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Sufficiently noisy listening conditions can completely mask the acoustic signal of
significant parts of a sentence, and yet listeners may still report the perception of hearing
the masked speech. This occurs even when the speech signal is removed entirely, if the
gap is filled with stationary noise, a phenomenon known as perceptual restoration. At
the neural level, however, it is unclear the extent to which the neural representation of
missing extended speech sequences is similar to the dynamic neural representation of
ordinary continuous speech. Using auditory magnetoencephalography (MEG), we show
that stimulus reconstruction, a technique developed for use with neural representations
of ordinary speech, works also for the missing speech segments replaced by noise,
even when spanning several phonemes and words. The reconstruction fidelity of the
missing speech, up to 25% of what would be attained if present, depends however on
listeners’ familiarity with the missing segment. This same familiarity also speeds up the
most prominent stage of the cortical processing of ordinary speech by approximately
5 ms. Both effects disappear when listeners have no or little prior experience with the
speech segment. The results are consistent with adaptive expectation mechanisms
that consolidate detailed representations about speech sounds as identifiable factors
assisting automatic restoration over ecologically relevant timescales.

Keywords: speech processing, auditory cortex, magnetoencephalography, stimulus reconstruction, speech
envelope

INTRODUCTION

The ability to correctly interpret speech despite disruptions masking a conversation is a hallmark
of communication (Cherry, 1953). In many cases, contextual knowledge poses an informational
advantage for a listener, so as to successfully disengage the masker and restore the intended
template signal (Shahin et al., 2009; Riecke et al., 2012; van Wassenhove and Schroeder, 2012;
Leonard et al., 2016; Cervantes Constantino and Simon, 2017). Usually, relevant information is
available from multimodal sources and/or low-level auditory and higher level linguistic analyses,
although it remains unclear how and which factors are most effective in assisting speech restoration
under natural conditions. Recently, cortical network activity profiles consistent with phonemic
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restoration, the effect where absent phonemes in a signal may
nonetheless be heard (Samuel, 1981, 1996), have been identified
in binary semantic decision tasks (Leonard et al., 2016), yet
factors that bias into one or the other of two perceptual
alternatives remain unclear. At the algorithmic level, there is
evidence that such restorative processes may be influenced by
contributions from audiovisual integration cues (Crosse et al.,
2016), lexical priming (Sohoglu et al., 2012), and within the
auditory domain, by predictive template matching (SanMiguel
et al., 2013). At the computational level, proposals include the
deployment of intentional expectations about temporal patterns
in sound (Nozaradan et al., 2011; Tal et al., 2017), and the use
of mental imagery as a weak form of perception (Pearson et al.,
2015).

In order to affect ongoing speech percepts, outcomes from
such mechanisms would have to be readily accessible before
and during missing auditory input. These type of contributions
potentially entail (i) generation of a provisional template of
the forthcoming speech, (ii) that the template be stored in a
compatible format with the internal representation of ongoing
sound, and (iii) that they are later subject to point-wise
matching – in what has been termed the zip metaphor (Grimm
and Schröger, 2007; Tavano et al., 2012; Bendixen et al., 2014).
In addition, the contribution by such putative mechanisms in
enhancing the neural representation of speech may allow a speed
up of cortical processing during integration (van Wassenhove
et al., 2005).

Here, we test how a string of natural speech tokens
spanning several words may be represented cortically, even if
entirely removed and replaced by stationary masking noise –
under different levels of informational gain provided by prior
knowledge of the masked elements. Prior research has shown
that information from missing consonants can be inferred
from cortical activity sustained over brief (∼100 ms) noise
probes, by their similarity to responses to the original consonant
sounds, such as a single fricative (Leonard et al., 2016). We use
the fact that the low-frequency envelope of speech spanning
several words indexes the acoustic signal’s slow changes over
time and is known to phase-lock neural activity in auditory
cortex, as measured by magnetoencephalography (MEG) and
electroencephalography (EEG) (Giraud et al., 2000; Ding and
Simon, 2012b; Zion Golumbic et al., 2013; Di Liberto et al.,
2015). Because of its timescale, the low-frequency envelope of
speech typically reveals attributes such as the patterns of syllabic
lengths and loudness changes, as well as prosodic information
including intonation, rhythm, and stress cues. We hypothesize
that by repeating the strings of speech tokens, and controlling
for the extent of repetition, one can manipulate listeners’
cortical ability to develop detailed predictions about forthcoming
elements in these long sentences. More repetitions would allow
the generation of more detailed templates for those tokens,
to serve for a point-wise matching when later, spontaneous
maskers disrupt the same string of tokens. If neurally instantiated,
then the process may be investigated by testing how well
the missing speech token can be decoded from the cortical
signals representing it, despite the lack of related acoustic input.
Furthermore, because the template would be formed prior, one

may also investigate the possibility that cortical representations
of highly repeated speech stimuli are facilitated by accelerated
processing times.

