to this term as instantaneous
interaction throughout the manuscript.

Using instantaneous interaction and the Granger causal
influences we obtain the following decomposition of total
interdependence

fi,j(ω) = fi·j(ω)+ fi→j(ω)+ fi←j(ω) (36)

The relationship between coherence, Granger causality and
instantaneous interaction is given by

− ln(1− Cij(ω)) = fi,j(ω) = fi·j(ω)+ fi→j(ω)+ fi←j(ω) (37)

If we disregard the directionality of the influence, we can simply
contrast “lagged” (fi→j(ω) + fi←j(ω)) and “instantaneous”
(fi·j(ω)) influences. To do this we introduce total Granger
causality fi↔j(ω)

fi↔j(ω) = fi→j(ω)+ fi←j(ω) (38)

We thus rewrite Equation (37) as

− ln(1− Cij(ω)) = fi↔j(ω)+ fi·j(ω) (39)

This equation demonstrates that under the autoregressive
framework of Granger causality, (a transformation of) coherence
[left side of (39)] can be decomposed into total Granger
causality [first term on the right side (39)], which capture lagged
influences, and instantaneous interaction [second term on the
right side of (39)], which captures any remaining instantaneous
influences, possibly due to exogenous sources. This relationship
forms the basis of our simulation examples and experimental data
analysis.

Non-parametric Estimation of Spectral Granger

Causality
Spectral Granger causality analysis can be carried out either
parametrically or non-parametrically. In the parametric
approach the autoregressive model in Equation (25) is first fit to
the data. Once the parameters of the models have been estimated
Equations (26)–(30) are used to obtain the transfer function
H(ω), noise covariance matrix 6 and spectral density matrix
Q(ω). Using these quantities fi→j(ω), fi←j(ω) and fi·j(ω) can be
calculated as per Equations (32), (33), and (35).

In the non-parametric approach proposed in Dhamala et al.
(2008), H(ω) and 6 are obtained directly by factorizing the
spectral density matrix Q(ω). This corresponds to obtaining
the right side of Equation (30) directly from its left using a
factorization procedure described by Wilson (1972), without
explicitly fitting the autoregressive model. Thus, non-parametric
estimation is entirely dependent on the estimation of the
spectral density matrix. One advantage of non-parametric over
parametric estimation of GC influences is that it does not require
specification of the autoregressive model order (Dhamala et al.,
2008).

Recall that coherence (Equation 9) is also directly estimated
from the spectral density matrix. Thus, once the spectral density
matrix has been estimated, power, coherence, total Granger
causality, and instantaneous interaction can all be derived.
For our simulations the spectral density matrix is obtained
analytically while for the experimental sections the spectral
density matrix is estimated empirically. We provide further
details on these below.

Simulations
In our simulations we explored how coherence, total Granger
causality and instantaneous interaction are affected by the
presence of a common signal. For our simulations we used
the autoregressive framework. The autoregressive dynamics we
simulated are likely much simpler than the recorded fly LFPs.
However, Granger causality as assessed here is defined for
autoregressive processes (see above). Investigating other types
of dynamics would violate the Granger causality assumptions
from the outset, making interpretation difficult and defeating the
purpose of the simulations. In addition, power and coherence can
also be directly estimated from the autoregressive parameters,
obviating the need for any numerical methods. Our use of
the autoregressive framework is also consistent with previous
Granger causality (Ding et al., 2006; Dhamala et al., 2008;
Nalatore et al., 2009; Chicharro, 2012; Wen et al., 2013) and
coherence work (Rappelsberger, 1989).

The simulations were not intended for systematically testing
the effects of all types of common signals, which may depend
on specific recording setups and the biophysical characteristics of
the recording preparations. Instead, we designed the simulations
to highlight the theoretical concepts and to serve as a
simplified precursor to the empirical analysis. To do this we
explored four scenarios. The first two scenarios correspond to
a unidirectionally-connected and a disconnected (meaning that
the cross-spectrum between the signals is zero for all frequencies)
system. These two scenarios establish the “ground truth” for
coherence, total Granger causality and instantaneous interaction

Frontiers in Systems Neuroscience | www.frontiersin.org 17 July 2018 | Volume 12 | Article 30

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Cohen and Tsuchiya Granger Causality and Common-Input Noise

in the absence of a common signal. The remaining two scenarios
examine how these quantities are affected by a common signal.
Because disconnected and unidirectionally-connected models
were sufficiently complex tomodel non-trivial behavior, we opted
not to present more complex scenarios, such as those involving
bidirectionally-connected models.

