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Much of our present understanding of the function and operation of the basal ganglia
rests on models of anatomical connectivity derived from tract-tracing approaches in
rodents and primates. However, the last years have been characterized by promising
step forwards in the in vivo investigation and comprehension of brain connectivity in
humans. The aim of this review is to revise the current knowledge on basal ganglia
circuits, highlighting similarities and differences across species, in order to widen the
current perspective on the intricate model of the basal ganglia system. This will allow
us to explore the implications of additional direct pathways running from cortex to
basal ganglia and between basal ganglia and cerebellum recently described in animals
and humans.
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INTRODUCTION

The brain is a complex network consisting of a huge number of neurons (~10'!) segregated
in spatial regions with similar cytoarchitecture and functional features. Identifying anatomical
physical pathways between the various structures of the brain has always been a major challenge
in neuroscience. Neuronal connectivity patterns can be investigated at different levels of scale:
(i) the microscale allows to study single synaptic connections linking two or more individual
neuronal cells, providing a detailed anatomical description of the basic substrates of the cerebral
microcircuits; (ii) at the mesoscale level, where brain connectivity is investigated at the level
of columns and mini-columns; and (iii) at macroscale level that explore large-scale anatomical
connectivity patterns focusing on the inter-regional white matter pathways connecting distinct
neuronal populations (Sporns, 2011).

The current knowledge about the short-, medium- and long-range neuroanatomical connections
of the basal ganglia system comes from both invasive and non-invasive experimental techniques
applied respectively in animals and humans.

The basal ganglia are a group of subcortical nuclei which integrate information from widespread
cortical areas and in turn project their outputs back to the cerebral cortex (Alexander et al.,
1990). Considering their pivotal role in motor and non-motor functions, the basal ganglia
have been a main topic of interest in the field of basic and clinical neurosciences. Basal ganglia
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connections have been widely studied and different models of
basal ganglia circuitry have undergone major revisions during the
last decades (Nelson and Kreitzer, 2014).

The present review aims at providing a comprehensive
overview on the interactions between the cerebral cortex, the
basal ganglia and the cerebellum in order to better understand
how such interplay contributes to specific attributes of motor
and non-motor behavior and to the pathophysiology of basal
ganglia disorders.

We will first discuss the most common invasive and
non-invasive techniques to study brain connectivity respectively
in animals and humans. We will then review the traditional
models of basal ganglia anatomy and circuitry highlighting
similarities and differences across species. Finally, we will widen
the current perspective on basal ganglia connectomics providing
a new challenging, comprehensive and integrated cortico-basal
ganglia-cerebellum model.

HISTORY OF BASAL GANGLIA CONCEPT

The presence of structures at the basis of the human brain
had already raised the attention of many scientist from the
antiquity to the 19th century; early anatomical depictions of
the basal ganglia appear in the works of classical anatomists
such as Galenus or Vesalius; the use of the term “corpus
striatum,” to refer to the large subcortical masses located
nearby the cerebral ventricles, is attested early in Thomas
Willis “Cerebri Anatome” (1664) (Parent, 2017). Most of the
actual nomenclature used to describe basal ganglia structures
comes from authors of late 18th and early 19th century; in
particular, terms such as “globus pallidus,” “external capsule,”
“internal capsule,” “lenticular nucleus” are introduced in the
classical treatise of Karl Friedrich Burdach (Parent, 2013). In
the same period, structures such as the substantia nigra and
the subthalamic nucleus (Luys, 1868) were described. The
term Basal Ganglia has been originally proposed by Sir David
Ferrier in a highly challenging and comprehensive masterpiece
of the 19th century on the yet unraveled brain structure
and function, “The functions of the brain” (1887). In this
treatise, Ferrier writes that “the basal ganglia—the corpora
striata and optic thalami—are ganglionic masses, intercalated
in the course of the projection system of fibers which
connect the cortex with the crura cerebri, and through these
with the periphery. The corpora striata are the “ganglia of
interruption” of the projection system of the foot or basis of
the crus, an anatomical indication of their motor signification”
(Ferrier, 1887).

After that, a wide corpus of research has been focused
on basal ganglia structure and function both in health and
in disease. The last half of the 20th century has seen the
rise of neuroanatomical tracing techniques, that allowed for a
complete description of basal ganglia anatomy and connectivity
in different animal species. In the last 20 years, these techniques
have been paralleled by neuroimaging techniques focused at
reconstructing white matter anatomy of the human brain. An
overview of strengths and limitations of such techniques will be
provided below.

INVASIVE AND NON-INVASIVE
APPROACHES TO STUDY ANATOMICAL
CONNECTIVITY

Traditional Anterograde and Retrograde

Tract Tracing

Despite several efforts have been made to study brain
and basal ganglia functional anatomy, the most recent
breakthroughs occurred with the development of various
powerful neuronographic methods, introduced in late 20th
century, which have allowed to describe the close interrelation
between the core structures of the basal ganglia and to set
the ground basements of the current ideas on the basal
ganglia circuits.