To address these hypotheses, we employ a pair of
complementary systems-based neural analysis methods. In
one case, we analyze neural responses to reconstruct the stimulus
speech envelope (Mesgarani, 2014), an approach that has been
successfully applied in auditory electrophysiology (Mesgarani
et al., 2009; Ramirez et al., 2011), EEG/MEG (Ding and Simon,
2012a; O’Sullivan et al., 2015), electrocorticography (Pasley et al.,
2012; Leonard et al., 2016), and fMRI (Naselaris et al., 2011).
In the case of speech restoration, electrophysiological responses
have been used to re-create the acoustic representation of the
stimulus using a data-driven decoder that effectively recovers
the spectrogram of a missing consonant (i.e., substituted by
noise) from listeners’ cortical activity (Leonard et al., 2016).
Complementary to this reconstruction analysis, temporal
response function (TRF) analysis uses an acoustic representation
of the stimulus to predict neural responses. This forward model
permits direct analysis of cortical latencies involved in natural
speech processing, the most prominent of which occurs between
100 and 180 ms, consistent with the latency of the evoked
response M100 component (Cervantes Constantino et al., 2017).
We investigated the possibility of related adaptations, such as
reduced cortical latencies, under the same prior knowledge
conditions employed in the decoding analyses, since faster
processing has been observed in situations where additional
context facilitates perceptual integration of incoming speech (van
Wassenhove et al., 2005; van Wassenhove and Schroeder, 2012).
In addition, similar task-related cortical plasticity changes in
stimulus-response mappings are often observed at the neuronal
level (Fritz et al., 2003; David et al., 2012) and would represent a
potential biophysical basis for restorative mechanisms given the
present task demands. The forward model applied to the MEG
was then used to address whether and how similar adaptations
might be reflected at the whole brain level.

We provide evidence that the speech temporal envelope
is better reconstructed when listeners have obtained more
knowledge about a particular speech sequence, and, critically,
that this effect applies even in the case where the speech itself
is absent, having been replaced entirely with noise. The data
also show that cortical latencies in the processing of clean
speech can be reduced by several milliseconds when the listener
has obtained detailed knowledge about that particular speech
sequence. Overall, the results suggest improved efficiency in
accessing dynamic neural representations of low-level features of
frequently experienced speech, indicated by both faster stimulus
encoding and endogenous restorative processes that reflect a
neural representation of the missing speech.

MATERIALS AND METHODS

Participants
Thirty-five experimental subjects (19 women, 21.3 ± 2.9 years
of age [mean ± SD]), with no history of neurological disorder
or metal implants, participated in the study. Data from one
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additional subject was not included, due to excessive artifacts
caused by a poor fit with the MEG helmet. Each subject received
monetary compensation proportional to the study duration
(approximately 1.5 h). This study was carried out in accordance
with the recommendations of the UMCP Institutional Review
Board with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the
UMCP Institutional Review Board.

Stimuli and Experimental Design
Sound stimuli were prepared with the MATLAB R© software
package (MathWorks, Natick, MA, United States) at a sampling
rate of 22.05 kHz, and consisted of a recorded poem (“A Visit
from St. Nicholas,” Moore or Livingston, 1823) obtained from
an online archive1. In addition to the narrated contents, the
spoken verses transmit intonation, rhythm, and stress cues,
all amenable for encoding as prosodic information units, and
all predisposed to potential cortical restoration extending over
multiple syllables. Each of the 14 verses (each verse being a
quatrain of four lines) in the poem were separated and considered
as individual stimuli. In order to probe the contribution of
prior experience to cortical coding, the four stimulus blocks
presented to each subject, each containing 64 stimuli (i.e., 256
lines), had some of stimuli repeated multiple times, as follows.
For the first block, a verse/stimulus from the first half of the
poem was chosen to be a “High” frequency stimulus, with
sufficient repetitions to make up half of the block’s stimulus
presentations (32/64). Similarly, other verses were chosen as
“Medium” and “Low” frequency stimuli, which were repeated
for a quarter (16/64) and an eighth (8/64) of the block’s
stimulus presentations, respectively. The remainder of the block
was filled with “Control” stimuli, namely the four remaining
verses presented either one, two, or four times within the
block. This category represents, for missing speech, the case for
which the listener would have insufficient prior experience with
the specific speech segment to promote restoration; for non-
missing speech, forward model analysis of this case acts as a
control for comparing latencies of more frequently presented
stimuli.

