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Spontaneous neural activities are endowed with specific patterning characterized by
synchronizations within functionally relevant distant regions that are termed as resting-
state networks (RSNs). Although the mechanisms that organize the large-scale neural
systems are still largely unknown, recent studies have proposed a hypothesis that
network-specific coactivations indeed emerge as the result of globally propagating
neural activities with specific paths of transmission. However, the extent to which
such a centralized global regulation, rather than network-specific control, contributes
to the RSN synchronization remains unknown. In the present study, we investigated
the contribution from each mechanism by directly identifying the global as well as local
component of resting-state functional MRI (fMRI) data provided by human connectome
project, using temporal independent component analysis (ICA). Based on the spatial
distribution pattern, each ICA component was classified as global or local. Time lag
mapping of each IC revealed several paths of global or semi-global propagations that
are partially overlapping yet spatially distinct to each other. Consistent with previous
studies, the time lag of global oscillation, although being less spatially homogenous
than what was assumed to be, contributed to the RSN synchronization. However,
an equivalent contribution was also shown on the part of the more locally confined
activities that are independent to each other. While allowing the view that network-
specific coactivation occurs as part of the sequences of global neural activities, these
results further confirm an equally important role of the network-specific regulation for its
coactivation, regardless of whether vascular artifacts contaminate the global component
in fMRI measures.

Keywords: fMRI, resting-state network, spatiotemporal dynamics, spontaneous neural activity, neuronal pathway
tracing

INTRODUCTION

Once considered to be a noisy, stochastic process, spontaneous activity of the cortical neuron is
now understood to be by no means random but is endowed with specific patterning that reflects
the functional architecture of the underlying network at the level of micro- or meso-circuits
(Tsodyks et al., 1999; Kenet et al., 2003). Over the last two decades, it has become apparent that this
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is analogously true at the level of large-scale networks that
are defined using resting-state functional magnetic resonance
imaging (rs-fMRI) (Biswal et al., 1995; Fox and Raichle,
2007). The spatial patterns identified as areas with synchronous
oscillation of the blood oxygenation-level dependent (BOLD)
signal are termed as resting-state networks (RSNs) (Fox
et al., 2005). These networks are closely related to anatomical
connectivity among the neural subsystems that have been
revealed by a wide variety of visual, sensorimotor, and cognitive
task paradigms (Vincent et al., 2007; Zhang et al., 2010). However,
the neurophysiology of the phenomenon, or the mechanism that
controls and coordinates the intrinsic synchronization across
distributed neural systems, largely remains to be established.

While conventional rs-fMRI analyses based on seed-based
correlation or independent component analysis (ICA) implicitly
assume that the spatial distribution of the synchronous neural
activity is temporally constant, animal studies have revealed that
spontaneous neural activity is spatiotemporally structured, and
propagating waves of activity have been recorded in a variety of
species (for review, see Muller and Destexhe, 2012). Neuronal
membrane potential in the cortex undergoes a spontaneous
transition between up and down states in the absence of sensory
inputs (Steriade et al., 1993; Lampl et al., 1999; Petersen et al.,
2003; Shu et al., 2003). Population activity of the neurons during
the up state manifests as propagating waves not only within a
part of the cortex (Petersen et al., 2003; Ferezou et al., 2007; Xu
et al., 2007; Civillico and Contreras, 2012), but also throughout
the entire brain (Stroh et al., 2013). The spatiotemporal dynamics
of the low-frequency oscillation have also been identified by
examining the repetitive spatiotemporal patterns (Majeed et al.,
2009, 2011; Takeda et al., 2016; Belloy et al., 2018; Abbas et al.,
2019) or by analyzing the time lag structures of the rs-fMRI
data (Mitra et al., 2014, 2015a; Amemiya et al., 2016; Matsui
et al., 2016). An intriguing hypothesis proposed by one of those
studies is that the RSN synchronization indeed emerges as the
result of several independent global propagations of spontaneous
neural activity (Mitra et al., 2015a). Using synthetic time series
embedded with the measured time lag structures of the rs-
fMRI data, Mitra et al. (2015a) showed that the functional
connectivity (FC) matrix representing the RSN synchronization
could be reconstructed to a fair approximation. In support of this
idea, a recent animal study also showed that a global wave of
spontaneous neuronal activity propagating across the networks
contributes to within-network coactivations of the neurons
that correspond to RSN synchronization (Matsui et al., 2016).
Based on these findings it follows that seemingly independent
RSN activity can be viewed as being controlled by a single
centralized mechanism, through global wave(s) of activity that
regulate and constrain the relative relationships of the network
activity by determining the order and timing of the activation
of each network. However, it remains unclear if this is the
sole mechanism that gives rise to the RSN synchronization,
as suggested by those studies (Mitra et al., 2015b; Matsui
et al., 2016). An alternative, thought non-exclusive, origin of
the synchronization would be network-specific coactivations
among the neural populations confined within each network
(Mohajerani et al., 2013; Ponce-Alvarez et al., 2015). In the