Degeneration and tract-tracing approaches are among the
most common methods applied in animal studies. Highly
localized lesions, leading to Wallerian degeneration, combined
with stains that selectively color degenerating neuronal cell
bodies and axons have been helpful in the past to trace
neural pathways (Johnson, 1961; Afifi et al., 1974). However,
degeneration techniques are limited by the low accuracy to
determine the exact location of axonal terminals and by the
fact that not all the neurons show marked degeneration after
a lesion. Taking into account such limitations, the second half
of the 20th century has been characterized by a methodological
innovation based on the axonal transport of tracers. Anterograde
tract-tracing allows to identify the axons terminations by
injecting chemical tracers and dyes which are incorporated into
macromolecules by the neuronal cell bodies and then carried to
the end of the axons. Another widely used tract-tracing strategy
is retrograde tracing: a molecular marker (i.e., horseradish
peroxidase enzyme) injected into the area of axonal terminations
is carried via the retrograde axonal transport towards the cell
body thus revealing the origin of the neuronal pathway (Kobbert
et al., 2000; Raju and Smith, 2006; Schofield, 2008). Regardless
of the transport direction, time must be considered to allow the
tracer reaching its destination and then to proceed with tracer
detection using fluorescent light or immunohistochemistry.
Although the astonishing findings revealed by experimental
tract-tracing in animals, this technique did not have successful
application in the post-mortem human brain due to slow rate of
diffusion (Beach and McGeer, 1987; Haber, 1988). In addition,
both anterograde and retrograde tract-tracing are prone to
limitations, considering different potential sources of false-
positive and false-negative results. As a matter of fact, it is
possible that tracer injections may spread beyond the target or
involve adjacent pathways; also, it is possible that retrograde
tracers are uptaken by fibers of passage, producing false-positive
results (Reiner et al., 2000; Van Haeften and Wouterlood, 2000).
Furthermore, when using biotinylated dextran amine (BDA) for
anterograde tracing care should be taken due to the possible
retrograde trafficking and the subsequent anterograde transport
into neuronal collaterals (Reiner et al., 2000).

On the other hand, false-negative findings may derive
considering the inability to label all neurons in a population
in any given study. Another potential source of false-negative
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findings is that it might not be possible to identify the
colocalization of markers especially when the neuronal structures
are tiny, due to either imperfect antibody penetration or
disproportional concentration of antigens (Reiner et al., 2000;
Van Haeften and Wouterlood, 2000). Despite the outstanding
historical importance of tract-tracing and its actual advantages,
these limitations led to the development of new, more precise
tracing methods.

Neuronal Tracing by Neurotropic Viruses
Beyond conventional tracers, neurotropic viruses have the great
potential to exploit the connectivity of neural circuits; viral
replication amplifies the signal at each step of the process;
moreover, viral tracers are able to traverse multisynaptic
pathways. These features allow a more precise individuation
of anatomical connections and to distinguish between direct
and indirect projections. Albeit several neurotropic viruses exist,
only two major classes, the herpes and rabies viruses, have
been traditionally employed to experimentally track neuronal
pathways. While such classes of viruses are substantially
different, they do share an envelope structure and the ability
to infect neurons and to spread along the nervous system.
Ugolini et al. (1987) demonstrated for the first time ever that
the herpes simplex virus type 1 (HSV 1) could be used to
trace neural connections across at least two synapses in rodents,
thus paving the way for further development of virus tracing
in non-human primates (Hoover and Strick, 1993; Middleton
and Strick, 1994). As major limitations, HSV 1 induces rapid
neuronal degeneration and may spuriously spread to glial and
other neuronal cells. As a consequence, attempts to limit the
local spread do not allow to trace further than second-order
neurons (Kaplitt and Loewy, 1995). By contrast, rabies viruses
do not induce neuronal degeneration and are able to detect
neuronal connections across an unlimited number of synapses
(Ugolini, 2011). However, major drawbacks in using viruses
to label multisynaptic connections are the low speed of the
viral transport, paralleled by their fast-lethal effects on the
experimental animal, that dies for the infection after a short time.
Consequently, and considering that at least 2 days are needed to
label first-order neurons, higher-order neurons are labeled only
after 12 h or more from that time (Aston-Jones and Card, 2000).
Therefore, tracking a neuronal network consisting of, e.g., seven
synapses, could take approximately up to 1 week.

However, despite all the above-mentioned limitations virus
transneuronal tracing still remains the gold standard approach
to map axonal connections in animals. On the other hand, the
application of such invasive tracking methods is elusive when
applied to the human brain.

Non-invasive Neuroimaging Approaches

for the Human Brain

The great success of neuroanatomical tracing has boosted the
research on neuronal connectivity based on animal models.
However, translating such findings from animals to the human
brain posits some non-negligible theoretical issues: it forces
the assumption that brain structures of interest are relatively
conserved in the human brain, and it does not account for

inter-specific differences. During the last decades, the progress of
magnetic resonance imaging (MRI) has allowed the development
of neuroimaging approaches as an alternative modality to assess
morphological neuronal connectivity patterns in living humans.
Diffusion-weighted magnetic resonance imaging (DWI) and
tractography have been successfully employed to model and infer
white matter bundles’ trajectory of white matter bundles together
with their microstructural properties (Milardi et al., 2016b,
2017; Cacciola et al., 2017a,c; Calamuneri et al., 2018; Rizzo
et al., 2018; Arrigo et al., 2019). Despite these techniques have
lower spatial resolution than chemical and virus tract-tracing
and they are not able to estimate the directionality of neural
pathways, they do provide the only chance to explore anatomical
connectivity in vivo and non-invasively in the human brain
(Chung et al., 2011).

DWI allows to measure water molecules diffusion along
different directions. Considering the impermeable nature of
axons, water diffusivity is highly directional (anisotropic) being
constrained to the main axonal direction; therefore DWI
indirectly evaluates white matter microstructure (Basser et al.,
1994, 2000). Assuming that such local diffusion is explained
by a three-dimensional Gaussian process, the main axis of the
diffusion ellipsoid corresponds to principal diffusion direction
and its fractional anisotropy corresponds to the degree to
which diffusion is preferred along this direction over other
directions. Therefore, by computing the principal local diffusion
direction within the single voxels and attempting to infer specific
spatial axonal trajectories, tractography can be used to map and
reconstruct main fiber bundles at a system level (Alexander et al.,
2007). Classical diffusion-weighted images used for tractographic
reconstruction usually have a voxel resolution of 2 x 2 x 2 mm?
which is notably higher than the axonal diameter (Jbabdi and
Johansen-Berg, 2011), whilst traditional anatomical tracers can
track the projections of single axons. Another major drawback of
tractography is the inability to determine the polarity of a given
connection and thus to establish whether a given fiber pathway is
afferent or efferent (Parker et al., 2013).