Silent intervals (gaps) in the narration were reduced to
approximately equalize stimuli durations (range: 13.1–13.6 s).
Stimuli were randomized in order and concatenated in time. For
the second block, the same procedure was followed using material
from the second half of the poem. Blocks 3 and 4 consisted
of the same stimuli used as in 1 and 2, respectively, but with
a different randomized order and different placement of noise
probes (see below). The procedure was recreated with different
randomizations for each subject, resulting in a total of 35 different
stimulus sets of about 1 h each in total duration. Importantly
though, the usage of particular stimuli at a given repetition level
was controlled across participants, resulting in seven groups of
five listeners each that underwent the same “High,” “Medium,”
“Low,” and “Control” stimuli selection.

1https://archive.org/details/AVisitFromSt.Nicholas-ByClementClarkeMoore-
NarratedByGrantRaymond

For each stimuli, two to four spectrally matched noise
probes of 800 ms duration each were applied at pseudo-random
times with a minimum 2.5 s between probe onsets. Noise
onset times were selected from a pool of values indicating
articulation onset times (e.g., syllables), obtained as the envelope
rising slope maxima. Thus, 768 noise probe samples were
presented per experiment, and each was individually constructed
by randomizing phase values across the specific frequency-
domain phase information contained in the underlying speech
stimulus that would have occurred at the same time as the
masker noise, yielding a noise with equal spectral amplitude
characteristics (Prichard and Theiler, 1994). The original speech
content occurring during the same time was removed entirely
and substituted with this spectrally matched noise, at a power
signal level matching that of the excised clean original. Subjects
listened to the speech sounds while watching a silent film. To
ensure attention to the auditory stimulus, after each probe,
they were instructed to report via a button press whether they
understood what the speaker meant to say during the noise. The
button presses are not analyzed here.

Data Recording
We recorded neural responses using MEG, a non-invasive
neuroimaging technique well-suited to measure dynamical
neural activity from human cortex, and especially from auditory
cortical areas. Such recordings typically demonstrate time-
locked neural responses to speech low frequency modulations,
especially of the acoustic energy envelope, with remarkable
temporal fidelity (Ding and Simon, 2012b). MEG data were
collected with a 160-channel system (Kanazawa Technology
Institute, Kanazawa, Japan) inside a magnetically shielded room
(Vacuumschmelze GmbH & Co. KG, Hanau, Germany). Sensors
(15.5 mm diameter) were uniformly distributed inside a liquid He
dewar, spaced ∼25 mm apart. Sensors were configured as first-
order axial gradiometers with 50 mm separation and sensitivity
>5 fT.Hz−1/2 in the white noise region (>1 kHz). Three of
the 160 sensors were magnetometers employed as environment
reference channels. A 1-Hz high-pass filter, 200-Hz low-pass
filter, and 60-Hz notch filter were applied before sampling at
1 kHz. Participants lay supine inside the magnetically shielded
room under soft lighting, and were asked to minimize movement,
particularly of the head.

Data Processing
Pre-processing and Sensor Rejection
The time series of raw recordings from the MEG sensor array
were be submitted to a fast implementation of independent
component analysis (Hyvärinen, 1999), from which two
independent components were selected for their maximal
proportion of broadband (0–500 Hz) power (because of the
∼1/f power spectrum of typical neural MEG signals, these
components are dominated by non-neural artifacts). These
independent components, combined with the physical reference
channels, were treated as environmental noise sources arising
from unwanted electrical signals not related to brain activity
of interest, and were removed using time-shifted principal
component analysis (TS-PCA) (de Cheveigné and Simon, 2007).
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Sensor-specific sources of signals unrelated to brain activity were
reduced by sensor noise suppression (SNS) (de Cheveigné and
Simon, 2008b).

Data Analysis
To analyze low-frequency cortical activity, recordings were band-
pass filtered between 1 and 8 Hz with an order-2 Butterworth
filter, with correction for the group delay. A blind source
separation technique, denoising source separation (DSS) (de
Cheveigné and Simon, 2008a), was used to construct components
(virtual channels constructed of linear combinations of the sensor
channels), ranked in order of their trial-to-trial reproducibility,
trained only from clean speech presentations, and used as
described below.