Following the notation of the unipolar signals the four
scenarios can be described as

Unidirectionally-connected

(X1(ω)X
∗
2 (ω) 6= 0)

Disconnected

(X ′1(ω)X
′∗
2(ω) = 0)

No common signal Scenario 1

y1(t) = x1(t)

Scenario 2

y′1(t) = x′1(t)

y2(t) = x2(t) y′2(t) = x′2(t)

With common signal Scenario 3

y1(t) = x1(t)+ u(t)

Scenario 4

y′1(t) = x′1(t)+ u(t)

y2(t) = x2(t)+ u(t) y′2(t) = x′2(t)+ u(t)

We clarify that these scenarios are only indirectly related to the
choice of referencing scheme. Instead, these simulations directly
investigate the effects of a common signal. This can correspond
to either unipolar signals which are affected by a common signal
from the reference electrode, or to bipolar derivations which
share a unipolar signals in their derivation.

Simulation Framework
For our simulations we used a = 0.1, c =0.4, and d = 0.1 in
Equation (20). These parameter settings result in power and
coherence spectra that are roughly reflective of biological systems
(Figures 2E, I). The noise terms were chosen as uncorrelated
noise sources with unit standard deviation.

When modeling the disconnected system we ensured that the
power spectra equaled the power spectra of the unidirectionally-
connected system. That is, we set

X1(ω)X
∗
1 (ω) = X′1(ω)X

′∗
1(ω)

X2(ω)X
∗
2 (ω) = X′

(
2ω)X

′∗
2(ω)

X′1(ω)X
′∗
2(ω) = 0

We aimed to do this because coherence, total Granger causality
and instantaneous interaction depend on the power spectra of
the signals [see Equation (9) for coherence and Equation (32) for
Granger causality]. By equating the power we ensured that the
two systems are not distinguishable based on the power alone.
Note that simply setting the autoregressive coefficient d = 0 in
Equation (20) would ensure the system is disconnected but would
also change the power spectrum of X1(ω).

We modeled the common signal for scenarios 3 and 4 as an
uncorrelated white noise signal, u(t). We set the power of the
signal [U(ω)U∗(ω)] to the mean power of the neural signals
across frequencies

U(ω)U∗(ω) =
1

2ωNQ

ω=NQ
∑

ω=0

(

X1(ω)X
∗
1 (ω)+ X2(ω)X

∗
2 (ω)

)

where ωNQ corresponds to the Nyquist frequency which is
arbitrary for our simulation. Matlab code for the simulations
is available from https://github.com/DrorGitHub/A-unified-
framework-for-dissecting___simulations.

Simulations for the Unidirectionally-Connected

System (Scenarios 1 and 3)
As mentioned above, the key quantity to estimate is the
spectral density matrix, from which power, coherence, total
Granger causality and instantaneous interaction can all be
derived.

For the unidirectionally-connected system with no common
signal (scenario 1) one can use the autoregressive description
of the system and Equations (26)–(30) to obtain the spectral

density matrix Q(ω) =

(

S11(ω) S12(ω)
S21(ω) S22(ω)

)

. The spectral density

matrix of an autoregressive process can be obtained using
the MATLAB (MathWorks) function ft_freqanalysis.m function
from the FieldTrip toolbox (Oostenveld et al., 2010). Coherence
and instantaneous interaction are obtained using the FieldTrip
function ft_connectivityanalysis.m. Total Granger causality is
obtained by first assessing the Granger causal influences from y1
to y2 and from y2 and y1 (also using ft_connectivityanalysis.m)
and summing them as per Equation (38).

Equations (4) and (11) describe the effect of the common
signal (scenario 3) on power and coherence respectively.
Unlike power and coherence, there are currently no analytical
results describing how a common signal affects instantaneous
interaction and total Granger causality. However, we note that
if we know the effect of a common signal on the spectral density
matrix, thenwe can use the non-parametric estimation procedure
to obtain the affected transfer function and noise covariance
matrix.

To see the effect of the common signal on the spectral
density matrix we re-write scenario 3 in the frequency
domain as

(

Y1(ω)
Y2(ω)

)

=

(

X1(ω)
X2(ω)

)

+

(

U(ω)
U(ω)

)

=

(

H11(ω)H12(ω)
H21(ω)H22(ω)

)(

ε(ω)
η(ω)

)

+

(

U(ω)
U(ω)

)

Next we can calculate the spectral density matrix by multiplying
both side by the conjugate transpose
(

Y1(ω)Y
∗
1 (ω)Y1(ω)Y

∗
2 (ω)

Y2(ω)Y
∗
1 (ω)Y2(ω)Y

∗
2 (ω)

)

=

((

H11(ω)H12(ω)
H21(ω)H22(ω)

)(

ε(ω)
η(ω)

)

+

(

U(ω)
U(ω)