In addition, simple diffusion signal modeling approaches
cannot reliably disentangle the complex white matter
architecture consisting of twisting, bending, crossing and kissing
fibers thus failing in representing any of their orientations.
To overcome this issue, “model-free” approaches have been
developed in the last decade, such as Diffusion Spectrum
Imaging (DSI; Wedeen et al,, 2005), Q-ball Imaging (Tuch
et al, 2003) and Constrained Spherical Deconvolution
(Tournier et al., 2007).

Despite the above-mentioned limitations, DWI and
tractography are the only existing techniques able to investigate
anatomical connectivity in the human brain in vivo and non-
invasively. Indeed diffusion tractography has been extensively
recognized as the first “in vivo dissection” approach to map the
major fiber bundles in the human brain with extreme precision
as well as to show the existence of new associative pathways
that have been subsequently replicated using the traditional
post-mortem Klingler dissection (Klingler, 1935; Klingler and
Gloor, 1960). For instance, the increasing use of tractography
has boosted our understanding of the morphological shape
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of the major long-range white matter pathways (Catani et al.,
2005; Parker et al.,, 2005; Yagmurlu et al.,, 2016), consequently
confirmed by post-mortem dissection in the human brain
(Lawes et al, 2008; Yagmurlu et al, 2016). Last but not
least, tractography has allowed to develop several atlas of the
human brain (Mori and van Zijl, 2007; Oishi, 2011; Catani
and Thiebaut de Schotten, 2012). As a final remark, the
anatomical validity and reproducibility of DWI tractography
have been assessed in vitro in a highly gyrated model of the
porcin brain, demonstrating that tractography is able to reliably
detect specific white matter pathways and therefore to be a
powerful tool in investigating anatomical brain connectivity
(Dyrby et al., 2007).

INTER-SPECIES COMMONALITIES AND
DIFFERENCES IN THE BASAL GANGLIA
NETWORK

Despite the basic basal ganglia anatomy and connectivity are
well preserved across most species, from rodents to non-human
and human primates (Reiner et al., 1998; Stephenson-Jones
et al.,, 2012), some meaningful interspecific topographical and
functional variations need to be carefully addressed. The
basal ganglia have been observed in all amniote species; the
basic organization of these telencephalic nuclei seems to be
phylogenetically conserved, since evidences of a remarkable
similarity between lampreys, the oldest now-living vertebrates,
and mammals have been carefully described (Grillner and
Robertson, 2016). This supported the view according to which
rudimentary basal ganglia were already present in the vertebrate’s
common ancestor.

In mammals, the basal ganglia demonstrate a much more
extensive interaction with the cerebral cortex (Reiner et al,
1998). Furthermore, the basal ganglia seem to maintain the same
circuit organization, namely the presence of input nuclei, output
nuclei and modulatory stations through which information is
funneled and processed (Gerfen et al., 1987a,b; Smith and Parent,
1988; Alexander et al., 1990). Indeed, several neuroanatomical
and neurophysiological insights gained studying rodents have
been lately confirmed in primates. However, some remarkable
differences both in the macroscopic and microscopic anatomy
need to be addressed.

From the gross anatomy perspective, the striatum could be
divided into a dorsal and a ventral compartment; these two
divisions lack of a clear boundary but greatly differ in their
connectivity profiles (Haber and Knutson, 2010). In rodents, the
dorsal striatum is named neostriatum and it could be divided
into a dorsomedial and a dorsolateral part, whilst in monkeys and
humans it is divided into caudate nucleus and putamen (Grillner
and Robertson, 2016). Structural separation of the striatum
into caudate nucleus and putamen by the internal capsule in
primates does provide a clear functional distinct segregation
of the cortical inputs to these two main structures. Although
the caudate nucleus is traditionally associated with cognitive
functions and the putamen with motor functions, both structures
receive widespread afferents from the cerebral cortex, see Haber

(2016) for an extensive review. Rodents, instead, lack of such
structural separation within the dorsal striatum.

In parallel, the same considerations could be made for
the difference in the Globus Pallidus (GP) gross anatomy
between rodents and primates. Both in human and non-human
primates, the internal (GPi) and external (GPe) segments of
the GP are structurally divided by the internal lamina and are
placed close to each other. On the other hand, in rodents, the
GPi functional homologous, termed entopeduncular nucleus, is
mostly embedded in the internal capsule (Carter and Fibiger,
1978) whilst the GPe homolog is termed simply as GP.

Moreover, a striking difference between primates and rodents
is represented by the cerebral cortex, which constitutes one of
the main interacting systems with the basal ganglia. In primates,
the need for more complex motor tasks and sensory integration
has allowed the development of large and architecturally complex
association areas (Preuss and Goldman-Rakic, 1989, 1991).
According to recent works, this difference would make the old
world monkeys the most valuable animal model to study function
and disease of the basal ganglia (Smith and Galvan, 2018).

A main difference is that in rodents, cortico-spinal pyramidal
neurons directly synapse on the striatum; in primates, on
the other hand, cortico-spinal and cortico-striatal descending
systems are totally segregated (Parent and Parent, 2006; Kita and
Kita, 2012; Smith et al., 2014).

Moreover, differences in volume, distribution and number
of neurons of the basal ganglia among mammals have been
described, underlining substantial differences between rats and
non-human primates and subtle variations between humans and
monkeys (Hardman et al., 2002).

Despite such morphological differences, the organization of
the main afferent and efferent systems of the basal ganglia
network is almost similar across species. With some limitations,
and paying attention to inter-species differences, rodents still
constitute a valuable model to study basal ganglia in physiology
and disease (Hooks et al., 2018; Miyamoto et al., 2019).