Stimulus Reconstruction
The ability to reconstruct the speech stimulus envelope from
recorded neural responses was used to measure the dynamical
cortical representation of perceived speech. Decoders were
separately estimated based on either reproducible or “reference”
activity as ranked by DSS, with two such pairs of decoders: the
first pair trained on responses to speech and the second pair
trained on responses to noise, as described in the following. The
first decoder of each pair was based upon the first three DSS
components (i.e., with highest reproducibility across instances of
listening to clean speech). These highly reproducible components
were used to train an optimal linear decoder designed to
reconstruct the envelope of the stimulus that was presented under
normal speech listening conditions but absent (though perhaps
expected) under noise listening conditions. That the reproducible
neural activity is generated by auditory cortex is reflected in a
DSS component topography consistent with auditory responses
arising from temporal cortices (Supplementary Figure S1). The
last three DSS components (with the lowest reproducibility from
the same clean speech dataset), were similarly used to train
the second linear decoder for each pair, used as a reference,
i.e., to estimate baseline performance. Each decoding procedure
produced a corresponding reconstructed stimulus time series
whose similarity with the corresponding speech envelope was
assessed via Pearson’s r correlation coefficient. Each similarity
score was, respectively, designated as reproducible (re) and
reference (rf). This referencing procedure is necessary to obtain
a baseline in decoding performance since time series’ lengths
varied across conditions (as a result of the different repetition
rates and verses involved); otherwise, there would be positive
biases in r for shorter sequences, irrespective of underlying
relationship to the stimulus. The appropriate pairs of decoders
were applied separately to their respective neural responses, to
clean speech and to noise. Noise edge and button-press-related
segments were excluded from all analysis. To the extent that a
noise-only response can be used to reconstruct an absent but
expected stimulus (better than baseline performance) reflects the
presence of neural activity consistent with a representation of the
acoustically absent speech.

To compute reconstruction effect sizes, each of the Pearson’s r
pairs (reproducible versus reference activity) were transformed
to Cohen’s effect size q (Cohen, 1988) by the transform

q = 1
2

(
ln 1+re

1−re
− ln 1+rf

1−rf

)
for both kinds of responses. Relative

effect sizes (speech versus noise reconstruction) were computed
by the fraction q2/q1 of reconstruction effect sizes given
the stimulus presentation conditions above (expressed as
percentages), where q1 denotes the effect size obtained from
reconstructions of clean speech from neural activity following
clean speech, and q2 the effect size from reconstructions of clean
speech from neural activity arising from the noise probe (devoid
of speech). Absolute effect sizes during noise presentations were
used for statistical analysis.

Temporal Response Function of Stimulus
Representation
The input–output relation between a representation S(t) of
auditory stimulus input and the evoked cortical response r′(t) is
modeled by a TRF. This linear model is formulated as:

r′pred(t) =
∑

τ

TRF(τ)S(t − τ)+ ε(t)

where ε(t) is the residual contribution to the evoked response not
explained by the linear model. As stimulus representation, the
envelope was extracted by taking the instantaneous amplitude of
each channel’s analytic representation via the Hilbert transform
(Bendat and Piersol, 2010), with sampling rates reduced to 1 kHz,
transformed to dB scale. The response was chosen to be either
the first or second DSS component (fixed for each subject;
Supplementary Figure S1), according to which one produced a
TRF with a more prominent M100TRF, a strong negative peak
with∼100 ms latency (Ding and Simon, 2012a).

Statistical Analyses
For reconstructions, one-way repeated measures ANOVA were
run across the four levels: “Control,” and “Low,” “Medium,”
and “High” repetitions, in order to examine differences between
their related means overall. Cortical latency of the TRF was
determined by the M100TRF latency. Peak delays with respect to
control conditions were determined by cross-correlations of the
TRF in the “Control” versus all other repetition conditions. The
resulting peak delays were then submitted to a non-parametric
one-tailed two-sample Kolmogorov–Smirnov test for differences
in the underlying delay populations.

