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Do subjects with atypical patterns in attentional and executive behaviour show different
brain network topology and react differently towards nicotine administration? The
efficacy of pro-cognitive drugs like nicotine considerably varies between subjects and
previous theoretical and empirical evidence suggest stronger behavioural nicotine effects
in subjects with low performance. One problem is, however, how to best define
low performance, especially if several cognitive functions are assessed for subject
characterisation. We here present a method that used a multivariate, robust outlier
detection algorithm to identify subjects with suspicious patterns of performance in
attentional and executive functioning. In contrast to univariate approaches, this method
is sensitive towards extreme positions within the multidimensional space that do not
have to be extreme values in the individual behavioural distributions. The method was
applied to a dataset of healthy, non-smoking subjects (n = 34) who were behaviorally
characterised by an attention and executive function test on which N = 12 volunteers
were classified as outliers. All subjects then underwent a resting-state functional
magnetic resonance imaging (fMRI) scan to characterise brain network topology and an
experimental behavioural paradigm under placebo and nicotine (7 mg patch) that gauged
aspects of attention and executive function. Our results indicate that subjects with an
atypical multivariate pattern in attention and executive functioning showed significant
differences in nodal brain network integration in visual association and pre-motor brain
regions during resting state. These differences in brain network topology significantly
predicted larger individual nicotine effects on attentional processing. In summary, the
current approach successfully identified a subgroup of healthy volunteers with low
behavioural performance who differ in brain network topology and attentional benefit
from nicotine.
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INTRODUCTION

Previous clinical studies on the therapeutic use of nicotine
and nicotinic agonists often failed to show a positive effect
on cognition, attention and psychomotor functions in patients
with neuropsychiatric disorders (Newhouse, 2019). Despite
these failures in clinical studies, previous experimental results
revealed significant nicotine effects on motor performance
and attention (Heishman et al., 2010; Tregellas and Wylie,
2019). In addition, previous clinical studies documented an
increased percentage of smokers in patients with a variety of
psychiatric disorders, including attention-deficit hyperactivity
disorder (ADHD) and schizophrenia (Pomerleau et al., 1995;
Tregellas and Wylie, 2019). This was seen as further evidence
for the effectiveness of nicotine to self-medicate attentional and
emotional dysfunctions (Gehricke et al., 2007). However, further
research is needed to reliably identify subjects who will benefit
from drug treatment and to characterise the underlying neural
mechanisms of individualised drug effects in order to support a
theory-driven approach of cognitive enhancement (Nebert et al.,
2003; Picciotto, 2003; Nebert and Vesell, 2004; Colzato, 2017;
Vergara et al., 2017; Ding et al., 2019).

Studies investigating the effectiveness of drugs to improve
cognition in healthy humans and patients with neurological
and psychiatric disorders show large variability in drug
responses (Cools and D’Esposito, 2011; Newhouse et al., 2012).
These effects are often explained by an inverted U-shape
dose-response relationship in which extreme concentrations
of a given neurotransmitter, either too little or too much, are
related to low cognitive performance (Newhouse et al., 2004,
2012; Cools and D’Esposito, 2011). Plenty of experimental
evidence, mostly for the low-performance range, supports
that differences in baseline neurotransmitter levels and/or
cognitive performance predict beneficial effects of cholinergic
or dopaminergic stimulation (Cools et al., 2008; Turner
et al., 2017). For example, a recent study in patients with
mild cognitive impairment and healthy controls revealed
that the neural response to cholinergic stimulation in an
episodic memory task—in both groups—depends on the
integrity of the cholinergic system, gauged by acetylcholine
esterase activity (Richter et al., 2018). There is also prior
evidence that the effects of cholinergic stimulation can be
predicted by patterns of neural activity in an undrugged
state (Giessing et al., 2007). Despite these insights,
individualised drug therapies are however still an unsolved
field of investigation.

Considering the disappointing results in clinical studies
and the large variability of nicotine effects, the current study
aimed to identify individual behavioural and neurobiological
characteristics that allow predicting the effectiveness of nicotine
administration in healthy volunteers. Previous behavioural
studies examined baseline dependent effects of pro-cognitive
drugs and related improvements after drug application to one
single measure of baseline performance (Perkins, 1999; Perkins
et al., 2000; Abreu-Villaça et al., 2006). However, reduced levels
of neurotransmitter activity at the lower end of the inverted
U-shape dose-response curve are likely to have a different degree

of impact on a set of cognitive functions, which need to be gauged
with multivariate approaches.

We used a new methodological approach to identify subjects
that deviate from the overall multivariate data structure in
behavioural pre-tests of attention, executive function and
impulsivity. Based on a robust principal component analysis
(PCA) we identified the position of each subject within a
multidimensional latent performance space in order to select
healthy subjects that strongly deviate from the centre of the
multivariate data structure. The approach identifies outliers
in the multivariate performance space and may thus also
detect subjects who are not necessarily characterised by an
extreme value in the univariate distribution (Gnanadesikan and
Kettenring, 1972). We suggest that these outliers with atypical
behavioural patterns, marked by low attentional or executive
performance or high impulsivity, show larger improvements
in attentional processing following nicotine administration
(Niemegeers et al., 2014). Further, we aimed to describe how
this cognitive phenotype is related to pre-existing differences
in functional brain network topology with graph theoretical
measures. Graph theoretical measures allow the assessment of
local and global individual differences in network organisation.
Previous studies suggest that individual attentional performance
is related to the integration of information during mental
processing (Giessing et al., 2013; Schultz and Cole, 2016).
Thus, we hypothesised that subjects identified as outliers will
differ from non-outliers in their nodes’ contribution to the
cohesiveness or integration of brain networks. A resting-state
functional magnetic resonance imaging (fMRI) scan, which was
performed prior to the pharmacological intervention, was used
to compare different measures of nodal centrality as measures
of local brain network integration between outliers and non-
outliers. In a final step, graph theoretical measures of nodal
centrality derived from resting-state fMRI were used to predict
differences in behavioural drug responses. Thus, we hypothesised
that interindividual differences in nodal centrality during rest are
an important biomarker for behavioural nicotine effects.