TRADITIONAL CIRCUITS OF THE BASAL
GANGLIA NETWORK

The most basic circuit model of basal ganglia function involving
the “direct” and “indirect” pathways has been originally
proposed by Albin et al. (1989) and it has represented the
cornerstone of our knowledge on basal ganglia function for
two decades (Figure 1). More recently, DeLong and Wichmann
(2007) have suggested that the output nuclei—the GPi and the
SNr—exert a tonic firing to the intralaminar and ventral motor
nuclei of the thalamus which in turn regulate motor-related
areas in the cerebral cortex (DeLong and Wichmann, 2007)
influencing desired and unwanted behaviors.

A third fundamental pathway, the so-called “hyperdirect
pathway” of the basal ganglia circuitry has been recently
identified. Although the subthalamic nucleus (STN) has been
considered for many decades one of the relevant nodes of
the “indirect” pathway, it also receives direct signals from the
cerebral cortex (Nambu et al., 2000).
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FIGURE 1 | “Classical” cortico-basal ganglia-cerebellar pathways. The most
basic circuit model of basal ganglia function involving the “direct” and
“indirect” pathways originally proposed by Albin et al. (1989). Red lines
highlight the “direct” pathway funneling information from the cerebral cortex
to the striatum and then to internal segment of the globus pallidus/pars
reticulata of the substantia nigra (GPi/SNr) via GABAergic inhibitory
projections thus selectively reducing GPi/SNr activity and releasing the
thalamocortical circuits involved in motor pattern generators. The dotted
black lines depict the “indirect” pathway: when excited by the glutamatergic
inputs of the cerebral cortex, striatal medium spiny neurons (expressing

D2 receptors) allow the cells of the striatal matrix to send inhibitory signals to
the GPe, thus exerting its tonic GABAergic inhibition on the subthalamic
nucleus (STN). Therefore, the glutamatergic neurons of the STN can excite
the GPi/SNr thus suppressing thalamic activity on the cerebral cortex and
increasing inhibitory influences on the upper motor neurons. More recently, a
“hyperdirect” pathway has been described (blue line between the cerebral
cortex and STN), conveying excitatory stimuli from motor, associative and
limbic brain areas on the STN, bypassing the “indirect” inhibitor circuit and
leading to excited GPi/SNr activity.

When a given motor pattern is computed by cortical motor
areas, it is first conveyed to the basal ganglia via glutamatergic
projections with the purpose of releasing the intended movement
and suppressing the unintended ones. The “direct” pathway
funnels information from the striatum to internal segment
of the globus pallidus/pars reticulata of the substantia
nigra (GPi/SNr) via GABAergic inhibitory projections thus
selectively reducing GPi/SNr activity and releasing firing from
thalamocortical neurons.

Along with the initial signal to the striatum, the cerebral
cortex suppresses surrounding or competing motor patterns.
This activity is known to be mediated by the “indirect” and
“hyperdirect” pathways. When excited by the glutamatergic
inputs of the cerebral cortex, striatal D2 receptors allow the
cells of the striatal matrix to send inhibitory signals to the
GPe which normally exerts a tonic GABAergic inhibition on
the STN. Therefore, the glutamatergic neurons of the STN can
then excite the GPi/SNr thus suppressing thalamic activity on
the cerebral cortex and increasing inhibitory influences on the
upper motor neurons (DeLong and Wichmann, 2007, 2009;
Stinear et al., 2009; Noorani and Carpenter, 2014). Moreover,

the glutamatergic “hyperdirect” pathway, conveying excitatory
stimuli from motor, associative and limbic brain areas on the
STN (Nambu et al., 2002) triggers GPi/SNr activity (Figure 1)
bypassing the indirect pathway. This latter view is supported
by the fact that cortical neurons projecting to GPe appear to
be in a different group than those projecting to STN (Kita
and Kita, 2012). The following inhibition of the thalamocortical
projections suggests therefore a major role of the hyperdirect
pathway in holding back movements (Wessel et al., 2016).

NEUROPHYSIOLOGICAL INSIGHTS ON
BASAL GANGLIA FUNCTION

A possible electrophysiological correlate of basal ganglia activity
in the human brain is the Bereitschaft potential, also known as
readiness potential (RP), a slow negative electroencephalographic
(EEG) activity that usually precedes self-paced movements
(Shibasaki and Hallett, 2006). The RP has been initially
considered as an electrical phenomenon originating from
cortical activity which occurs before both simple and complex
motor tasks (Rektor et al, 1994, 1998, 2001a). However
different evidences suggest that RP may be recorded also from
subcortical structures such as striatum and thalamic nuclei
(ventral intermediate nucleus VIM, ventroposterior nucleus VP;
Rektor et al., 2001c). In particular, latencies of RP recorded in
the putamen precedes those recorded by electrodes implanted
in cortical motor areas (Rektor et al, 200la). Following
investigations conducted on patients implanted in caudate
nucleus, putamen and GPi demonstrated that these regions are
potential substrates for RP generation (Rektor et al., 2001b);
this is in line with previous evidences of disrupted RPs after
lesions in the basal ganglia (Dick et al., 1989) and suggests
that cortico-basal ganglia-thalamo-cortical reverberating circuits
may be involved in the generation of RP. Moreover, a P3-like
activity has been recorded in basal ganglia and in cortical
motor and premotor areas during a multimodal evoked related
potential (ERP) stimulation paradigm aimed at investigating
electrical activity related to cognitive processing of sensorial
stimuli (Rektor et al., 2003). This suggests a possible interplay of
cortical areas and basal ganglia during cognitive processing.

BEYOND THE DIRECT, INDIRECT AND
HYPERDIRECT PATHWAYS

One of the main aims of the present review is to widen the
current perspective on basal ganglia connectomics providing a
new challenging, comprehensive and integrated basal ganglia
model. As previously mentioned, most of our knowledge on the
basal ganglia is mainly based on invasive tract-tracing studies
conducted on animals, whilst the available data on humans come
from clinical evidences of patients with movement disorders and
from pioneering neuroimaging studies.