RESULTS

Neural Transformations Facilitated by
Prior Experience Result in Improved
Ability to Reconstruct Missing Speech
From Noise
Connected syllables/words within a narrated poem were
replaced by noise bursts of fixed duration. Each static noise
probe was constructed with the same spectrum as the
replaced speech segment (Figure 1A), and therefore lacked
critical temporal modulations, e.g., in the low-frequency
(2–8 Hz) envelope. Low-frequency fluctuations present in
natural, unmasked speech typically generate time-locked
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FIGURE 1 | Present/absent speech stimulus protocol and cortical speech envelope reconstruction algorithm procedure. (A) Speech material from a single poem was
continuously presented to 35 listeners over the course of an hour, except that every 4–5 s, some speech was replaced with spectrally matched noise (0.8 s duration;
three replacements shown). This manipulation removes all critical temporal modulation for that duration. Top: example of the slow envelope of continuous speech
with occasional missing speech replaced by stationary noise in black; the envelope of the removed missing speech is in gray. Bottom: spectrogram of the continuous
speech with missing speech replaced by stationary noise. (B) For any participant, a verse selection was chosen to be repeated more than any other (50% of all verse
presentations) and denoted as having a “high” repetition rate. Another verse selection was similarly chosen to be repeated with a “medium” repetition rate (25% of all
verse presentations). Additional verses were repeated less frequently: 12.5% (“low”), 6.25%, etc. Verses presented 6.25% or less often were grouped together as
“Control.” The frequency designation of verses was counterbalanced across subjects. (C) The stimulus protocol served to allow analysis of reconstruction
performance for both types of response, to clean speech and to stationary noise without speech. In the decoding step, a subject’s multichannel response was
decomposed into components, ordered by trial-to-trial reproducibility during speech listening (see Section “Materials and Methods”). The top three waveform
components (with corresponding topographies shown) served to train a reproducible neural activity-based decoder to estimate the clean speech low-frequency
envelope. Correspondingly, the bottom three components trained a reference (baseline) decoder. Separate pairs were trained according to whether the speech was
present (as shown in this panel) or absent and replaced by noise (not shown). In the reconstruction step, the appropriate pair of reproducible and reference decoders
were applied to the neural responses to speech or noise, respectively. Results of the envelope reconstruction algorithm are shown for a representative subject.

auditory cortical activity recorded by MEG (Giraud et al., 2000;
Ding and Simon, 2012b). Multichannel recordings thus contain
information about dynamic neural representations of speech,
and so may in turn serve as the basis to train decoding models
that reconstruct dynamic features of the presented speech
signal, e.g., its envelope. Linear decoders mapping from MEG
responses to the stimulus speech envelope were estimated per
subject, and their envelope reconstruction performance (in
estimating the original speech signal) quantified. Crucially,
decoders were either trained from recordings of clean speech
presentation intervals, or, separately trained from intervals when
only static noise was delivered. In all cases, performance was
tested with respect to the corresponding clean speech signal
at that part of the poem, whether actually delivered or not.
To test whether acoustic presence is a necessary condition for
reconstruction of continuous speech, listeners were exposed to
extensive repetitions of some verses (each verse being a quatrain
of four lines), and less frequent repetitions (or none at all) to
the rest (Figure 1B). To limit confounding effects from specific

properties of particular verses, counterbalanced subgroups heard
different sets of verses for each repetition frequency, i.e., the five
participants in each subgroup experienced the same verses with
identical repetition frequencies, but the next subgroup heard a
different set of verses for each repetition frequency.

The hypothesis was tested using an index of speech
reconstruction, Cohen’s q, estimated using a two-step process
(Figure 1C). For each subject, first, a data-driven response mixing
matrix was obtained from responses to clean speech only, a
procedure that serves to decompose multichannel timeseries into
their most and least reproducible components relevant to natural
speech processing. These most and least reproducible sets served
to generate reconstruction models of the original speech signal,
estimating optimal and baseline, respectively, reconstruction
performance levels in the subsequent stage. Second, one pair of
reproducible and reference decoders was trained from recording
intervals where speech was delivered, and separately, another
pair was similarly trained from intervals presenting only noise.
In all cases, the reconstruction models targeted the envelope of
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the normal speech stimulus, even when that speech was absent
(but perhaps expected) under the noise listening conditions.
In the final step of the reconstruction stage, the q index was
computed from comparing the appropriate pair of reproducible
versus reference decoding performances. A separate q index was
computed for responses to speech and to noise, and for each
repetition frequency condition.

Differences in the time-locked auditory cortical responses to
clean speech and to noise intervals, by repetition frequency of
the verse they belonged to, are illustrated in Figure 2A (for two
different subject subgroups that experienced the same verses at
two repetition frequencies). Over the span of several seconds,
the neural waveforms in response to (aggregated) noise intervals
appear more comparable to those in response to clean speech
when the verse in question was frequently repeated in a subgroup
(High; upper graph) than not (Control; middle graph). This is
demonstrated by the timeseries’ correlation coefficients between
waveform pairs across the entire verse (Figure 2B). Because
the repetition frequency of particular verses is counterbalanced

across subjects, the analogous comparison for High versus Low
repetition conditions (Supplementary Figure S2) uses different
subgroups.