neural system, it is generally supposed that diverse physiological
mechanisms coexist for rhythm generation and population
synchronization for which different levels of integration interact
closely with each other (Ivanchenko et al., 2008; Harris-
Warrick, 2010; Wang, 2010). For example, in the respiratory
central pattern generator of the mammals, rhythm generation is
dependent on the endogenously oscillatory neurons that serve as
pacemaker, as well as the pattern of synaptic connections within
the network that forms a network pacemaker (hybrid pacemaker-
network mechanism) (Calabrese, 1998; Rybak et al., 2004, 2007;
Sohal et al., 2006; Johnson et al., 2007).

It seems possible, therefore, that multiple mechanisms –
namely, global propagation and local synchronization –
contribute to the emergence of the coherent RSN activity that
characterizes the functional architecture of the brain. In order
to address this question, it is imperative to evaluate not only the
paths but also the whole picture of the traveling waves. We thus
started by identifying the signal time course of the global waves
by applying the temporal ICA to rs-fMRI data. In fMRI, virtually
all applications of ICA use spatial rather than temporal ICA.
Although spatial ICA is suitable for the separation of the spatially
distinct activations from each other, temporal ICA would be
more appropriate if the aim is to find functionally independent
and spatially overlapping activities (Smith et al., 2012), such as
what we assume to be multiple global waves.

In contrast to previous studies focusing on estimating the
paths of traveling waves by analyzing the signal time lag (Mitra
et al., 2014, 2015a; Amemiya et al., 2016; Matsui et al., 2016),
direct detection of the traveling waves enables us to infer the
likelihood that each mechanism contributes to the emergence
of network synchronization, as well as to map the magnitude
of each type of activity in each region. Moreover, identification
of individual traveling waves allows accurate estimation of the
time lag structures, in contrast to previous studies employing
a decomposition approach, regardless of the validity of the
assumptions that the time lags of multiple waves can be linearly
superposed, or that the paths of traveling waves are spatially
independent. By comparing the correlation matrix of both the
global and the local component to that of the FC matrix,
contribution of each type of activity to the RSN synchronization
that characterizes the resting state FC was evaluated.

MATERIALS AND METHODS

Overview
A summary of the analysis is presented as a schematic in Figure 1
to provide an overview of the study. We used data from the
WU-Minn Human Connectome Project (HCP) young healthy
adults (ages 22–35) S1200 release that provides paired dataset of
the same group of subjects (day 1 and day 2). All preprocessing
and data analyses were performed for each dataset, respectively,
in the same way.

HCP Data
Data of 50 subjects who underwent 3 T resting-state fMRI
sessions without quality control issues, and whose mean
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FIGURE 1 | Schematic of the resting-state fMRI data processing. Temporal independent component analysis (ICA) was applied to pre-processed test and re-test
dataset, whose dimensionality were reduced to 61 × 120,000 and 62 × 120,000 using spatial ICA, respectively. Each temporal ICA gave 28 and 30 reproducible
components (Step 1). For each component (IC time series), a time lag map was obtained by computing the time lag of each voxel relative to the IC time series using
cross-correlation, which was further interpolated with parabolic polynomials. Pearson’s correlation coefficients were computed between each voxel’s time series and
the IC time series that was shifted as much as the measured time lag. Classification of ICs was based on spatial distribution pattern of each component. Any
component that is more similar to the whole-brain signal than any RSN template in distribution pattern was classified as global (Step 2). Using the time-shifted global
ICs as regressors, linear regression analysis was performed for each voxel. All global ICs detected for any single temporal ICA were then integrated. The rest of the
signal change was classified as local contribution. The correlation matrix of the global as well as local component was computed and compared with the correlation
matrix of the original signal FC matrix (Step 3).