MATERIALS AND METHODS

Subjects
Thirty-nine healthy non-smokers with normal or corrected to
normal vision and no history of psychological illness were
measured. Four subjects were excluded from the analysis either
due to performance rates significantly below chance level (N = 1),
incomplete functional magnetic resonance imaging (fMRI)
scanning (N = 1), extensive head movements (N = 1, see below)
or ceiling effects within the behavioural pre-tests [N = 1 with a hit
rate of p = 1 and false alarm rate of p = 0.004 (one false alarm)].
The remaining 35 subjects [21 female/14 male, mean age 23.49
(SD 2.71)] entered the multivariate outlier detection approach.
From these 35 subjects, one subject was excluded from all further
analyses due to an inconsistent outlier classification (see below)
leaving 34 subjects. The study was conducted in accordance with
the Declaration of Helsinki with ethics approval obtained from
the Ethics Committee of the German Psychological Association
(DGPs). All procedures were carried out with written informed

Frontiers in Systems Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 83

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Gießing et al. Drug Effects in Extreme Performers

consent of all subjects. Subjects received monetary compensation
for participation.

Design
Data were collected in four experimental sessions. In the first
session, baseline cognitive performance was assessed with two
tests of the CANTAB test battery (CANTABr; Cambridge
Cognition, 20181) and additional self-reports including the
Barratt Impulsiveness Scale (BIS 15; Spinella, 2007; Meule et al.,
2011) to assess individual performance levels in attentional
and executive functioning. In the following session, for each
participant, an fMRI resting-state scan with 527 scans was
obtained during which subjects lay quietly with open eyes
for 13 min in an MR scanner. In the third and fourth
session, participants received either an inactive placebo or
a 7 mg transdermal nicotine patch (Niquitinr Clear 7 mg,
GlaxoSmithKline Consumer Healthcare GmbH., München,
Germany). Following a drug administration time of 60 min after
which the patch was removed, subjects performed a sustained
attention task with distractor and switch trials (see below) for
24 min in the MR scanner. To avoid any risk of skin burn,
the nicotine patch was removed before the participants went
in the scanner (Kuehn, 2009). Data from this task was used to
measure the behavioural benefit from nicotine administration,
the fMRI data acquired during task performance will be reported
elsewhere. The drug administration was counterbalanced over
subjects in a double-blind administration scheme. The average
duration between placebo and nicotine administration was
11 days (minimum 6 and maximum 32 days). The resting-state
scan was acquired 1 day prior to the first intervention session.

Behavioural Pre-tests for Assessment of
Baseline Cognitive Performance
To detect subgroups of subjects within the range of healthy,
young volunteers that show conspicuous cognitive performance
and deviate in their attentional or executive functions,
performance in two CANTAB tests namely the Rapid Visual
Information Processing (RVP) and the Intra/Extradimensional
Set Shift (IED) was analysed.

The RVP task is a measure of sustained attention in which
subjects have to detect target sequences of digits (for example,
2–4–6) within a stream of digits in pseudo-random order. From
this task, the following three outcome measures were estimated
for each individual: RVP response time latency, RVP sensitivity
to the target (A’), and RVP strength of trace required to elicit
a response (B’’). Two of these parameters, RVP A’ and RVP
B’’, derived from a nonparametric version of signal detection
theory (Grier, 1971; Frey and Colliver, 1973; Sahgal, 1987;
Li et al., 2015). Whereas RVP A’ gauges sensitivity towards
targets irrespective of the subject’s tendency to respond, RVP
B’’ measures the individual perceptual bias or tendency to
respond given a certain amount of ‘‘signalness’’ (Frey and
Colliver, 1973). A liberal response criterion and the tendency
to respond despite low perceptual evidence have been related
to impulsiveness in healthy subjects and ADHD patients (Jones

1www.cantab.com

and McIntyre, 1976; Rodriguez and Baylis, 2007). In order
to avoid subjective self-reports, we used the RVP B’’ as an
objective indicator of impulsive behaviour. To post hoc validate
our approach, we correlated the RVP B’’ with the German
short version of the BIS 15 (Spinella, 2007; Meule et al., 2011),
a subjective self-report of impulsiveness. In addition to the
RVP task, participants performed the IED, a test of executive
function. This task tests rule acquisition and reversal learning
where either the rewarded stimulus (intra-dimensional) or the
rewarded stimulus dimension (extradimensional) changed. From
this task the following three outcome measures were estimated
for each individual: errors after intra-dimensional changes (IED
intra-dimensional set shift errors), errors after extradimensional
changes (IED extradimensional set shift errors), and total
amount of errors (IED total errors).

The RVP and IED were selected as pre-tests since both tests
were successfully used to detect behavioural changes following
cholinergic manipulations, such as the administration of nicotine
or cigarette smoking (Sahakian et al., 1989; Jones et al., 1992;
Nesic et al., 2011). In addition, previous results also support
a link between impulsiveness and nicotine effects (Hosking
et al., 2014). ADHD patients with high impulsivity tend to
show larger nicotine effects on response inhibition (Potter and
Newhouse, 2004; Potter et al., 2012) and previous fMRI studies
revealed the largest effects of nicotine on the BOLD signal during
inhibitory control in individuals with high levels of impulsivity
(Kasparbauer et al., 2019).