In terms of reconstruction performance, sentences that
were maximally repeated (High repetition rate) over the
hour-long session resulted in greatest relative performance
in reconstruction of the envelope of the missing speech:
approximately 25% of the performance for actual speech
presented without any masking. Less exposure resulted in
further reductions in relative performance (Medium: 21%, Low:
9%, and Control: 8%, respectively), down to the floor level
in the case of masked speech with which the listener had
little or no prior experience (Figure 2C; percentages inset).
Because this measure is relative to clean speech reconstruction, a
measure of reconstruction from noise alone was tested separately,
using Cohen’s q to quantify the effect size. Effect sizes in
reconstruction of the missing speech envelope were confirmed
to display a similar pattern as with relative performance (High:
0.079 ± 0.013; Medium: 0.060 ± 0.011; Low: 0.020 ± 0.013;

FIGURE 2 | Increased robustness of cortical reconstructability to missing speech under substantial prior exposure. (A) The median cortical MEG response
waveforms from one cross-validation subject subgroup (group Y; NY = 5) exposed to a specific verse with High frequency, are contrasted with those from a different
subgroup (group Z; NZ = 5) exposed to the same verse but infrequently (Control). Within the High repetition rate subgroup (top), signals generated by clean speech
(black) and static noise replacing the missing speech (blue) appear to covary more than for the Control repetition rate subgroup (middle: gray and red, respectively).
The waveforms in response to clean speech from both subgroups are replotted together for comparison (bottom). (Gaps in the responses to noise are due to
intervals when the speech was never replaced by noise, or during noise onset or button presses.) (B) Correlation coefficients indicate that, while clean speech
responses are similar to each other for both subgroups (gray, same data in both plots), for noise intervals, they are much more similar to the clean responses only
when the verse is frequently repeated (blue, top), but not when infrequently repeated (red, bottom). For a comparison from other subgroups using High and Low
repetition rate conditions, see Supplementary Figure S2. Median waveforms use the dominant auditory response component (see Supplementary Figure S1)
and are determined for each time point over the subject group. (C) The missing dynamic speech envelope may be reconstructed from responses to noise, with
performance of about 25% of that obtained under clean conditions (percentages inset for each bar). As indicated by the absolute q index dependence on
presentation frequency using the noise-trained decoders, this result is not a consequence of any clean-trained decoders dependence on frequency. Error bars
indicate confidence intervals for the means (Bonferroni-corrected α level).
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Control: 0.018 ± 0.008) (Figure 2C). A one-way repeated
measures ANOVA with four repetition levels was performed to
determine whether decoding success of the linear model of the
envelope significantly changed across conditions. q index results
for reconstructions exclusively using noise intervals showed
that the sphericity condition was not violated [Mauchly test,
x2(5) = 6.322; p = 0.276]. The subsequent ANOVA resulted in a
significant main effect of repetition frequency [F(3,102) = 8.070;
p = 7.1× 10−5]. Post hoc pairwise comparisons using Bonferroni
correction revealed that this increased exposure to speech
significantly improved the stimulus reconstruction effect size
from Low and Control repetition rate conditions to High
(p = 2.5 × 10−3 and p = 7.7 × 10−4, respectively), and also from
Control to Medium (p = 7.7× 10−3).

Expedited Auditory Cortical Processing
of Natural Speech
The TRF is a linear model used to predict the dynamics of
the neural response to sound input, given a representation of
the stimulus such as the acoustic envelope. Its characteristic
peaks, and especially their polarity and latencies, are indicative
of the progression of neural processing stages akin to the distinct
generators of evoked responses to simple sounds such as pure
tones (Ding and Simon, 2012a,b; Cervantes Constantino et al.,
2017), but with the advantage of being directly derived from the
neural processing of continuous natural speech. We examined
the effect of prior exposure on the TRF’s temporal structure in
general, and also for the most prominent peak, the M100TRF,

occurring 100–180 ms post envelope change (Figure 3A). When
a given speech sequence was listened to repeatedly, a significant
within-participant latency shift of 5.3 ± 2.2 ms earlier was
observed for M100High

TRF versus M100Control
TRF peaks [t(33) = 2.387;

p = 0.023], indicating expedited cortical processing cortical
for more familiar stimuli (Figure 3B). Across participants, the
differences between repeated (High, Medium, and Low) and
baseline (Control) levels, in terms of maxima in their cross-
correlation functions, were shown to arise from significantly
different distributions (D = 0.294; p = 0.043) (Figures 3C,D),
suggesting that prior experience by repeated presentations
effectively speeds up cortical processing even as early as 100 ms
latency.

DISCUSSION

We present evidence of dynamic envelope coding of missing
natural speech, by means of stimulus reconstruction methods
applied to auditory cortical responses. This occurs as long
as when there has been a history of repeated, frequent
exposure to the original missing speech, suggesting that
prior experience facilitates access and maintenance of a
detailed temporal representation of the stimulus even though
absent as low-level input. In addition, we find that cortical
processing dynamics timescales are reduced by about 5 ms
under similar prior experience conditions, for natural speech
processing.