framewise displacement was less than 0.2 mm were included
for the analysis. The number of subject was determined by
the maximum size of the data that could be processed by
a core program for ICA, Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC)
(Beckmann and Smith, 2004). HCP imaging and pre-processing
protocol have been previously described in detail (Glasser et al.,
2013; Smith et al., 2013; Van Essen et al., 2013; Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). In brief, resting-state fMRI
data were acquired using a single customized Siemens 3 T
scanner housed at Washington University in St. Louis, using a
standard 32-channel receive head coil, with 2.0 mm isotropic
spatial resolution, 0.72 s repetition time (TR), and 1200 frames,
i.e., 14.4 min per run. For each subject, and for each session,
two runs with reversed phase encoding directions, RL or LR,
with the order counterbalanced across each of two sessions,
were acquired (WU-Minn HCP 1200 Subjects Data Release
Reference Manual), and the geometric distortions were corrected
using spin echo field map EPI scans (Glasser et al., 2013).

The data were then subjected to spatial ICA using MELODIC
with automatic dimensionality estimation. Using FMRIB’s ICA-
based X-noisifier (FIX) (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014) that is a machine learning classifier trained on HCP
data, spatially specific noise components were identified and
removed for each run. Then 24 movement regressors were further
regressed out of the data (Smith et al., 2013; Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014).

Data Analysis
Further Pre-processing
Further pre-processing and analysis of the data were performed
using tools from SPM12 software1, AFNI libraries2 and in-house
scripts written and implemented in Matlab 9.3 (MathWorks,
Natick, MA, United States). Linear trends were removed from
the HCP data that had been processed with subject-level ICA

1http://www.fil.ion.ucl.ac.uk/
2https://afni.nimh.nih.gov/
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noise reduction (sICA + FIX), and the data were band-pass
filtered at 0.01–0.1 Hz. The pre-processed data were temporally
concatenated across runs to create a single 4D dataset of 120,000
timepoints for test and re-test dataset, respectively.

Temporal-ICA
For temporal ICA decomposition of the data, we employed a
strategy adapted from Smith et al. (2012) to perform group-wise
spatial ICA in advance of the final temporal ICA. The spatial
ICA allows further identification of artifact components at the
group level, as well as to achieve a high-dimensional functional
parcelation of the group data, which reduces the dimensionality
of the data to feed into temporal ICA. The overall ICA analysis is
described as follows:

X(V×T) = SS(V×K) × At(K×L) × St(L×T) + E

whereX is the data matrix of sizeVoxels×Time points, Ss are the
spatial maps estimated by spatial ICA, K is the number of spatial
ICA components that were subsequently fed into temporal ICA,
after removing noise components. L is the number of temporal
ICA components. St is the decomposed time series (ICA sources),
and At is the central mixing matrix of temporal ICA. E combines
noise and artifact aspects of the data (Smith et al., 2012).

Group-wise spatial ICA was performed using MELODIC
with automatic dimensionality estimation. Of the 61 and 62
ICs generated from dataset 1 and 2, three ICs were classified
as artifacts on the basis of their spatial features, respectively.
Specifically, activation patterns clearly outlining the intensity
edges of the gray matter were classified as noise (Smith et al.,
2012; Salimi-Khorshidi et al., 2014; Pruim et al., 2015). For
the remaining components, functional nodes’ time series were
computed using dual regression technique (Filippini et al., 2009),
and fed into temporal ICA.

For temporal ICA, we used Icasso algorithm (Himberg et al.,
2004) to estimate the most appropriate decomposition yielding
a set of reproducible IC clusters. For all possible dimensions or
number of components, Icasso was ran with both resampling
mode that uses random initial condition as well as bootstrapping
of the data for 100 times, which pooled all temporal ICA estimates
using FastICA (Hyvärinen, 1999) with tanh non-linearity and a
symmetric decorrelation approach. We chose the decomposition
yielding the maximum number of clusters of reproducible
components that gives a stability index Iq larger than 0.5. Iq
is computed as the difference between the average intracluster
similarities and average intercluster similarities, which reflects
the compactness and isolation of a cluster (Himberg et al.,
2004). For each dataset, 28 and 30 reproducible clusters were
found, respectively.

Identification of the Global Waves
For all temporal ICs, time series of each run, once concatenated
to be subjected to a temporal ICA was deconcatenated so that
following analyses can be performed for each run separately
unless otherwise noted. Firstly, spatiotemporal patterns or
paths of traveling waves were estimated for each IC by
computing the relative time lag t that gives the best positive
fit between each voxel’s time series and the time-shifted

(±6.3 s or ±9 TR) IC (time series) using cross-correlation
analysis. As in our previous study, 12 s limit of propagation
delay was set to include whole-brain vascular time lag that
can range up to nine seconds (Amemiya et al., 2016).
Parabolic interpolation (Meijering, 2002) was further applied
to locate the peak time lag t’ using the extremum t,
as well as the two nearest points given by the cross-
correlation analysis.