))((

H11(ω)H12(ω)
H21(ω)H22(ω)

)

×

(

ε(ω)
η(ω)

)

+

(

U(ω)
U(ω)

))∗

=

(

H11(ω)H12(ω)
H21(ω)H22(ω)

)(

ε(ω)
η(ω)

)(

ε(ω)
η(ω)

)∗

×

(

H11(ω)H12(ω)
H21(ω)H22(ω)

)∗

+

(

U(ω)
U(ω)

)(

U(ω)
U(ω)

)∗

= Q(ω)+

(

U(ω)U∗(ω)U(ω)U∗(ω)
U(ω)U∗(ω)U(ω)U∗(ω)

)

(40)
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Note that the cross-spectra between the common signal [U(ω)]
and any other quantity [e.g., H(ω), ε(ω), η(ω)] vanish since
we assumed independence between them. Thus, to obtain
the spectral density matrix [QC(ω)] of the unidirectionally-
connected system with common signal, we simply add the power
of the common signal [U(ω)U∗(ω)] to the spectral density matrix
of the unidirectionally-connected systemwithout common signal
[Q(ω)]. Once the affected spectral density matrix is known, total
Granger causality and instantaneous interaction are derived as
before.

Simulation for the Disconnected System (Scenarios 2

and 4)
For the disconnected system (scenario 2) we followed a
similar procedure but used a modified spectral density matrix

Q′(ω) =

(

s11(ω) 0
0 s22(ω)

)

. This spectral density matrix describes

a disconnected system with identical power spectra to the
unidirectionally-connected system. Coherence, instantaneous
interaction and total Granger causality are all zero for the
disconnected system when there is no common signal.

The effect of the common signal (scenario 4) on the power
spectra is identical to the unidirectionally-connected system
(Equation 4). However, the effect on coherence is now given
by Equation (12). Further, we can estimate the Neural signal to
Common signal Ratio (NCR) from coherence using Equation
(14).

The effect of the common signal on instantaneous interaction
and total Granger causality is obtained as for the unidirectionally-
connected system, but usingQ′(ω) instead ofQ(ω).

We note that an alternative simulation approach would be to
use the auto-regressive descriptions to generate time domain data
with or without a common signal, and then analyze coherence,
total Granger causality and instantaneous interaction in these
data (e.g., Ding et al., 2006; Wen et al., 2013). If a large
enough amount of data is used then the two approaches yield
identical results (which we also verified in simulation). However,
simulating time domain data involves more parameters. At the
very least we would need to decide on the amount of data
(number of trials/length of trials/sampling rate). We would also
need to describe the frequency domain analysis, which can
include parameters such as the number of tapers for multitaper
analysis. Another drawback is that these simulations will suffer
from empirical biases when using finite data, which are known to
affect coherence (Jarvis and Mitra, 2001) and Granger causality
(Barrett et al., 2012). While all of these are important aspects
that deserve further consideration, we feel that they would
unnecessarily complicate our simulation procedure. They may
also make interpretation more difficult, as differences between
the scenarios may dependent on the choice of these additional
parameters.

Experimental Setup
To test the utility of the mathematical framework we analyzed
previously published data of spontaneous LFPs recorded from
the brains of flies. The full experimental details can be found in
Cohen et al. (2016, 2018). We briefly recap the relevant details
below.

Thirteen female D. melanogaster flies were tethered and
positioned on an air-supported Styrofoam ball. Linear silicon
probes with 16 electrodes separated by 25µm were inserted
laterally to the eye of the fly until the most peripheral electrode
site was just outside the eye. This probe covers approximately half
of the brain (Figure 1A). A fine tungsten wire was inserted in the
thorax and used as a reference electrode (Figure 1B).

Data Analysis
Data was recorded at 25 kHz and downsampled to 1,000Hz and
the most peripheral electrode site was removed from the analysis.
We analyzed both unipolar signals and bipolar derivations.
Unipolar signals corresponded to the remaining 15 channels,
recorded with respect to a reference electrode located in the flies’
thorax (Figure 1B). The bipolar derivations were obtained by
subtracting adjacent unipolar signals, providing another set of 14
channels (Figure 1C).

Because we use a linear array recording, the separation
between electrodes increases linearly in multiples of 25µm
(Figure 1A). We take the position of the unipolar signals to be
the position of the electrode. We take the position of the bipolar
derivation to be the mid point of the two unipolar signals used
in its derivation. Thus, the separation increases in multiples of
25µm.