FIGURE 3 | Frequent repetitions of natural speech speed-up their cortical processing. (A) Temporal response functions across participants reveal a common cortical
processing step, referred to as the M100TRF, typically occurring about 100 ms after a speech envelope fluctuation (red colored features near the vertical dotted
lines). (B) Depending on familiarity with the speech tokens, the same processing step may shift in time: processing of frequently repeated speech occurs about 5 ms
earlier than for novel or sparsely presented sentences, within subjects. (C) Across subjects, the distribution of relative delays is consistently biased towards positive
(earlier) values for the most extreme repetition conditions. (D) Illustration of how shifts within subjects were obtained, by cross-correlating individual M100TRF peak
profiles obtained per condition in each subject.
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Spectrogram reconstructability of noise-replaced phonemes
(e.g., fricatives) has been demonstrated when subjects interpret
the remainder of the single word accordingly (Leonard et al.,
2016). Such endogenous activity may arise from top-down
modulations of auditory cortical areas (Petkov et al., 2007;
Petkov and Sutter, 2011) with the effect of modulating perceptual
processing, including, the ability to entrain to speech signals
(Ding et al., 2013), to optimize detection performance (Henry
and Obleser, 2012), and to support auditory illusions (Riecke
et al., 2009). Under the umbrella of attractive temporal
context effects (Snyder et al., 2015), a group of facilitatory
mechanisms including perceptual hysteresis and stabilization
(cf. Kleinschmidt et al., 2002; Pearson and Brascamp, 2008;
Schwiedrzik et al., 2014), auditory restoration effects improve
perceptual invariance in the face of discontinuously fluctuating,
broadly cluttered environments. The involvement of storage-
based reactivation in perceptual processes, including attention,
is an area of active research (Backer and Alain, 2012, 2014;
Zimmermann et al., 2016). We therefore provide evidence for
reactivation mechanisms based on prior learning and storage of
speech information, at the level of its temporal structure.

Access and Format of Stored Auditory
Representations: Hierarchical Models
Encoding of speech and other stimuli into sensory memory,
the function of primary sensory areas that integrates analysis
and storage of stimulus features by relevance (Cowan, 1984;
Weinberger, 2004), has been argued to assist in the ability to
restore missing fragments of a sound source, e.g., as an internal
replay of the fragment during phonemic restoration (Shinn-
Cunningham, 2008). Examples of implicit auditory memory in
sensory and perceptual encoding (Snyder and Gregg, 2011) are
observed in repetition-based improved detection of arbitrary
noise constructs, and on neural covariates of this improvement
(Agus et al., 2010; Andrillon et al., 2015).

Foreknowledge of acoustic features allows adaptation to a
likely communication source, as shown by, e.g., facilitation
with advance notice regarding the identity of a forthcoming
instrument (Crowder, 1989), and by preferential activation in
auditory association areas specific to speaker familiarity (Birkett
et al., 2007). Such differential activation, given variable rates
of sensory update, suggests that prior experience history of a
dynamic sound pattern may influence its later representation:
with few initial updates, storage at short intervals is associated
with posterior superior temporal cortex, but over time, activation
may take place at inferior frontal cortex (Buchsbaum et al.,
2011). This progression is consistent, in memory terms, with
readout from sensory buffers taking place at high temporal
resolution under low-level representation formats; coarser
temporal resolutions are instead attained at stores that operate
under categorical, higher order feature codes (cf. Durlach
and Braida, 1969; Winkler and Cowan, 2005). For perception,
progression hierarchies are core features of models such as
reverse hierarchy theory, which proposes that fast perception
(e.g., when understanding speech in noise) is by default based
on high-level cortical representations (Ahissar et al., 2009),

except for specific conditions as systematic stimulus repeats,
where information about fine temporal detail may then also
be utilized (Nahum et al., 2008). Hierarchical models can be
useful inasmuch they identify stages by which feed-forward
general stimulus template extraction steps are completed, and
they specify roles for feedback activity from higher areas (Kumar
et al., 2007). In hearing their application includes, e.g., pitch and
spectral envelope analyses, where top-down information serves
to adapt effective processing time constants over lower areas that
encode more temporally refined information (Kumar et al., 2007;
Balaguer-Ballester et al., 2009).

Thus, a general prospect of these models is to determine
the extent to which the natural hierarchy in sensory input
might map to the anatomical hierarchy of the brain. In
temporal terms, another application refers to an interesting
distinction between “percept” versus “concept” representations
of an environmental variable, namely, transient versus enduring
representations (Kiebel et al., 2008). Because only the enduring
(e.g., >1 s) representations have the capacity to shape how lower
level representations may evolve, in the language of dynamical
systems, they are seen as control parameters: consolidation of
a “concept” automatically constrains where the trajectories of
representations at subordinate processing levels may unfold
autonomously (Kiebel et al., 2008). The role of prior knowledge
in the cortical hierarchy of speech perception and representation,
in particular with regard to the acoustic envelope, is a matter of
current research interest (Sohoglu and Davis, 2016; Di Liberto
et al., 2018). Hierarchical approaches therefore appear as a
suitable framework to bridge findings of low-level endogenous
representations with a mechanistic account of phonemic and
speech restoration.