The last 10 years have been characterized by the growing idea
that, in addition to the direct, indirect and hyperdirect pathways,
several other feedback and reverberating circuits can contribute
to modulate basal ganglia output. Numerous studies have indeed
pointed out that the basal ganglia directly integrate signals from

Frontiers in Systems Neuroscience | www.frontiersin.org

October 2019 | Volume 13 | Article 61


https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Milardi et al.

The Cortico-Basal Ganglia-Cerebellar Network

widespread cortical areas and are part of an extensive network
involving also the cerebellum (Figure 2).

The Cortico-Pallidal Pathway

In a traditional textbook of anatomy, the French anatomist Testut
remarked that “Ascending and descending cortico-caudatal,
cortico-putaminal, and cortico-pallidal connections do exist.
Cortico-caudatal and cortico-putaminal fibers are indicated
together as cortico-striatal pathway: they are less than cortico-
pallidal fibers. The cortico-pallidal fibers are prevalently but not
exclusively cortico-fugal (efferent). These fibers (demonstrated
both by anatomic dissection and by neuronography), originate
from area 6” (Testut and Latarjet, 1971). Over the subsequent
decades, the cortico-pallidal fibers almost disappeared from the
literature. Early degeneration studies have described the possible
existence of a direct cortico-pallidal projection in monkeys
(Leichnetz and Astruc, 1977), leaving an open window to
provide more conclusive evidences on the topic. By using BDA
anterograde tract-tracing in rodents, Naito and Kita (1994)
showed for the first time the existence of direct, topographically-
organized connections between the medial and lateral precentral
cortices and the GPe (Naito and Kita, 1994). Although it could
be argued that these projections could represent passing fibers
(that it is well known to be massively present in the GP), it is
worthy to note that the BDA approach used in the study labeled
with great precision fine fibers and boutons thus allowing to
disentangle them from pallidal passing fibers. The existence of
such fibers of passage could furthermore explain why retrograde
tract-tracing techniques are not able to the show the presence
of this cortico-pallidal pathway. Supporting evidences for the
existence of such direct pattern of connectivity come from recent
studies showing cholinergic and GABAergic neurons within the
GPe that in turn send direct signals to the cerebral cortex (Chen
et al., 2015; Saunders et al., 2015).

More recently, evidence supporting the likely existence of
a direct cortico-pallidal pathway was provided by Milardi
et al. (2015) using CSD-based tractography, thus being the
first to characterize the cortico-pallidal connectivity patterns
in the living human brain. More recently, Cacciola et al.
(2017b) provided a quantitative connectomic analysis revealing
that the pallidal network mainly involves the sensorimotor areas
(i.e., precentral and postcentral gyri), the superior frontal and
paracentral gyri, with less representative widespread connectivity
patterns with other important cortical areas (Cacciola et al.,
2017b). These findings have been further corroborated by other
diffusion tractography studies (da Silva et al., 2017; Grewal et al.,
2018; Middlebrooks et al., 2018; Cacciola et al., 2019).

Indirect evidences supporting a tight interplay between GP
and frontal cortex in humans come also from PET studies in
patients with focal lesions of the GP which have demonstrated
reduced metabolism in frontal cortical areas as well as psychiatric
symptoms reminiscent of patients with frontotemporal lobe
damage. Taken together these findings strongly indicate a
disrupted functional interaction between the GP and the frontal
lobe (Laplane et al., 1989). In addition, by using a promising
approach of simultaneous magnetoencephalography-local field
potentials (MEG-LFP) recording in dystonic patients with

deep brain stimulation (DBS) electrodes in the GPi, Neumann
et al. (2015) demonstrated that the GPi is interconnected with
several brain regions in spatial- and frequency-specific functional
networks. In particular, MEG-LFP coherence analysis revealed
oscillatory pallidal connectivity with the temporal cortex in the
theta band (4-7 Hz), with the sensorimotor regions in the beta
band (10-30 Hz) and with the cerebellum in the alpha band
(6-13 Hz).

Therefore, the oscillatory drive of information flow between
the motor-related areas and the GPi could be gathered either
indirectly via the corticostriatal pathway or through a direct
cortico-pallidal connection. The cortico-pallidal pathway could
represent a possible anatomical substrate of the robust beta-band
oscillatory activity in the cerebral-basal ganglia feedback loops
involved in motor control (Cacciola et al., 2016b; Figure 3).

In addition, it has been reported in dystonic implanted
patients, that single-pulse GPi-DBS may modulate motor cortical
excitability at a relatively short latency suggesting the possibility
of a direct cortical-GPi connection in humans (Cacciola et al.,
2018; Ni et al., 2018b).

Recently, Cacciola et al. (2019) by using whole-brain
tractography-based segmentation unveiled that the basal ganglia
system is topographically organized in functionally segregated
and integrated circuits within the GPi and GPe. In particular,
the topographical organization of the cortico-pallidal pathway
within the GP resulted in an antero-dorsal associative region and
a posterior sensorimotor region, despite it was not possible to
identify a well-defined limbic territory, thus suggesting that the
cortico-pallidal fibers may provide only a relative contribution
to the limbic territories in the GP. On the other hand, the
most represented connectivity patterns to the GPi derived from
sensorimotor regions suggesting a possible role of such pathway
in sensorimotor integration. From a more practical point of
view, this topographical segmentation of the GP applied to
DBS, focused-ultrasound and radiosurgery interventions could
improve patient’s outcome by minimizing side effects at the same
time (Cacciola et al., 2019; Strafella, 2019).