Outlier Detection Approach
Performance in the behavioural pre-tests was analysed with an
outlier detection procedure to identify subjects with atypical
behavioural performance. To detect atypical performers, the
outlier detection algorithm from Filzmoser et al. (2008) was used
which is particularly effective in high dimensional data with few
numbers of observations. The outlier detection was performed
with the function ‘‘pcout’’ from the package ‘‘mvoutlier’’ in R
statistics (The R Project for Statistical Computing2) with the
pre-defined default values. Classical tools for outlier detection
are often based on statistics like the mean and the covariance
matrix that are however not suitable for data with outliers.
In contrast, the current approach builds on robust statistics
to avoid possible masking and swamping effects in which the
classification of outliers depends on statistics like the mean
which are heavily influenced by extreme values (Becker and
Gather, 1999; Rousseeuw and Hubert, 2018). The principal
components of performance measures in the pre-tests were
computed, rescaled by subtracting the median and dividing
by the median absolute deviation from the median (MAD).
Following the default values, only those components were
retained that explained at least 99 per cent of the variance (in
our case five dimensions). For each subject, a robustMahalanobis
distance of the PCA scores from the median was computed
to estimate the distance of each point from the centre of
the multivariate distribution. The outlier detection algorithm
of Filzmoser et al. (2008) uses two approaches to estimate

2https://www.r-project.org/
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two weights that reflect different aspects of ‘‘outlyingness.’’
Whereas the first approach aimed to detect location outliers,
the second approach tried to detect scatter outliers. While
location outliers result from a multivariate distribution with a
different location parameter, scatter outliers possess a different
scatter matrix. Both distance weights for location and scatter
outliers were then integrated to an overall score to classify
participants as outlier or non-outlier. The algorithm is described
in detail in Filzmoser et al. (2008, pp. 9–14; see also Figure 1).
To investigate the stability of the outlier classification, the
outlier classification was performed N = 35 times with a
leave-out-one-sample approach. Each time a different subject
was excluded to investigate whether the outlier classification
remained stable regardless of small deviations in the sampled
data set. Subjects that were not consistently classified as
outliers or non-outliers with a consistency of at least 90 per
cent were excluded from the following analyses (n = 1,
see above).

The following analyses were restricted to a specific subset
of outliers within the multivariate PCA space to facilitate a
functional interpretation of the observed neural differences. All
outliers were selected and compared with the non-outliers that
showed a PCA score in at least one of the first three PCA
components that indicated, depending on the direction of the
loadings, a worse performance or impulsive behaviour relative
to the median. The first three components explained 97 per cent
of the variance. Due to the relatively moderate sample size, the
current analyses focussed on outliers within a relatively broad
part of the multidimensional space. Future analyses with larger
number of outliers might apply more conservative thresholds

and restricted areas within the multivariate space to increase the
homogeneity within the outlier group.

Outlier Characterisation: Differences in
Behavioural Pre-tests Between
Non-outliers and Outliers
In multivariate data sets, outliers cannot be defined on the
basis of each individual univariate distribution, since data points
might only be extreme values within their multidimensional
configuration. However, to facilitate a functional interpretation
of how outliers differ from non-outliers we also plot the
univariate distributions of the cognitive pre-tests and indicate the
outliers’ positions.

The Experimental Task to Assess Nicotine
Effects
The sustained visual attention task with distractor and switch
trials used in this study was adapted from Armbruster et al.
(2012). Every 2 s subjects were presented with a stimulus for
900 ms. In 82% of the trials this was one digit above fixation
and participants were asked to indicate with their right hand
whether it was odd or even. Every 3–6 trials this ongoing
task was interrupted by one of three conditions (each 6%).
In these cases, another digit was presented below fixation and
subjects were asked to respond to the brighter one. If the
upper digit was brighter (distractor trial) the task rule was
unchanged, if the lower digit was brighter (switch trial) subjects
had to indicate using the left hand, whether this number was
smaller or larger than 5. Assignment of task rules to the hands
was counterbalanced across subjects. In the third condition

FIGURE 1 | Overview of the analysis approach. (A) Behavioural outliers were identified by a robust outlier detection approach based on pre-measurements of
attentional, executive, and inhibitory processing. To check the consistency of outlier classification, the outlier classification was repeatedly performed within a
leave-out-one-sample approach to exclude subjects with unstable classifications. (B) On behavioural level, the effects of nicotine on distractor and switch costs were
compared between outliers and non-outliers. (C) On a neural level, the brain network topology of outliers was compared with those of non-outliers. Therefore, three
different measure of centrality were computed on the whole brain and nodal level. On the whole brain, it was investigated whether differences in centrality measures
between outliers and non-outliers, either positive or negative, reflect systematic deviations over and above effects of noise. For those network densities and centrality
measures that revealed a significant effect, the most significant effect was compared on nodal level. (D) Within those brain regions in which eigenvector centrality
significantly differed between outliers and non-outliers, eigenvector centrality was correlated with the individual nicotine effects on distractor costs.
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(ambiguous trial; not analysed here) it was impossible to perceive
brightness differences visually. There were in total 720 trials
split up into six blocks of 120 with equal numbers of all
conditions in every block. Blocks were separated by a pause
of 20 s.

To assess individual effects of nicotine, the distractor
costs of each subject were computed as the median response
times during distractor trials minus median response times
during ongoing trials. The corresponding calculation was
performed for switch costs to assess performance in executive
functioning (median response times during switch trials minus
median response times during ongoing trials). In the following
analyses, the effect of nicotine on distractor costs (distractor
costs following nicotine administration minus distractor costs
following placebo administration) were compared between
outliers and non-outliers to investigate an ‘‘outlier by drug by
distractor cost’’-interaction. The corresponding contrast was also
computed for switch trials to investigate an ‘‘outlier by drug by
switch cost’’-interaction.

The Resting-State fMRI
Scanning Parameters
During the resting-state fMRI scans, T2∗-weighted gradient
echo-planar imaging (EPI) volumes (N = 527) with BOLD
contrast were recorded by means of a 3-Tesla MRI scanner
(Siemens Verio, Siemens AG, Erlangen, Germany): Repetition
time (TR) = 1.5 s, echo time (TE) = 30 ms, flip angle
(FA) = 80◦, voxel size = 3 × 3 × 3.5 mm, between-slice
gap = 1.05 mm, number of slices = 27 of 3.5 mm thickness.
Structural T1-weighted images (MPRAGE sequence, TR 1.9 s, TE
2.52 ms, Voxel size 1 × 1 × 1, Flip angle 9◦, 192 sagittal slices)
were acquired in the same session as the resting-state fMRI scans.

Preprocessing
Preprocessing was performed with SPM12 (Wellcome Trust
Centre for Neuroimaging, University College London;
Frackowiak, 1997) and included removal of the first five
images to account for possible T1 saturation effects, correction
for head motion by spatially realigning functional images to the
first volume, correction of timing differences between the slices
and spatially normalisation to standard stereotaxic MNI space
(Montreal Neurological Institute3). No spatial smoothing was
applied to the images in order not to induce artificial correlations
between time series which subsequently constitute the input data
for the functional connectivity analysis.