The magnitude map of each IC was then computed as
the Pearson’s correlation coefficients between each voxel’s time
series and the IC time series that was shifted as much as
t’ using sinc interpolation to give the maximum correlation.
Classification of ICs was based on the spatial distribution pattern
of each component. We performed template matching using
21 RSN templates (Smith et al., 2012), as well as a whole-
brain signal template that is the correlation map of the whole-
brain mean signal, averaged over 100 runs (Supplementary
Figure S1). The whole-brain signal was computed as the
average signal within a gray matter mask was created by
thresholding MNI template at 10% or larger probability of being
gray matter. Pearson’s correlation coefficients were computed
between each IC and each of the 22 templates within the
mask. Any component that is more similar to the whole-
brain signal template than any of the RSN templates (i.e.,
giving a greater correlation coefficient with a whole-brain signal
template) was classified as global. Note that our study focuses
particularly on examining the existence of coactivations restricted
within each RSN, in addition to the globally propagating
activities that were assumed to exist throughout the brain
and treated as such in the analysis of previous studies.
In this context, it would certainly make sense to identify
any component whose distribution is restricted within any
functionally distinct areas as being local as opposed to a
functionally and spatially less specific global (or more precisely
semi-global) pattern.

Using the time-shifted global ICs as regressors, linear
regression analysis was performed for each voxel’s time series.
The global component was then computed as the integral of all
global ICs by summing up the shifted time series multiplied by
the corresponding regression coefficients. The rest of the signal
was classified as local contribution (Figure 1).

Estimation of the Likelihood That Each Mechanism
Gives Rise to the RSN Synchronization
In order to evaluate the contribution of each mechanism to
the emergence of RSN synchronization, we compared regions
of interest (ROI)-wise correlation matrices given by each
component using a set of 132 ROIs provided as part of the
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012)
that were originally defined from FSL Harvard-Oxford Atlas
maximum likelihood cortical or subcortical atlas and cerebellar
parcelation from AAL atlas.

For each subject’s each run, FC matrix was obtained by
computing the Pearson’s correlation coefficient between each
possible couple of ROI’s mean time series (i.e., global + local
component). Similarly, three types of correlation matrices were
computed by correlating the time series of (1) global component,
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(2) local component, (3) global component reconstructed to
reflect only time lag of each global IC, respectively. We
correlated each matrix against the FC matrix run-wisely,
using the correlations above the diagonal of each matrix,
transformed to Fisher’s Z and tested by using a two-tailed
t-test over runs against the null hypothesis of no correlation.
Next, we examined whether the time lag itself contributes
to the RSN synchronization by computing the correlation
between the FC matrix and the correlation matrix of the
global component that was reconstructed without implementing
the magnitude difference. In the presence of time lag, even
when the global component is composed of a single IC,
the spatial difference of its magnitude can contribute to
the characterization of the correlation matrix, let alone the
global component composed of multiple ICs. It is therefore
important to eliminate the effect to determine if time lag
is the source of synchronization. The magnitude of each IC
was adjusted to reflect the contribution of each IC that is
computed as the root mean square of the mixing matrix of
the temporal ICA.

In order to further confirm the relationship between the
signal synchronization and the time lag of the global component,
for each global component, Pearson’s correlation coefficient was
computed between the FC matrix and the matrix of relative time
lag that is the difference of the time lags between given ROIs.

Contribution of the local component was also assessed by
computing the correlation between the FC matrix and the
correlation matrix of the local component in the same way.
Correlation between the correlation matrices were computed
using the upper triangle of each correlation matrix. The
threshold of the statistical significance was set at p = 0.05,
and the Bonferroni correction was used to control for the
multiple comparisons.

Origin of the Time Lag
To estimate the origin of the time lag that characterizes
the global component, all magnitude (correlation coefficient)
and time lag maps of the global ICs that were averaged
across subjects were compared with those of the whole-
brain signal, respectively. Partial correlation analysis was also
performed to control the effect of vascular time lag that
was measured using dynamic susceptibility contrast enhanced
perfusion imaging (Amemiya et al., 2016). We also compared
the time lag structure of the local component and that of
the whole-brain signal by computing the Pearson’s correlation
between the time lag maps with each local IC. A correction
for the spatial degrees of freedom was given via Gaussian
random field theory and empirical smoothness estimation,
which estimated the number of independent resels or resolution
elements to be 103.