Although the direct and indirect evidences on the possible
existence of a monosynaptic pathway between the cerebral cortex
and the GPi are continuously growing, its exact functional
meaning is still not clear and speculative (Cacciola et al., 2018;
Ni et al., 2018a,b).

The Cortico-Nigral Pathway

Along with the GPi, the SNr is a key hub of the basal
ganglia circuitry, involved in motor control (Friend and Kravitz,
2014), cognition (Simpson et al., 2010) and learning (Sesack
and Grace, 2010), receiving both inhibitory and excitatory
inputs from the striatum, GPe and STN, respectively (Kita
and Kitai, 1987; Chevalier and Deniau, 1990; Smith et al,
1990). GABAergic neurons located in the SNr mainly target
the peduncolopontine nucleus and the superior colliculi, thus
suggesting SNr involvement in eyes, head and neck movements.
In addition, SNr sends GABAergic inputs to the thalamic
intralaminar nuclei that in turn send back projections to the
striatum as well as to nuclei that send inputs to the cerebral
cortex. In rodents, the ventromedial and paralaminar medial
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FIGURE 2 | Schematic illustration of the recently demonstrated anatomical
connections in the basal ganglia network. The figure reports the three direct
systems running between the cerebral cortex and the basal ganglia (STN, GPi
and SN, shaded gray boxes), providing a fast route of connection by passing
the striatum and the thalamus. Recent studies have also demonstrated that
the basal ganglia communicate with the cerebellum. Retrograde
transneuronal transport of rabies virus in monkeys revealed a disynaptic
pathway from the STN passing through the pontine nuclei to the granule cells
of the cerebellar cortex. Additional findings suggest the existence of
reciprocal cerebellar output on the basal ganglia via the dentate nucleus.
Indeed, it has been demonstrated both in animals and humans that the
dentate nucleus is connected with the GPi and SNr thus directly influencing
the output stations of the basal ganglia in the timing of actions as well as in
action selection. The dashed lines represent the cerebral cortex output on the
basal ganglia and the information flow from the basal ganglia to the
cerebellum. The solid lines instead represent the cerebellar output on the
output nuclei of the basal ganglia which in turn communicates with the
cerebral cortex. STN, subthalamic nucleus; GPi, internal segment of the
globus pallidus; SN, pars reticulata of the substantia nigra.

dorsal thalamic nuclei are the main target of GABAergic SNr
inputs and in turn provide widespread projections to frontal
cortical areas, including the equivalent eye field areas in primates.
On the other hand, the principal targets of the SNr are the ventral
anterior and paralaminar medial dorsal nuclei which instead
project to more discrete organized frontal areas (Bentivoglio
et al., 1979; Hoover and Strick, 1999).

By contrast, both in rodents and in primates, SNc provides
extensive dopaminergic innervation to dorsal and ventral
striatum (Beckstead et al., 1979; Haber, 2014). From striatum in
turn, originates a set of reciprocating GABA-ergic connections
to SNc¢ (Szabd, 1979; Haber et al.,, 2000). In addition to these
projections, SNc receives excitatory glutamatergic afferents from
the STN, and GABA-ergic projections from GPi and SNr (Smith
and Kieval, 2000; Watabe-Uchida et al., 2012).

Therefore, both the SNc and SNr receive disynaptic
inhibitory and excitatory inputs from the cerebral cortex via
the neostriatum and STN respectively. In addition, several
anatomical studies have indicated a direct connection between
the cortex and the SN (Figure 3). Although the majority of these
studies have clearly shown the existence of a direct cortico-SN

pathway, the topographical arrangement, the extent of the
cortical regions involved in the projection and the morphological
characteristics of the fibers and boutons were not well clarified
until the mid-nineties. In an anterograde tracing study with BDA
in rats, Naito and Kita (1994) addressed this issue by showing
that the SNc received orderly arranged, but sparse connections
from the entire prefrontal cortex; the density of boutons in SNc¢
was much less than the ones of the striatum. More recently,
Frankle et al. (2006) injected anterograde tracers into the orbital
(OFQC), cingulate and dorsolateral prefrontal (dIPFC) cortices,
demonstrating direct connections from OFC and dIPFC to SN
in the macaque monkey.

In human, the SN is involved in an extensive sub-cortical
network (Diizel et al., 2009; Menke et al., 2010; Chowdhury
et al., 2013), despite less is known about the possible existence
of a human homologous of the direct cortico-nigral connections
demonstrated in animals. In this regard, by using dMRI and
tractography, Cacciola et al. (2016a) have recently reconstructed
a white matter pathway linking the superior frontal, inferior
frontal, precentral, postcentral gyri and the paracentral lobule
with the SN bypassing the caudate nucleus, the putamen,
the GP and the STN in the human brain (Cacciola et al.,
2016a). In addition, in line with previous findings, the same
authors demonstrated that the SN is extensively connected
with many sensorimotor and associative cortical areas as
well as with subcortical structures, including the cerebellum
(Cacciola et al., 2017b).

In conclusion, the basal ganglia connectome seems to be
more complex than expected; non-canonical pathways such as
the cortico-pallidal and cortico-nigral pathways may have a role
in basal ganglia physiology and pathophysiology of basal ganglia
disorders. However, their functions remain speculative and need
more investigation to be completely understood.

THE CEREBELLUM AND BASAL GANGLIA
INTERPLAY

Along with the fundamental role in motor control, the
cerebellum and basal ganglia are involved in several aspects of
behavior, from cognition to emotion (Middleton and Strick,
1994; Schmahmann and Caplan, 2006). The involvement of the
cerebellum in so many functions could be explained by taking
into account that it works in strict connection with the cerebral
cortex and the basal ganglia, which in turn play both a pivotal
role in a variety of motor and non-motor functions.

According to the traditional view, the cerebellum and basal
ganglia interact at the level of the cerebral cortex. However,
the last decades have been characterized by increasing evidences
showing a direct cerebello-basal ganglia interplay forming an
integrated building block involved in several complex tasks.