Time Series Extraction and Movement Correction
Using a parcellated template from Shen et al. (2013), 217 brain
nodes were defined covering cortical and subcortical brain
regions (see also Finn et al., 2015). This template is based on
a functional clustering approach that identifies functionally
homogenous parcels that are consistent across subjects.
For each parcel per subject, a mean fMRI time series
was calculated.

3http://www.mni.mcgill.ca/

Motion Artefact Removal
Rigorous movement corrections were applied. In a first step,
following Power et al. (2012), framewise displacements (FD)
were calculated for a standardised head with a radius of 50 mm
and subjects who showed a maximum FD larger than 3.5 mm
(N = 1) were excluded from the further analysis. In a second
step, we used the DVARSCalc.m script from Afyouni and
Nichols (2018) to identify and exclude brain scans in which the
spatial root mean square of the data after temporal differencing
(DVARs) significantly differed with a 5% familywise error rate4.
On average, 3.16 per cent (±0.51 SEM) of the 522 scans
were removed from each data set. Afterwards, the movement
parameters from the realignment and six mean time series
averaged across three-millimetre spheres within the white and
grey matter volumes were regressed out from the fMRI time
series. In the last step, regional time series were band-pass
filtered with a Chebyshev Type 1 filter of order 8 within
the range of 0.01–0.1 Hz (Biswal et al., 1995). Between each
possible pair of regional time series, Fisher’s z-transformed
Pearson’s correlations were computed. The absolute correlation
matrix was thresholded to reduce possible effects of spurious
and noisy connections. Since there is no golden standard
for a single threshold, each absolute correlation matrix was
repeatedly thresholded over a range of nine equally-spaced
network densities with a minimum of 10 andmaximum of 50 per
cent density. Network density was defined as the number of edges
divided by the maximum possible number of edges in the graph.

Brain Network Topology Analysis
Computing Nodal Centrality Measures
Previous studies suggest that nicotine improves cognitive
performance by changing the interaction between brain regions
(Giessing et al., 2013). Thus, inter-individual differences in
behavioural drug effects might be related to the baseline
characteristics of brain networks before drug administration.
Several studies suggest that efficient performance depends on the
individual formation of processing pathways and the topology
of large-scale brain networks (Wylie et al., 2012; Giessing
et al., 2013). Therefore, a fundamental aspect to understand
individual drug effects is to identify brain nodes that are central
to propagate brain signals to a large portion of brain nodes
(Newman, 2010; Malliaros et al., 2016). To investigate differences
in nodal centrality between outliers and non-outliers, three
measures of nodal centrality from graph theory were computed
using the brain connectivity toolbox (Rubinov and Sporns, 2010;
Fornito et al., 2016; Matas et al., 2017). As a first measure,
‘‘betweenness centrality’’ was calculated by the fraction of all
shortest weighted paths in the network that contain a given node.
Thus, nodes with high values of betweenness participate in a
large number of shortest weighted paths between brain nodes.
Second, we used the weighted undirected adjacency matrix
to compute eigenvector centrality. Eigenvector centrality is a
self-referential measure: the centrality score is proportional to
the sum of the centrality scores of all nodes which are connected
to it. Nodes get high eigenvector centrality if they are connected

4https://github.com/asoroosh/DVARS
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to other important nodes with high eigenvector centrality. If we
aim the centralities to be non-negative, the eigenvector centrality
of node i is equivalent to the ith element in the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix.
As a last centrality measure, we computed the k-coreness of
nodes to identify tightly interlinked groups within a network
(Hagmann et al., 2008). To be part of the k-core of an undirected
binary graph, a node has to be connected to at least k other
nodes in the subgraph regardless of the connections to nodes
outside this subgraph. The k-cores form a nested hierarchy,
whereas nodes with highest k-coreness belong to the most
interlinked, cohesive subgraph. For example, the three-core is
the subset of nodes within the two-core that have at least three
connections to all other members of the core. Thus, nodes
with high k-coreness belong to tightly interlinked groups of
nodes (Alvarez-Hamelin et al., 2005).

Comparing the different centrality measures, each measure
gauges a slightly different aspect of node importance (Matas et al.,
2017). Eigenvector centrality measures the connectedness of a
node within a network; the eigenvector centrality of a node can
be high because it is connected to many nodes or to nodes of
high importance (or both). In contrast, ‘‘betweenness centrality’’
does not focus on the connectedness of a node, but how well
a node controls flow between others by acting as a bridge
along the shortest path between two other nodes. k-coreness is
related to the propagation and spreading of information. The k-
core decomposition progressively decomposes the networks in
different layers revealing a nested structure of cores outmost
to the most internal one. It has been shown that the nodes
of the central core as identified by the k-shell decomposition
analysis are most efficient in the spreading of information
within the network. High efficient ‘‘spreaders’’ within the
network do not necessarily correspond to the most highly
connected nodes (Kitsak et al., 2010). In summary, the
current analysis identifies different aspects of node centrality to
investigate whether outliers and non-outliers differ in their most
important nodes.

Outlier Effects on Brain Network Topology
Within the network topology analyses, networks with equal
edge densities were compared between outliers and non-outliers
(see above). This was done to distinguish effects on network
topology from effects on network density (van Wijk et al.,
2010). However, due to the fixed number of edges, an increase
of nodal connectedness in one brain region likely correlates
with a decrease of centrality in a different region. This would
lead to small averaged effects, despite possible systematic,
but heterogeneous and non-uniform patterns of effects across
nodes. To investigate heterogeneous effects, previous studies
suggested to report sorted individual effects in an increasing
order and indexed by percentiles (Chernozhukov et al., 2018).
Within a first approach on the global level, we aimed to
test whether these differences between outliers and non-
outliers, either positive or negative changes, reflect systematic
deviations over and above effects of noise. Using a randomisation
approach, we tested whether the sum of the squared differences
between outliers and non-outliers was significantly larger than

expected under the null hypothesis. Within this randomisation
approach, outlier and non-outliers were randomly intermixed
for 5,000 times and for each randomisation the squared
differences were computed to estimate the null distribution.
In the following nodal analyses, the network density with
the highest significance level within the global analysis was
selected and for each individual node it was tested whether the
investigated measures of centrality significantly differed between
outliers and non-outliers.