RESULTS

Identification of the Global Waves
Of the 28 and 30 reproducible ICs for dataset 1 and 2, 7,
and 10 were classified as global IC based on the pattern of

spatial distribution for each dataset, respectively (Figure 2 and
Supplementary Figure S2). The magnitude of the global IC
is shown as Pearson’s correlation coefficient between the time-
shifted global IC and the time series of each voxel, with the
corresponding time lag structures showing the paths of each
global component (Figure 2 and Supplementary Figure S2).
All magnitude and time lag maps shown were obtained by
averaging the resulting maps across all subjects’ all runs. Time
lag maps of the global components showed structural paths of
each signal, which is consistent with previous studies suggesting
the existence of multiple global waves of activity in the resting
state; c25, c07 and c05 show early regions in the rostral and
lateral part of the frontal lobes and delayed regions in the
medial part of the frontal lobes, insular and inferior frontal
gyrus and occipital lobes, while the pattern is almost opposite
for c10. C12’s path is characterized by early regions in the
sensorimotor, auditory, and visual cortex, as well as delayed
regions in the association cortex and posterior cingulate cortex,
while c07 shows the opposite pattern. C15 resembles c05, c07,
c25 pattern, but the delay in the dorsal attention network is more
conspicuous (Figure 2).

However, there were significant correlations among the
paths of global signals (Supplementary Figures S6A,B). Some
global ICs also showed apparent similarity to the whole-brain
signal not only in its spatial distribution characterized by
symmetrical involvement of the dorsal cerebral cortex with
predominantly high magnitude in the occipital lobes, but also
in its propagation pattern: time lag: |r| = 0.42 ± 0.21 (re-test,
0.37 ± 0.23); magnitude: r = 0.58 ± 0.15 (re-test, 0.55 ± 0.12)
(Figure 2 and Supplementary Figure S2). Partial correlation
analysis controlled for the perfusion time lag also showed
sometimes reduced but still significant correlation between
the time lag maps of the global ICs and the whole-brain
signal: |r| = 0.40 ± 0.23 (re-test, 0.39 ± 0.22). These results
suggest that even if multiple global waves of activity coexist
in the resting state, the paths of the traveling waves can be
substantially overlapped, as can the spatial distribution, which
is not simply explained as the result of common background
vascular perfusion.

Time lag maps of the global ICs detected from the test
dataset were well replicated by the analysis of the re-test dataset.
Supplementary Figure S6C demonstrates that all global ICs of
the test data were significantly positively correlated with at least
one global IC of the re-test data.

Consistent with previous studies (Mitra et al., 2014; Amemiya
et al., 2016), magnitude and latency of the whole-brain signal
were not significantly correlated: r = −0.10, p = 0.32 (re-test,
r = −0.051, p = 0.62). The majority of the global components
showed significant correlation between magnitude and time lag
(p < 0.05): c07, r = 0.41; c10, r = −0.30; c12, r = −0.48; c12,
r = −0.48; c25, r = −0.27 (re-test, c05, r = −0.29; c07, −0.44;
c12, r = −0.31; c18, r = −0.36; c22, r = −0.24; c24, r = −0.25;
c26, r = −0.42), which might be caused by the attenuation of the
waves of activity during the process of transmission.

Some of the global ICs showed anteroposterior propagation
that might correspond to the pattern detected using
electroencephalogram in sleeping humans: c22 of the test
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FIGURE 2 | Global component. The spatial distribution of the magnitude of the temporal ICA components for test dataset demonstrates a set of global ICs. The
magnitude of the seven global ICs is shown as Pearson’s correlation coefficient with the corresponding time lag structures showing its path. All magnitude maps
were significantly correlated with the map obtained using the whole-brain signal (WBS), that is characterized by symmetrical high magnitude areas distributed
predominantly in the occipital lobes, as well as in the path of propagation that is characterized by early signal in the primary sensorimotor and visual cortex compared
with association areas, frontotemporal basal regions or the cerebellum (bottom row). Five of the seven time lag maps were significantly correlated with that of the
whole-brain signal. C25, c07, and c05 show early regions in the rostral and lateral part of the frontal lobes and delayed regions in the medial part of the frontal lobes,
insular and inferior frontal gyrus and occipital lobes, while the pattern is almost opposite for c10. C12’s path is characterized by early regions in the sensorimotor,
auditory, and visual cortex, as well as delayed regions in the association cortex and posterior cingulate cortex, while c07 shows the opposite pattern. C15 resembles
c05, c07, c25 pattern, but the delay in dorsal attention network is more conspicuous. Pearson’s correlation coefficients between time lag and magnitude maps of
each global IC and those of the whole-brain signal are also shown.

dataset as well as c22 and c26 of the re-test dataset show
early regions in the rostral compared with caudal part of the
cerebral cortex.