Anterograde and retrograde studies demonstrated that
neurons of the central lateral nucleus of thalamus, which projects
both to motor cortex and to laterodorsal part of the striatum,
receive inputs from the lateral cerebellar nucleus (Ichinohe et al.,
2000). These findings were extended to non-human primates
in a study conducted on macaques by means of retrograde
transneuronal transport of rabies virus (Hoshi et al., 2005),
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FIGURE 3 | “Novel” cortico-basal-ganglia-cerebellar pathways. Highlight the
newly identified connections between the cerebral cortex, GPi, GPe and SN
as well as the complementary circuits between the dentate nucleus and such
nuclei as described in recent tractographic studies in humans.

showing a pathway linking primarily the dentate nucleus (but
also the interpositus and fastigial nuclei) to the contralateral
striatum through ventral anterior (VA), ventral lateral (VL) and
intralaminar nuclei (CM/Pf) and finally reaching the external
part of the globus pallidus (Figure 3). Labeled neurons in the
dentate nucleus belonged both to its motor and non-motor
domains (Dum et al.,, 2002), suggesting that the interplay of
these subcortical structures is crucial for motor, cognitive and
emotional processing.

A few years later, Bostan et al. (2010) employed the same
experimental setting to investigate the presence of a pathway
projecting from basal ganglia to cerebellum. The retrograde
transport revealed that first-order neurons were located in
the pedunculopontine nucleus while second-order neurons
were found to be topographically organized in the STN
(Figure 3). These fascinating studies provided new insights
on the roles of basal ganglia and cerebellum showing that
their interplay may be more complex than expected. Virus
tracing is not the only technique which has been employed to
study connectivity between these two subcortical structures.
Converging evidences coming from electrophysiological
experiments and human neuroimaging studies will be
discussed below.

ELECTROPHYSIOLOGICAL INSIGHT INTO
CEREBELLAR-BASAL GANGLIA
INTERACTIONS

Electrophysiological investigations, conducted on anesthetized
cats to assess the latency of basal ganglia-cerebellum activation,
failed in finding strong evidences of a rapid-gated cerebellum-

basal ganglia communication. The long latencies (50-350 ms)
found made the hypothesis of rapidly funneling stimuli from
cerebellum to basal ganglia neglectable (Ratchetson and Li, 1969).
This assumption has been recently challenged by Chen et al.
(2014) in a optogenetic study on freely moving rats, which
revealed short-latency activation (10 ms) of basal ganglia after
optogenetic stimulation of dentate nucleus, thus accounting
for a rapid communication between cerebellum and basal
ganglia leading to fine coordination of their respective outputs.
Moreover, when the electrical stimulation of dentate nucleus
is delivered simultaneously to high frequency stimulation of
cerebral cortex, the overall result is a direction change of
synaptic plasticity, reverting long term depression (LTD) in long
term potentiation (LTP; Chen et al., 2014). These findings do
provide new insight on the role of basal ganglia-cerebellum
communication in learning phenomena. The synergic role of
cerebellum and basal ganglia in learning processes is not new
considering the pioneer studies of the early 2000 showing that
the cerebral cortex, cerebellum and basal ganglia are involved
in specific learning paradigms: unsupervised, error-based
(supervised) and reward-based learning (Doya, 1999, 2000). The
recent anatomical findings of the two- and tri-synaptic pathways
linking the cerebellum and basal ganglia, together with the
evidence of a short latency communication, led Caligiore et al.
(2017) to consider their computational role and to update the
previous model of the cortico-basal ganglia-cerebellum loops.
The possible computational role of the dento-thalamo-striatal
pathway is to convey the predicted outcome of a candidate action,
processed in the cerebellum to the striatum where the outcome
itself is evaluated (forward model). On the other hand, the
computational role of the subthalamic-ponto-cerebellar pathway
is not clear at all; nevertheless, considering the involvement of
the subthalamic nucleus in the indirect pathway and aversive
learning phenomena, it is tempting to speculate that it would
prevent the new forward models to be conveyed to the striatum
(Caligiore et al., 2017).

POSSIBLE DIRECT CEREBELLAR-BASAL
GANGLIA CONNECTIONS

In addition to the dento-thalamo-striatal and subthalamo-ponto-
cerebellar pathways, Milardi et al. (2016a) reconstructed a white
matter pathway linking the dentate nucleus both to the GPi and
to the SN via the superior cerebellar peduncles and bypassing
the red nucleus, thalamus and striatum (Milardi et al., 2016a;
Figure 3).

Although its physiological meaning is still unknown, the
dento-nigral pathway, reconstructed in human by means of
dMRI and tractography, could represent the phylogenetical
equivalent of the pathway observed via tract-tracing in cats and
rats (Snider et al., 1976) allowing a fine-tuning of a fast cerebellar
influence of one of the output nuclei of the basal ganglia
system. In addition, release of dopamine in caudate nucleus
and incremented dopamine production in substantia nigra were
found after unilateral stimulation of the dentate nucleus in
cats (Nieoullon et al., 1978) suggesting that direct connections
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FIGURE 4 | Cerebellum-basal ganglia interplay. This panel shows the
connections between the cerebellum and basal ganglia as revealed by
retrograde tracing studies in monkeys. Red lines indicate the output of the
cerebellum on the basal ganglia via the dentate-thalamo-striatal pathway as
well as the control of basal ganglia on the cerebellum via the
STN-ponto-cerebellar cortex pathway.

from deep cerebellar nuclei could exert a modulatory role on
dopaminergic tone in the basal ganglia.