Significance Testing
Statistical comparisons were performed with non-parametric,
two-sided permutation tests with 5,000 permutations. On
nodal level, alpha inflation due to multiple comparisons was
controlled by the false discovery rate (FDR), the expected
proportion of false discoveries amongst the rejected hypotheses
(Benjamini and Hochberg, 1995). Permutation tests on nodal
data used 100,000 permutations to estimate smaller p-values with
higher accuracy.

RESULTS

Identifying Atypical Performance in the
Behavioural Pre-tests
In a first step, a robust outlier detection was applied on
the pre-test data to identify subjects that showed atypical
behavioural performance in six parameters of attentional and
executive functions. The outlier detection algorithm identified
12 of the population of 35 subjects as outliers with atypical
values. The position of these outliers within the multivariate
configuration is illustrated in Figure 2A. The outlier detection
algorithm performs a robust PCA to identify atypical positions
within the multivariate configuration. Figure 2A depicts the
position of each subject within the first three PCA components
that explain 97 per cent of the variance. The loadings of
each behavioural parameter on each PCA component (i.e., the
variable weights or eigenvectors) are illustrated in Figures 2D–F.
Whereas the first component was mainly a linear combination
of measures of executive function with high weights on ‘‘IED
total errors’’ and ‘‘IED extradimensional set shift errors,’’
the second component reflected a mix of attentional and
executive processing with high weights on ‘‘RVP response time
latency’’ and ‘‘IED intra-dimensional set shift errors.’’ The third
component showed a strong negative loading on the variable
‘‘RVP strength of trace’’ which assesses the individual tendency
to show a high number of false alarms (Frey and Colliver,
1973). Note that this variable correlated with self-reported
measures of impulsivity as obtained with the BIS 15 (r = −0.50,
p = 0.002, permutation test; Spinella, 2007; Meule et al.,
2011). Subjects with self-reported high impulsivity responded
less conservative and showed more responses following low
perceptual evidence. To sum up, the subgroup with atypical
behavioural performance tend to show extreme PCA scores
in the direction of higher cognitive costs for set-shifting,
slow response times in a sustained visual attention task and
higher impulsivity.

Frontiers in Systems Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 83

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Gießing et al. Drug Effects in Extreme Performers

FIGURE 2 | Identification of behavioural outliers with robust outlier detection. (A) An algorithm particularly effective in high dimensional data was used to detect
extreme subjects in the behavioural pre-tests. In the first step, principal components of data were computed to group participants as non-outliers (black data points)
or outliers (red data points). One data point (green triangle) was excluded from the following analysis due to inconsistent outlier classification (further details are given
in the main text). (B) Illustration of the performance in the pre-tests showing the first vs. second PCA component. The following resting-state functional magnetic
resonance imaging (fMRI) analysis only included outliers that showed PCA scores that were associated with lower performance or higher impulsivity in at least one of
the first three PCA components (according to the loading patterns). All outliers fulfilled this criterion. Within the multidimensional space, the corresponding areas with
reduced performance in comparison to median are colour-coded in yellow. (C) First vs. third PCA components of behavioural pre-tests are shown. (D–F) Loadings of
the scaled behavioural variables (i.e., the variable weights or eigenvectors) for the first three components. Whereas the first component is mainly a linear combination
of measures of executive functioning (i.e., Intra/Extradimensional Set Shift (IED) total errors and extradimensional set shift errors), the second component assessed
both, executive functioning and sustained attention. The third component mainly gauges the subjects’ tendency to react following low perceptual evidence, a
measure that correlates with impulsivity. (G) This plot illustrates that the multivariate outlier approach is more sensitive and detects more outliers in the current sample
as a “traditional” univariate approach. Within the upper part the individual distributions of the PCA scores of the first (blue), the second (orange), and the third (green)
component are illustrated with their corresponding density functions. In the lower part, scores of individual subjects on each PCA component are printed in grey.
Multivariate outliers that were detected as outliers within the multivariate approach, but not within a univariate outlier definition are marked in blue, orange, and green,
respectively. Univariate outliers were defined as data points 1.5 standard deviations below or above the mean in any of the first three PCA dimensions as indicated by
the grey vertical lines. Data were normalised to mean zero and a standard deviation of one (square: outliers included in the data analysis; triangles: data points
excluded due to inconsistent multivariate outlier classification; see above). (H) Outlier characterisation. Outliers were defined within a multidimensional space
representing for each subject the main interindividual differences in six parameters of sustained attention and executive functioning. To further characterise outliers,
the univariate distribution of these six behavioural parameters were plotted. Outliers tend to show worse performance in attention and executive function and higher
impulsivity (e.g., RVP strength of trace). Note that larger values correspond to worse performance for all but one measure, only within the measure “RVP sensitivity to
target” smaller values reflect worse performance. Data were normalised to mean zero and a standard deviation of one.
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To test the robustness and consistency of the outlier
classification, the classification was iteratively repeated with a
leave-out-one-sample loop. Almost all subjects were consistently
classified as outliers or non-outliers in every classification step.
Three non-outliers were classified as outliers in 3 per cent
of the repetitions, the remaining subjects were classified as
outliers or non-outliers with a consistency of 100 per cent.
Only one non-outlier showed an inconsistent classification (see
Figures 2A–C; green triangle) andwas classified as outlier in only
32 per cent of the repetitions and hence excluded from further
analyses leaving 12 outliers and 22 non-outliers.