We analyzed 8 consecutive epochs of 2.25 s corresponding
to 18 s of spontaneous LFPs (as in Cohen et al., 2018). We
removed line noise from each epoch, separately for unipolar
or bipolar, using the rmlinesmovingwinc.m function from the
Chronux toolbox (http://chronux.org/; Mitra and Bokil, 2007)
with three tapers, a window size of 0.75 s and a step size of 0.375 s.
We preprocessed each epoch by linearly detrending, followed by
subtraction of the mean and division by the standard deviation
across time points (i.e., z-scoring across time). Example of the
resulting pre-processed unipolar and bipolar LFPs from one fly
are shown in Figures 1B,C respectively.

Spectral Density Matrix Estimation
We computed the auto- and cross-spectra, Seij(ω), for each

unipolar pair yi(t) and yj(t) (i, j =[1–15]) for each epoch
e (1–8) over the 2.25 s using the multitaper method based on
the MATLAB Chronux toolbox (http://chronux.org/; Mitra and
Bokil, 2007) function mtspectrumc.m with 9 tapers, giving a half
bandwidth of 2.22Hz (Mitra and Pesaran, 1999). We obtained
the spectral density matrix Qe

ij(ω) for yi(t) and yj(t) by setting

the diagonal elements to the auto-spectra and the cross-diagonal
elements to the cross-spectra (Wen et al., 2013)

Qe
ij(ω) =

(

Seij(ω) Seji(ω)

Seij(ω) Sejj(ω)

)

For the final estimate of the unipolar spectral density matrix
Qij(ω), we averaged Qe

ij(ω) across the 8 epochs (e = 1...8).

To estimate the bipolar spectral density matrices bQij(ω), we
repeated this for the bipolar derivations. Power, coherence, total
Granger causality, and instantaneous interaction were estimated
from the unipolar and bipolar spectral density matrices, as
described below.
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Power Analysis
We obtained an overall estimate of unipolar power by averaging
the power spectra across all channels in units of 10log10

S(ω) =
1

15

15
∑

i=1

10 log 10(Sii(ω))

We obtained analogous estimates of bipolar power bS(ω) using

bS(ω) =
1

14

14
∑

i=1

10 log 10(bSii(ω))

The group average unipolar and bipolar power is reported in
Figure 1D.

Coherence Analysis
Coherence (Equation 9) is directly calculated from the cross-
spectral density matrices. As discussed in the main text and
Appendix A in Supplementary Materials, the effect of common
signals due to volume conduction on coherence may depend
on the distance separating the two signals. To assess effects due
to the distance, we grouped channel pairs into 4 groups: long-
(175–325µm), mid- (75–150µm), short-distance (50µm), and
adjacent pairs (25µm).

Specifically, for the unipolar coherence we report

C25µm(ω) =
1

14

14
∑

j=1

Cj,j+1(ω)

C50µm(ω) =
1

13

13
∑

j=1

Cj,j+2(ω)

C75−150µm(ω) =
1

12+ 11+ 10+ 9





12
∑

j=1

Cj,j+3(ω) (41)

+

11
∑

j=1

Cj,j+4(ω)+

10
∑

j=1

Cj,j+5(ω)

+

9
∑

j=1

Cj,j+6(ω)





C175−325µm(ω) =
1

6+ 5+ 4+ 3+ 2





6
∑

j=1

Cj,j+9(ω)

+

5
∑

j=1

Cj,j+10(ω)+

4
∑

j=1

Cj,j+11(ω)

+

3
∑

j=1

Cj,j+12(ω)+

2
∑

j=1

Cj,j+13(ω)





Equivalently, for the bipolar coherence we report

bC25µm(ω) =
1

13

13
∑

j=1

bCj,j+1(ω) (42)

bC50µm(ω) =
1

12

12
∑

j=1

bCj,j+2(ω)

bC75−150µm(ω) =
1

11+ 10+ 9+ 8





11
∑

j=1

bCj,j+3(ω)

+

10
∑

j=1

bCj,j+4(ω)+

9
∑

j=1

bCj,j+5(ω)

+

8
∑

j=1

bCj,j+6(ω)





bC175−325µm(ω) =
1

5+ 4+ 3+ 2+ 1





5
∑

j=1

bCj,j+9(ω)

+

4
∑

j=1

bCj,j+10(ω)+

3
∑

j=1

bCj,j+11(ω)

+

2
∑

j=1

bCj,j+12(ω)+

1
∑

j=1

bCj,j+13(ω)





Examining finer channel groupings did not reveal any additional
insights.

Granger Causality Analysis
To calculate total Granger causality and instantaneous
interaction we factorized the unipolar (Qij(ω)) and
bipolar (bQij(ω)) spectral density matrices as described
in Non-parametric estimation of spectral Granger
causality. We averaged total Granger causality and
instantaneous interaction per channel separation in
the same way we did for coherence (Equations 41
and 42).
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