Contribution of the Global Waves to the
RSN Synchronization
The correlation matrix of the global component reconstructed
with the detected global ICs showed significant correlation with
the FC matrix: r = 0.31 ± 0.13 (re-test, 0.32 ± 0.11), p < 0.001
(Figures 3A,B and Supplementary Figures S3A,B). Significant
correlation was found even when the global component
was reconstructed without considering the spatial difference
of its magnitude: r = 0.22 ± 0.13 (re-test, 0.27 ± 0.11),
p < 0.001 (Figure 3C and Supplementary Figure S3C).
Furthermore, significant negative correlation between the
strength of synchronization (FC) and the relative time lag
was also shown for all global waves: r = −0.19 to −0.39,
p < 0.001 (re-test, r = −0.14 to −0.40, p < 0.001) (Figures
3E, 4 and Supplementary Figures S3E, S4), which suggests that

the time lag of the global component can contribute to the
RSN synchronization.

Characteristics of the Local Component
The spatial distribution of the magnitude of the 28 and 30
reproducible local ICs is shown in Figure 5 and Supplementary
Figure S5, respectively. Each magnitude map of the local ICs
showed significant synchronization within functionally relevant
structures, which would correspond to spatial maps for the
temporally independent functional modes (Smith et al., 2012). In
other words, as previously well-explored in Smith et al. (2012),
the local ICs could be considered as functional “modes” that
in some cases could subdivide and/or reorganize the currently
standard spatial RSNs.; e.g., c01-03 contain visual cortex
(predominantly extrastriate areas) and ventral sensorimotor
cortex; c04 contains right orbitofrontal cortex in addition
to sensorimotor and visual cortex; c06 contains extrastriate
cortex and basal ganglia; c08 contains sensorimotor cortex, c09,
c17, c18 involve frontotemporal network nodes; c11 mainly
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FIGURE 3 | Contribution of each component to RSN synchronization. Whole signal Functional Connectivity (FC) matrix had significant positive correlation with the
global component correlation matrix (A vs. B), suggesting the contribution of the global component to the RSN synchronization. Significant correlation is also shown
even when the global component was reconstructed without considering the spatial difference of its magnitude (A vs. C). Correlation matrix of the local component
is also fairly similar to the FC matrix, suggesting an equivalent contribution of locally limited activity to RSN synchronization (A vs. D). For each global component,
there was significant negative correlation between the strength of synchronization (FC) and the relative time lag between each ROI, which confirmed the contribution
of the time lag of the global component to RSN synchronization (E).

involves association cortex; c13 and contains primary visual
cortex and default mode network nodes in the angular gyrus
and posterior cingulate cortex; c14 contains visual cortex and
dorsolateral prefrontal cortex; c16 involves relatively widespread
areas mainly involving the sensorimotor and primary visual
cortex in addition to basal ganglia; c19 contains; c20 and c21
contain dorsal attention network and frontal lobes; c23 involves
primary visual cortex and frontal lobes; c24 and c28 contains
salience network and frontoparietal network nodes; c26 contains
auditory and sensorimotor networks; c27 involves sensorimotor
and visual cortex. Figure 3D and Supplementary Figure S3D
show correlation matrices of the local component that are fairly
similar to the FC matrix (r = 0.41, p < 0.05; re-test, r = 0.42,
p < 0.05), suggesting an equivalent or even larger contribution
of the local activity to the RSN synchronization that characterizes
the FC matrix. The magnitude of the activity of the local
component relative to the whole signal was 0.70 for both test and
re-test dataset.

DISCUSSION

By applying temporal ICA to the rs-fMRI data, we have identified
several global or semi-global waves of slow oscillation that are

temporally independent yet spatially overlapping with each other.
Although the correlation matrix of the global component showed
substantial correlation with the FC matrix, an equivalent or even
greater contribution of the local component was also shown.
The results indicate that while global waves of activity, although
being less spatially homogenous than what was assumed to be,
could contribute to the emergence of the RSN, which is partly
consistent with previous studies suggesting that within-network
synchronization can arise from the time lag of the global waves
(Mitra et al., 2015a; Matsui et al., 2016), this does not exclude
the contribution of local activity that are more confined within
functionally relevant structures.