Phonological Structure and the Role of
Auditory Retrieval Processes in Noise
Listening
A tenet of speech restoration phenomena posits the use of prior
abstractions or “schemata” that remain represented online, e.g.,
when an expected stimulus fails to occur, and are better resolved
with increased familiarity (Hubbard, 2010). From the operational
perspective, these are based upon the phonological structure
of natural speech: representations first involve recognition of
phonological structure (what is being heard), and second, that
words be stored into verbal working memory using phonological
code stores (Wagner and Torgesen, 1987). For efficiency reasons,
the codes for lexicon storage and for the later retrieval probing
process itself may be both the same, with phonologically similar
words grouped together in the lexicon in “neighborhoods,”
as indicated by “phonological awareness” models from the
developmental literature (e.g., Nittrouer, 2002; Lewis et al., 2010).
In our results, this framework would indicate a hypothetical
process for words replaced by noise probes where (1) each
high-frequency word has been established as a competitive
representative of its respective neighborhood store, (2) retrieval
is however constrained to operate endogenously, primarily from
available contextual information, and (3) the tempo of retrieval
would be coordinated at a timescale superordinate to that of
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phonological units, e.g., by prosodic and sentential information.
In this scenario, the temporal envelope of missing speech, learned
by prior experience, may coordinate the probe-triggering process.

Besides phonological structure, identification of auditory
persistence processes unprompted by sensory input (Intons-
Peterson, 2014) may involve self-directed imagery tasks (Bailes,
2007; Meyer et al., 2007), where activation levels in the
planum temporale correlate with self-reported levels of imagery
engagement and perceived vividness (Zatorre et al., 2009);
both auditory imagery and rehearsal may be subserved by
auditory association cortex areas in general (Meyer et al., 2007;
Hubbard, 2010; Martin et al., 2014). Furthermore, in a bimodal
stimulation study, transient activity from superior temporal
cortex was shown to be critical at the beginning of the auditory
retrieval process, but sustained planum temporale activity was
involved overall (Buchsbaum et al., 2005). This is consistent
with the interpretation that in such retrieval processes, task-
relevant stimulus features may be maintained at (re)activated
domains within the sensory representational space (Kaiser, 2015).
The notion that both representation and maintenance involve
overlapping processes (Hubbard, 2010) is supported by findings
of reactivation, at retrieval, of sensory regions active during
perception (Wheeler et al., 2000), and with auditory verbal
imagery (McGuire et al., 1996; Shergill et al., 2001). The emerging,
increasingly multimodal field of neural representations sustained
during mental imagery may further support crucial clinical
applications (Pearson et al., 2015).

Adaptive Dynamics of Speech Encoding
and Representation During Masking
As related to speech, two main mechanisms indicate a
correspondence of results with generative neural models (Pouget
et al., 2013). First, the finding that cortical processing is sped
up, under the same circumstances that promote restoration
of speech-related neural activity, suggests that active, task-
related endogenous processes directly optimize low-level speech
processing with experience. A plausible mechanism for this
is in promoting increased excitability of higher level neural
populations. Second, our results indirectly support the suggestion
that auditory “image” formation may entail activity consistent
with that elicited by the original sound input (Janata, 2001;
Martin et al., 2017), and whose temporal precision, and other
related feature properties, may vary depending on factors such

as context and experience (Janata and Paroo, 2006). The effect
of frequent “refreshing” seen here may relate to the auditory
memory reactivation hypothesis (Winkler and Cowan, 2005),
where individual sound features can be effectively stored,
along with neighboring sound patterns and sequences, when
represented altogether by the auditory system as regularities.
Over the course of presentation, high-level verse regularities
may be continually learned, represented, and accessed, serving
as referents. The current findings suggest that masker noise
occurrences may be translated into missing values in the
same low-level feature format as the low frequency envelope.
While this does not preclude other dynamic features of speech
to contribute to reactivation processes, such as higher order
linguistic elements (e.g., Näätänen and Winkler, 1999; van
Wassenhove and Schroeder, 2012; Di Liberto et al., 2015; Kayser
et al., 2015), the key neural property of natural sound encoding
via temporally based acoustic representations is underscored by
its active maintenance during noise gaps as a function of prior
experience.
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