Recent evidences of a direct route connecting dentate nucleus
to globus pallidus, on human side, comes from a MEG-LFP
study (Neumann et al,, 2015), showing a functional oscillatory
connectivity in the alpha band (7-13 Hz) between the cerebellum
and globus pallidus in dystonic patients with an electrode
implanted in the GPi. In addition, it was also found a negative
correlation between the alpha band of coherence and symptoms
severity as measured by Toronto Western Spasmodic Torticollis
Rating Scale suggesting a compensatory role of the cerebellum in
dystonic patients.

These direct connections between the dentate nucleus and
GPi and SNr are very intriguing considering the presence of a
direct cortico-pallidal and cortico-SN pathways bypassing the
striatum in humans (Milardi et al., 2015; Cacciola et al., 2016a)
and in monkeys (Leichnetz and Astruc, 1977; Frankle et al,
2006). Hence, it is tempting to speculate on the existence of
3 direct systems running between the cortex, the basal ganglia
(STN, GPi and SNr) and the cerebellum, providing a fast route of
connection bypassing the striatum and the thalamus (Figure 4).
These considerations are not necessarily in conflict with the
consensus position of Caligiore et al. (2017) if we postulate
the appearance, in the evolutionary scale in humans, of a new
phylogenetic fast system connecting cerebellum and basal ganglia
which may complement the disynaptic or trisynaptic projections
from the dentate nucleus, passing through the thalamus and
reaching the putamen or the GPe. This new fast system would be
necessary to support the manual dexterity which is an exquisite
feature of human specimens.

FUNCTIONAL SIGNIFICANCE OF
CEREBELLAR-BASAL GANGLIA
INTERACTION IN MOVEMENT
DISORDERS

The basal ganglia and the cerebellum have been often conceived
separately as structures involved in different neurological
syndromes. However, evidences concerning the co-operation
of cerebellum and basal ganglia in movement disorders are
currently growing. Thus, the above-described scenario could
open an entirely new perspective into the pathophysiology of
basal ganglia and cerebellum disorders (Coenen et al.,, 2011;
Husarova et al., 2014).

Different aspects of movement disorders could be gathered by
cerebellum-basal ganglia interface. Cerebellum and basal ganglia
have been involved in time computation: the former should
be accounted for millisecond-range intervals whilst the latter
would work mainly on the second-ranges (Ivry, 1996; Buhusi
and Meck, 2005; Wiener et al., 2010). Functional MRI (fMRI)
studies revealed hypoactivation of basal ganglia and cerebellar
cortex during early stages of Parkinson’s Disease (PD) compared
to healthy controls, during an interception task. A direct causal
modeling analysis revealed differential modulation of effective
connectivity strength between basal ganglia and cerebellum in
performing a motor timing task (Husdrova et al., 2013, 2014).
This would suggest an involvement of cerebello-basal ganglia
circuits in motor and perceptual timing alterations, that are
typical of PD.

Although the involvement of basal ganglia in the
pathophysiology of dystonia is indisputable, the mechanisms
producing dystonia are incompletely understood, with recent
evidence pointing to the involvement of a variety of brain areas
including the cerebellum (Quartarone and Hallett, 2013; Jinnah
et al,, 2017). As it is possible that the etiological heterogeneity of
dystonias reflects the relative importance of different nodes in
this extended motor network, one major challenge is determining
first, the role and contribution of the different brain regions
in the various forms of dystonia with a comprehensive model;
second, if there is a final common pathway for all dystonias
(Quartarone and Ruge, 2018).

Anomalies in the cerebellum and basal ganglia have been
widely investigated in both animal and human studies of dystonia
(Filip etal., 2013; Tewari et al., 2017). Different cases of secondary
dystonia emerging from cerebellar lesions are described in
humans (Alarcon et al,, 2001; LeDoux and Brand, 2003; Shen
etal., 2016). In a murine model of cerebellar-induced dystonia, a
cerebellar outflow interruption has been causally linked to burst
firing activity in basal ganglia, which is a prominent feature of
dystonia (Chen et al., 2014).

Moreover, also primary dystonia, such as cervical dystonia has
also been conceptualized as deriving from alterations in neural
integration for head and eye movements, involving cerebellum
and basal ganglia in association with oculomotor structures
(Shaikh et al., 2016). In line with this hypothesis, in a fMRI study
during a visuospatial task, Filip et al. (2017) observed cerebellum-
basal ganglia hypoconnectivity in patients with cervical dystonia.
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The pathway linking the STN to cerebellum could be involved
in motor symptoms of PD. In particular, STN pathological
activity, characterized by burst activity and higher firing rates,
may in turn be responsible for hyperactivity of cerebellar
cortex leading to alterations in the cerebello-thalamo-cortical
circuits (Bostan et al., 2010; Bostan and Strick, 2018). It can
be therefore hypothesized that DBS of the STN could exert its
positive effects on motor learning by stimulating the pathway
linking the STN to the cerebellum. Supporting this hypothesis,
a recent fMRI study on 20 PD patients implanted with DBS
of the STN found that functional connectivity between active
contact and contralateral cerebellum is strongly predictive of
improvement in motor learning (de Almeida Marcelino et al.,
2019). It would be tempting to speculate that suppression of
STN aberrant activity, promoted by DBS, could lead to improved
cerebellar function and, by consequence, to improvement
in motor learning.

CONCLUSIONS

In conclusion, further experimental and challenging studies
should be fostered to characterize the full extent of the interplay
between the cerebral cortex, the basal ganglia and the cerebellum.
However, several evidences have already suggested that the
system is more intricated than initially assumed. In the present
review, we discussed the invasive and non-invasive techniques
to investigate the anatomy and the extrinsic and intrinsic
connections of the basal ganglia network. We illustrated the
neuroanatomical findings obtained in non-human species that
have inspired a paradigmatic shift in this scenario, providing
evidences that the cortico-basal ganglia circuits constitute a
complex system. Finally, we provide further support coming
from neuroimaging studies that these pathways may exist in
humans and may exert a meaningful role in basal ganglia
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