Multiple Waves of Activity
Although the number of the global IC was slightly varied
depending on the dataset, there was substantial overlap among
the global ICs detected within or across the temporal ICAs for
test and re-test datasets. Moreover, the majority of the global
waves detected across the temporal ICAs were significantly
correlated with the path of the whole-brain (global mean)
signal, which would be the most robust representation of the
global signal. Partial correlation analysis that controlled for
the effect of vascular time lag also confirmed that significant
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FIGURE 4 | Signal correlation matrix vs. Time lag matrix. For each global component, there was significant negative correlation between the strength of
synchronization (FC) and the relative time lag between each ROI, which confirmed the contribution of the time lag of the global component to RSN synchronization.

correlation was still found with the global waves. While these
results might support the finding that the global neural activity
has a predominant path of propagation (Matsui et al., 2016),
they also suggest the existence of multiple overlapping paths
of neural oscillations. Some paths of global ICs that share
common features with those obtained in the previous studies:
c25, c05, c07, c10, and c12 would correspond to the thread
2 reported in Mitra et al. (2015a) that shows a contrast
between the rostral and lateral part of the frontal lobes vs.
medial part of the frontal lobes, insular and inferior frontal
gyrus and occipital lobes, while c15 to thread 8 (note that
the polarity of the threads can be inverted). However, there
were some other time lag structures representing the paths
of propagating neural activity that were not obtained by
merely decomposing the measured total time lag as multiple
orthogonal components (i.e., threads in Mitra et al., 2015a) or
as independent components (Amemiya et al., 2016). Specifically,
some global ICs showed anteroposterior propagation that might

correspond to the pattern detected using electroencephalogram
in sleeping humans (Massimini et al., 2004) or with calcium
imaging as well as BOLD imaging in anesthetized mice (Stroh
et al., 2013; Matsui et al., 2016). While physiological basis or
significance of such global activity remains to be known, all
these data further support the view that spatiotemporal pattern
of BOLD signal could reflect large-scale dynamics of underlying
neuronal activity.

Origin of the Time Lag and
Synchronization
Given that cerebral vascular time lag is quite uniform across
subjects (Amemiya et al., 2016), existence of multiple paths
of traveling BOLD signal suggest the existence of multiple
waves of neural signal (Mitra et al., 2015a; Amemiya et al.,
2016). Although BOLD represents hemodynamic response
to neural activity that is necessarily influenced by the
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FIGURE 5 | Local component. The spatial distribution of the magnitude of the temporal ICA components for test dataset demonstrates a set of local ICs. Each IC
shows significant synchronization within functionally relevant structures that would correspond to spatial maps for the temporally independent functional modes
(Smith et al., 2012).

characteristics of the underlying vasculature (Amemiya et al.,
2012; Bandettini, 2014), the path of globally propagating
activity has been shown to coincide with that of the neuronal
calcium signal in mice (Matsui et al., 2016). Assuming that
the same holds true for non-anesthetized awake human
data, the propagating pattern of global oscillations that are
characterized by structured and smooth gradation can be
seen as corresponding to a gradual propagation via short-
range corticocortical connections. In addition, small time lag
observed between distant regions across RSNs may reflect
the presence of a mechanism controlling the initiation of
spreading activity, mediated via long-range connections
in a rapid manner. Such activities might help integrate
the spontaneous oscillation of the cortex across RSNs in
the whole brain, which is analogous to the concept of
synfire chains in synchronous mode (Abeles, 1982, 1991),
in which groups of neurons are organized into chains, and
the architecture enables precisely timed sequences of spikes
to form a propagating wave of activity (Abeles, 1982, 1991;
Diesmann et al., 1999).

Alternatively, it would also be possible to assume that the time
lag of the global oscillations mainly reflects vascular dynamics for
some ICs. Indeed, whole-brain signal and vascular perfusion are

known to share similar spatiotemporal characteristics (Amemiya
et al., 2014, 2016; Tong et al., 2017). It might be important
to note, however, that the source of the time lag is not
necessarily identical to the source of the signal, so even if
the time lag were totally non-neural in origin, that does not
mean that the origin of the global signal is non-neural. This
is because perfusion time lag can also be reflected in the
time lag of BOLD signal of neural origin (Roc et al., 2006;
Amemiya et al., 2012). Therefore, for the ICs whose time lag
maps are similar to that of perfusion, e.g., like whole-brain
signal, a measurement that is independent of neurovascular
coupling would be preferable and perhaps essential for a more
precise prediction of the spatiotemporal profile of the underlying
neural activity.