To show that the applied multivariate outlier detection has
higher sensitivity and identified more subjects with extreme
performance than a classical univariate approach, an additional
analysis was performed in which subjects were classified as
outliers if their PCA scores either in the first, second, or third
PCA component were located below or above 1.5 standard
deviations from the mean. As illustrated in Figure 2G, the
multivariate robust outlier detection classified two subjects
as outliers who showed no extreme positions in individual
univariate distributions of the first, second, or third PCA
scores but deviated strongly from the dominant data structure
in multivariate space. Figure 2H illustrates that the overall
group of outliers in comparison to non-outliers tend to show
worse performance in the individual pre-tests. Statistically,
outliers and non-outliers significantly differed in four of the
six pre-tests, which were IDE extradimensional set shift errors
(p < 0.001, permutation tests with 5,000 samplings, two-
sided), IDE intra-dimensional set shift errors (p = 0.03),
IED total errors (p < 0.001), and RVP response time
latency (p = 0.02).

In a post hoc analysis we tested whether outliers can be
segregated from non-outliers by sample characteristics like
verbal intelligence (as estimated by the German vocabulary
test WST; Schmidt and Metzler, 1992), handedness (Oldfield,
2010), body mass index, age, sex, or working memory (as
estimated by the operation span task; Unsworth et al., 2005).
Univariate pairwise comparisons did not show any significant

TABLE 1 | Univariate differences between outliers in verbal intelligence,
handedness, body mass index, age, division of sex, and operation span.

Non-outliers Outliers p-value

WST intelligence test 32.33 ± 0.49 31.17 ± 0.79 0.22
Edinburgh handedness inventory 86.44 ± 2.75 87.55 ± 3.82 0.81
Body mass index 21.68 ± 0.46 22.6 ± 0.61 0.24
Age in years 23.18 ± 0.59 24 ± 0.78 0.45
Ratio of men 0.41 ± 0.11 0.42 ± 0.15 1.00
Operation span task 58.95 ± 2.33 59.58 ± 2.69 0.88

Differences in means revealed only non-significant p-values. Means ± standard errors of
means, p-values result from permutation tests.

difference between outliers and non-outliers. This suggests that
the reported cognitive and neural differences in outliers cannot
be explained by unspecific sample characteristics unrelated
to attentional and executive processing (see Table 1). In an
additional analysis we used the five continuous variables of
this subset within a multivariate outlier classification (excluding
the categorical variable sex). This new analysis identified two
outliers from which one outlier overlapped with the original
outlier classification; the remaining eleven outliers from the
original outlier analysis of attentional or executive functions
remained undetected. Hence, the outlier detection based on
attentional or executive functions cannot be explained by group
differences in age, intelligence, handedness, body mass, or
working memory.

Differences in Behavioural Nicotine Effects
Between Non-outliers and Outliers
Following the identification of subjects with extreme behaviour
in the attentional and executive pre-tests, we analysed whether
outliers and non-outliers show different nicotine effects on
attentional distractor costs and executive switch costs (see below
for further details). The mean nicotine effect on distractor costs
(subtracting distractor costs under nicotine from distractor costs
under placebo) significantly differed between non-outliers and
outliers (mean nicotine effect on distractor costs for non-outliers:
−9± 13ms, mean nicotine effects on distractor costs for outliers:
33 ms ± 13 SEM, p = 0.036, two-sample permutation test)
showing a significant ‘‘distractor costs by drug by outlier group’’
interaction effect. Further permutation tests revealed a significant
mean nicotine effect on distractor costs within the group of
outliers (p = 0.02), but not within the group of non-outliers
(p = 0.53).

For switch costs, we found no significant ‘‘switch costs by
drug by outlier group’’ interaction effect (mean nicotine effect
on switch costs for non-outliers: 13 ms ± 50 SEM, mean
nicotine effect on switch costs for outliers: −20 ms ± 65 SEM,
p = 0.12). Neither the group of non-outliers nor the group of
outliers revealed a significant nicotine effect on switch costs
(nicotine by switch interaction for non-outliers: p = 0.28, outliers:
p = 0.33). Mean reaction times of each condition can be found
in Table 2.

Differences in Resting-State Brain
Network Topology Between Non-outliers
and Outliers
The fMRI analysis investigated whether outliers and non-outliers
also differed in underlying functional brain network topology
gauged bymeasures of node centrality. Furthermore, we analysed
whether these regional differences in network integration
predicted the individual behavioural nicotine effects. Since

TABLE 2 | Mean reaction times in ms and SEMs for outliers and non-outliers as a function of trial type.

Ongoing trials Distractor trials Switch trials

Placebo Nicotine Placebo Nicotine Placebo Nicotine

Non-outlier 606 ± 18 598 ± 18 768 ± 28 769 ± 32 915 ± 22 894 ± 20
Outlier 665 ± 32 632 ± 26 859 ± 42 792 ± 38 1,050 ± 66 1,038 ± 68
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FIGURE 3 | Changes in global and nodal network organisation. Whole-brain differences in centrality between outliers and non-outliers. (A) For each node, we
computed the mean difference in centrality measures (that is eigenvector centrality, betweenness centrality, and k-coreness) between outliers and non-outliers. The
approach is illustrated for the mean differences in eigenvector centrality in brain networks with a network density of 25 per cent, as for this centrality measure and
network density the highest significance value (smallest p-value) was observed. In a first step, mean differences for each node were sorted from smallest to largest
values. This shows that eigenvector centrality increased in some nodes and decreased in others. Thus, for further statistical analyses the sum of squared differences

(Continued)
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FIGURE 3 | Continued
was computed to take into account positive and negative changes. (B) In a
second step, a randomisation approach in which outliers were randomly
shuffled 5,000 times was used to generate a null distribution. The empirical
sum of squared differences of eigenvector centrality (indicated by the red
vertical line) was unlikely to be found under the assumption that outliers and
non-outliers showed no systematic difference. (C) The randomisation
approach was computed for each centrality measure across network
densities. Significant differences were found for eigenvector centrality and
k-coreness. Only those network topology measures were analysed node-wise
that showed a significant effect on the whole brain level. For these nodal
analyses, the network densities with the highest significance values were
chosen. Nodal differences in eigenvector centrality between outliers and
non-outliers. (D) Differences between outliers and non-outliers in eigenvector
centrality were found in three brain nodes: the right fusiform gyrus, right
lingual gyrus, and right precentral gyrus. For k-coreness no significant nodal
differences were observed. (E) In these three areas eigenvector centrality was
significantly larger for outliers than for non-outliers. Eigenvector centrality
predicts behavioural nicotine effects on distractor costs. (F) Within two of
these three brain regions, the individual values in eigenvector centrality
significantly correlated with the behavioural nicotine effects on distractor
costs. This points to the fact that larger eigenvector centrality within the right
lingual gyrus and right precentral gyrus during resting state predicted larger
behavioural nicotine effects on distractor costs.