Nevertheless, even if the contribution of some global
oscillations to the apparent network synchronization were an
artifact (Tong et al., 2015), the results of the present study
suggest that network-specific synchronization does exist besides
such component, which is consistent with the growing evidence
supporting the link between BOLD and electroencephalographic
or magnetoencephalographic measures of resting state activity
(Goldman et al., 2002; Yan et al., 2009; Brookes et al., 2011;
Tagliazucchi et al., 2012). Moreover, the present study indicates
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that within-network synchronization is dependent on
local neural activities that are temporally independent
to each other, which necessitates the presence of
a mechanism that would be conceived as network-
specific pacemaker irrespective of the contribution of the
global oscillations.

Technical Issues
In the present study, two large HCP datasets acquired from
the same 50 subjects were used to test the reproducibility of
the analysis. In temporal ICA, each component’s independence
is optimized for the axis of time. Therefore, the temporal
dimensionality or timepoints of the data should be large
enough. Although there is no good reason to assume that
the number of timepoints should be as large as the number
of voxels in original data, when the dimension was reduced
during the process of group spatial ICA in advance to temporal
ICA. Rather the problem lies in that it is generally difficult
and practically impossible to know in advance how many
timepoints are needed for an ICA, which is particularly
dependent on the non-gaussianity of the data. This is
why post hoc analysis is generally considered important to
validate an ICA.

It is also theoretically apparent that higher spatiotemporal
resolution is preferable for a better mapping of the
spatiotemporal characteristic of the data. However, identification
of the global component is not likely dependent on the
spatiotemporal resolution of the BOLD fMRI. This is because
ICs are classified according to the pattern of spatial distribution,
which is not dependent on the temporal or spatial resolution
itself let alone the speed of the traveling waves. Therefore,
granting that the time lag maps would become more accurate
if the sampling rate or spatial resolution of the data were
increased, given that the maps obtained in the present study
represent structured and highly similar patterns even across
studies for the whole-brain signal (Amemiya et al., 2014;
Mitra et al., 2014; Tong et al., 2017), such contribution would
be negligible compared with other factors, at least for the
range of the neural band of 0.01–0.1 Hz. The same holds
true for the slice-time correction. HCP do not recommend
us doing slice timing correction for the dataset, because
while the effect of the slice timing correction is limited
for the short TR (0.72s), slice timing correction interacts
with movement correction in ways that have not ever been
appropriately addressed in available tools. However, given
the fact that it is impossible to align the subjects’ head
in exactly the same position for every scan for all the
subjects, and that the acquisition was performed by using
simultaneous multislice imaging with a slice thickness of
2 mm, we consider that the small slice timing differences
were expected to be canceled out during the course of spatial
normalization and group averaging of the time lag maps, which
was confirmed by high correlation among the whole-brain
signal time lag maps.

For the preprocessing, we did not apply global signal
regression (GSR). Although GSR is a useful process to remove
physiological noise like motion artifact, it eliminates any

global signal regardless of the origin and can distort the
resulting connectivity or activation measures in a complex
way (Saad et al., 2012; Gotts et al., 2013; Glasser et al.,
2016, 2018; Tang et al., 2019). Therefore, GSR and related
approaches still remain controversial. Given that the study
aim is to understand the possible contribution of the
global signal, we consider it important not to apply GSR
for our analysis.

In the present study, detection of the global IC was based
on the spatial distribution pattern of each component that was
judged by template matching using RSNs as well as the magnitude
map of the whole-brain signal, which enabled us to classify an
IC into global or local component without setting a threshold
for the spatial coverage of that component. Although intuitively,
an IC showing a larger spatial coverage would be considered
as a global component, such classification is practically very
difficult, because there is no objective definition regarding the
coverage of a global component, as was the case in the original
definition of the RSNs.

Rather, it is important to note that the present study, like
previous studies, focuses on identifying slow waves with fixed
patterns of propagation. While such an approach is advantageous
in exploring the most robust representation of the phenomenon,
an analysis allowing more spatiotemporally complex and
dynamically changing patterns of propagation will probably
reveal a more precise picture of the inter-network activities
that may contribute to the integration of the network-specific
activities constituting the functional architecture of the brain.
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