brain networks with the same network density (percentage of
connections in comparison towards a fully connected network)
were compared, increases in nodal centrality in one brain region
might go along with decreases in other regions (see Figure 3A).
Therefore, permutation tests were used to test whether the sum of
squared nodal differences was significantly larger than expected
under the null hypothesis of no difference between outliers and
non-outliers (see Figure 3B). The analysis revealed significant
differences between outliers and non-outliers for eigenvector
centrality, which measures how well a node is connected within
the network, at densities of 20, 25, and 30 per cent (see
Figure 3C). K-coreness, which is a measure of how efficient a
node can spread information within a network, differed between
outliers and non-outliers only for networks with 10 per cent
network density.

The subsequent nodal analysis was therefore performed for
the network density corresponding to the smallest significant
p-value showing effects on the whole brain level. Hence,
nodal effects on eigenvector centrality were analysed with
a density of 25 per cent and k-coreness with a density of
10 per cent. Since we did not find significant differences for
‘‘betweenness centrality’’ on a global level (see Figure 3C),
we did not investigate it on the nodal level. On nodal
level, only eigenvector centrality significantly differed between
outliers and non-outliers within the right fusiform gyrus
(p = 0.037; FDR-corrected), the right lingual gyrus (p = 0.045),
and the right precentral gyrus (p = 0.045; see Figure 3D).
Within these brain regions, outliers showed significantly larger
eigenvector centrality in comparison to non-outliers (see
Figure 3E). K-coreness showed no significant effects on the
nodal level. In other words, network integration within visual
and premotor brain regions differed between healthy subjects
with atypical behavioural and normal performance. Subjects
with atypical performance showed an overcompensation in brain
network integration.

Correlation Between Brain Topology and
Individual Behavioural Nicotine Effects
In a last crucial step, we asked whether these differences
in eigenvector centrality between outliers and non-outliers
significantly correlated with the behavioural effects of nicotine on
distractor costs (placebo costs minus nicotine costs). The results
revealed a significant correlation between distractor costs and
eigenvector centrality within the right lingual gyrus (r = 0.35,
p = 0.04, permutation test) and right precentral gyrus (r = 0.37,
p = 0.03) and a trend for a significant effect in the right fusiform
gyrus (r = 0.30, p = 0.09, see Figure 3F).

For each of the brain regions, we performed an additional
multiple regression analysis which included the individual
maximum framewise displacement, the eigenvector centrality of
each subject, and their interaction as independent variables and
behavioural effects of nicotine on distractor costs as dependent
variable. The results revealed no significant interactions (all
p > 0.80) which suggest that the association between eigenvector
centrality and behavioural nicotine effects is not related to
head movements.

DISCUSSION

The current study aimed to identify subjects that will benefit
from a stimulation with the cholinergic agonist nicotine.
Our results document that a multivariate outlier detection
approach can identify a subgroup of healthy human subjects
with atypical patterns of behaviour who differ in resting-state
network topology and benefit from nicotine administration.
Furthermore, we used complex network analyses to compare
different measures of nodal centrality between this subgroup
and the remaining population and show that interindividual
differences in centrality predict behavioural nicotine effects.
Our results provide evidence that the subgroup of outliers
shows significantly larger eigenvector centrality within the right
fusiform gyrus, the right lingual gyrus, and the right premotor
region. Hence, in subjects with atypical performance, these
brain regions were more central and more strongly connected.
Importantly, larger nodal integration correlated with nicotine-
induced improvements in distractibility. In summary, our results
suggest that the regional integration of visual and pre-motor
areas during rest is a significant predictor of behavioural
nicotine effects.

Robust Outlier Detection in the
Multivariate Space
Newhouse et al. (2004) explained the inter-individual variance
of nicotine by a one-dimensional inverted U-shape model.
Following the Yerkes–Dodson law, cognitive enhancers like
nicotine should mainly improve the performance of subjects in
a suboptimal performance state with low cholinergic activity
(Newhouse et al., 2004). Previous studies that examined baseline
dependent effects of pro-cognitive drugs often related cognitive
improvements following drug application to one pre-existing
performance measure in a single cognitive task. For example,
univariate baseline-dependent effects of nicotine have been
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shown for attentional and impulsive behaviour, and executive
functions (Thiel et al., 2005; Petrovsky et al., 2012; Potter et al.,
2012; Niemegeers et al., 2014; Kasparbauer et al., 2019).

We here provide a new approach to investigate baseline-
dependent drug effects. Using multivariate outlier detection
with robust statistics we first identified a subgroup of subjects
which showed atypical attentional and executive performance in
multivariate space and subsequently investigated whether these
subjects differed in brain network topology and the behavioural
effects of nicotine on attention and executive function. Possibly
due to their reduced ability to focus attention and lapses of
attention under conditions of high task demands, the most
extreme outliers tended to be values in the direction of higher
impulsivity and slower response time latencies in a sustained
visual attention task (Keilp et al., 2005; Tamm et al., 2012). We
demonstrate that the multivariate approach identified subjects
as atypical performers that would not have been identified if
each variable had been considered independently. Hence, multi-
variate approaches show higher sensitivity to identify subgroups
of subjects which may not necessarily be characterised by an
extreme value in the univariate distributions.

From these atypical subjects, we selected those subjects whose
latent scores within the multivariate PCA space pointed towards
worse performance or higher impulsivity on at least one latent
factor. Future studies with larger samples might use more
detailed searchlights to divide this multivariate space into smaller
subspaces to even further improve the prediction of individual
drug responses. A different approach would be to avoid the
dichotomisation of distance scores that each subject shows
towards the multivariate centre. Without grouping subjects
into outliers and non-outliers, future studies might directly
investigate the correlations between distance scores, behavioural
nicotine effects, and brain network topology.

The current analysis revealed a relatively large subgroup
of outliers. Previous results documented that outlier detection
algorithms differ in their hit and false-positive rates to detect
outliers and that multivariate robust techniques outperform
univariate approaches (Templ et al., 2019). However, further
research might provide additional evidence which algorithms are
most suitable for small sample sizes (Jones, 2019).

Despite the moderate sample size, we think that the results
are valid since our analyses show that the identified subcohort of
extreme subjects differs neurobiologically. The subcohort, which
was identified solely on behavioural data, showed significant
differences in resting-state brain network topology. Furthermore,
our results show that these brain regions, which show different
network topology, predict the behavioural effects of nicotine if
subjects are exposed to the drug in a following pharmacological
intervention study.

The Resting-State Topology Predicts
Behavioural Nicotine Effects
The outlier detection approach enabled us to identify those
subjects with atypical patterns of performance whose latent
scores pointed towards worse attentional or executive
performance or higher impulsivity on at least one latent
factor. Our analysis revealed that this subgroup is characterised

by differences in the integration of the right visual association
cortex and pre-motor areas during rest. Increased eigenvector
centrality was significantly associated with atypical patterns of
attentional, executive, and impulsive behaviour and predicted
behavioural nicotine effects within the following experimental
sessions. A prior pharmacological fMRI study documented
that patterns of local brain activity within the left posterior
cingulate cortex, the right superior parietal cortex, the right
dorsal medial prefrontal cortex, and the left ventral medial
prefrontal cortex significantly predicted behavioural nicotine
effects in visual-spatial attention (Giessing et al., 2007).
Within one of our previous studies, we also documented that
baseline levels of global network topology correlated with the
behavioural effects of nicotine: smokers with less integrated brain
networks showed the greatest improvements in performance
after nicotine replacement (Giessing et al., 2013). Here, we
extended this prior work and demonstrated that extreme
patterns of cognitive functioning in non-smokers are related to
differences in brain network topology which, in turn, predict
individual behavioural effects of a later nicotine administration.
Possibly, a maladaptation of excessive local brain integration
in visual association and pre-motor areas can be reduced by
nicotine administration.

In a coordinate-based meta-analysis, Sutherland et al. (2015)
reported an impact of nicotine on BOLD activity in the premotor
region and lingual gyrus across a wide variety of task-based
nicotine neuroimaging studies. However, experimental evidence
on whether nicotine is able to decrease eigenvector centrality in
visual and motor areas is currently lacking. Two prior studies
investigated the effects of an acute administration of nicotine on
resting-state brain network topology but focussed onmeasures of
brain network efficiency rather than centrality measures (Wylie
et al., 2012; Giessing et al., 2013). Contrary to our explanation,
both studies suggested that nicotine increases local and global
brain network integration. In addition, Giessing et al. (2013)
showed that for smokers attentional improvements following
nicotine correlated with drug-induced increases in brain
network integration within the right motor cortex. However,
there is also supporting evidence that nicotine decreases the
connectivity within brain regions involved in motor processing.
A pharmacological resting-state electroencephalography
(EEG) study provides evidence that, in non-smokers, nicotine
decreased connectivity between precentral gyrus, parietal
regions, and occipital regions in the upper alpha frequency range
(Ranzi et al., 2016).

Clinical Implications
There is currently a debate whether clinically relevant deviations
in behaviour reflect the endpoints of continuous differences
rather than distinct categorical conditions (Marcus and Barry,
2011; Stoyanov et al., 2019). If patients with ADHD reflect
an extreme of a behavioural spectrum, healthy outliers in
attention, executive functions or impulsivity, as identified in this
study, might reflect the intermediate position on a dimension
between healthy subjects and clinical disorders like ADHD.
Recent brain imaging studies emphasised the importance of a
network perspective to understand the underlying mechanisms
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of ADHD (Castellanos and Proal, 2012). Several studies reported,
depending on the investigated brain network, increased and
decreased functional connectivity in ADHD patients. For
example, Tomasi and Volkow (2012) found increased short-
range connectivity, but reduced long-range connectivity in
ADHD subjects. These findings fit with the results of Lin et al.
(2013) showing a reduction of overall network integration in
ADHD patients. Many studies in children and adults with
ADHD, however, documented significant increases in the
connectivity of functional brain networks in comparison to
healthy controls (McCarthy et al., 2013; Barber et al., 2015;
Sidlauskaite et al., 2016). Cocchi et al. (2012) showed increased
connectivity within the right precentral gyrus in a group of non-
clinical, drug-naive high-functioning young men and women
with ADHD. Qian et al. (2019) documented an increase in
connectivity and loss of between-network functional segregation
in children with ADHD within primary visual brain regions.
In short, consistent with our results, there is previous evidence
that patients with ADHD show increased local brain connectivity
within visual and pre-motor brain regions supporting a possible
maladaptation within these brain regions.

Our findings provide additional evidence that a nicotine-
based treatment has the potential to improve attentional
performance in a subgroup of predisposed subjects that show
atypical patterns of low attentional or executive behaviour and
differences in local integration of functional brain network
topology. This finding may also be of relevance for other
disorders such as mild cognitive impairment where a pilot trial
on long term nicotine treatment resulted in improved attention,
memory and psychomotor speed (Newhouse et al., 2012) or the
treatment of cognitive dysfunction in patients with schizophrenia
(Tregellas and Wylie, 2019).

CONCLUSION

The current study used six parameters of two behavioural tests
to assess individual baseline differences in attention, executive
functions, and impulsivity. However, the applied approach is also
suitable to incorporate larger data sets with various behavioural
tests and questionnaires to characterise the phenotypes

of individual subjects. Thus, the presented analyses might
encourage future studies with larger sample sizes to replicate our
results and to explore the entire multivariate range of individual
performance patterns to identify subgroups of healthy subjects or
patients with different drug responses and different underlying
brain connectivity.
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