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Exposure to severe stress has immediate and prolonged neuropsychiatric consequences
and increases the risk of developing Posttraumatic Stress Disorder (PTSD). Importantly,
PTSD develops in only a subset of individuals after exposure to a traumatic event,
with the understanding of this selective vulnerability being very limited. Individuals
who go on to develop PTSD after a traumatic experience typically demonstrate sleep
disturbances including persistent insomnia and recurrent trauma-related nightmares.
We previously established a repeated social defeat paradigm in which rats segregate
into either passively or actively coping subpopulations, and we found that this distinction
correlates with measures of vulnerability or resilience to stress. In this study, we examined
differences between these two behavioral phenotypes in sleep changes resulting from
repeated social defeat stress. Our data indicate that, compared to control and actively
coping rats, passively coping rats have less slow-wave sleep (SWS) for at least 2 weeks
after the end of a series of exposures to social defeat. Furthermore, resilient rats show
less exaggerated motor activation at awakenings from rapid eye movement (REM) sleep
and less fragmentation of REM sleep compared to control and passively coping rats.
Together, these data associate a passive coping strategy in response to repeated social
defeat stress with persisting sleep disturbances. Conversely, an active coping strategy
may be associated with resilience to sleep disturbances. These findings may have both
prognostic and therapeutic applications to stress-associated neuropsychiatric disorders,
including PTSD.

Keywords: stress, PTSD, active coping, SWS, REM, resilience

INTRODUCTION

Posttraumatic stress disorder (PTSD) is a psychiatric disorder that develops following exposure
to one or more traumatic events. Its key symptom domains include re-experiencing of the
event, avoidance, negative alterations in cognition and mood, and hyperarousal (Armour
et al,, 2016). It has been argued that the sleep disturbance in PTSD is a major hallmark of the
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disorder (Ross et al., 1989), entering into the diagnostic criteria
twice, once as the phenomenon of re-experiencing the traumatic
event during repetitive nightmares and again as insomnia, a
manifestation of hyperarousal. Indeed, both a reduced slow-wave
sleep (SWS) amount and an increased number of rapid eye
movement (REM) sleep interruptions have been described in
PTSD (Mellman et al.,, 2002; Breslau et al., 2004; Habukawa
et al., 2007; Kobayashi et al., 2007; Gupta, 2019). Importantly,
these disturbances may persist for many years after the
traumatic event.

PTSD develops in only a subset of traumatized individuals,
whereas others remain resilient. One factor in the vulnerability
to the effects of severe stress is the coping strategy adopted to
deal with it (Veenema et al., 2003). In different individuals, or
under different conditions, either active coping, characterized
by the fight or flight response, or passive coping, characterized
by immobility and withdrawal, can occur during exposure
to stressors (Engel and Schmale, 1972; Koolhaas et al., 1999;
Southwick et al., 2005; Wood and Bhatnagar, 2015). The present
experiments used an animal model of repeated social defeat stress
in which active and passive coping strategies dichotomize into
either a resilient or vulnerable trait, respectively, as assessed post
hoc by various neuroendocrine measures, behavioral tests (Wood
etal., 2010; Chen et al., 2015; Wood and Bhatnagar, 2015; Finnell
et al., 2017), and markers of inflammation (Pearson-Leary et al.,
2017, 2019). Understanding whether such differences in coping
strategy are associated with the subsequent development of sleep
disturbances akin to those reported in PTSD may help to provide
a basis for examining the mechanisms by which traumatic
stress affects sleep in vulnerable individuals. An improved
understanding of these mechanisms may have both prognostic
and therapeutic applications in treating stress-related disorders.

Our goal was to examine whether the coping strategies
identified in the repeated social defeat stress model are associated
with differences in sleep measures in rats. Specifically, we
examined sleep in passively and actively coping rats before,
during, and after seven consecutive days of social defeat in adult
male rats. Our data suggest that a passive coping strategy in
response to repeated social defeat stress leads to long-lasting
sleep deficits, including increased time awake and decreased
time in SWS. Conversely, an active coping strategy may provide
resistance to some disruptions of sleep such as exaggerated motor
startle to waking and REM sleep fragmentation.

MATERIALS AND METHODS

Animals

Male Sprague-Dawley rats 65-75 days of age were obtained
from Charles River Laboratories (Wilmington, MA, USA). Four
cohorts of rats were used in these experiments (36 animals
total; groups of: 6, 12, 12, and 6 rats, in that order). They
were singly housed under a 12-h light/dark cycle (lights on
at 07:00 h and off at 19:00 h) and had food and water
available ad libitum. Animals were acclimated to the housing and
lighting conditions for at least 5 days prior to any experimental
procedures. The Institutional Animal Care and Use Committee

of The Children’s Hospital of Philadelphia Research Institute
approved all experimental procedures.

Instrumentation Surgery and Telemetric

Recordings

All surgical procedures were performed under aseptic conditions.
Isoflurane (2-3%) was used to induce and maintain anesthesia
throughout the surgery. A telemetric transmitter was implanted
through a midline incision into the abdominal cavity and
sutured to the peritoneal wall. The transmitter, made of
non-reactive silicone elastomer (Physiotel HD-S02; Data Science
International, St. Paul, New Brighton, MN, United States),
weighs approximately 7 g and occupies a volume of about 3 ml.
It has core temperature and motor activity sensors, and two
amplifiers for biopotentials. For recording the cortical EEG, two
screws were implanted into the skull (1 mm to the right and left
of lambda) and connected to one of the amplifiers. For recording
the postural muscle electromyogram (EMG), two insulated
stainless steel wire electrodes were attached on either side to
dorsal neck muscles. After instrumentation, the skin overlying
the scalp and the opening into the intraperitoneal cavity were
sutured and meloxicam was administered (2 mg/kg, sc).

After 1 week of recovery from surgery, continuous wireless
recordings were initiated by remote activation of a magnetic
switch in the transmitter and continued for 24 h a day for 23 days.
In each animal, the first 2 days of the protocol were used to collect
baseline activity. Then, from days 3 through 9, each animal was
exposed to the standardized social defeat paradigm (except for
control rats), and recording was continued for 2 weeks after the
last defeat day; Figure 1A).

Social Defeat Paradigm

The social defeat paradigm used in this study was based on the
resident-intruder model originally employed by Miczek (1979).
Social defeat exposure was applied within 2 h of lights on
(starting at approximately 09:00 h each day). Control rats were
not exposed to this defeat paradigm but rather placed in novel
cages with a divider for 30 min while other rats underwent
the defeat procedures. It should be noted that this novel cage
stress has been shown to affect measures of sleep in previous
studies (Cano et al., 2008). During social defeat, one of the
experimental rats (intruder) was placed once each day for seven
consecutive days into the home cage of an unfamiliar Long Evans
retired breeder (resident). Characteristically, the resident and
intruder investigate each other for a short period (1-3 min);
this is followed by an attack by the resident, ending with the
defeat of the intruder. A defeat is pronounced when the intruder
displays a supine posture and freezes for 2-3 s. The latency
to the defeat is then recorded. The resident and intruder are
then separated by a wire mesh barrier until 30 min elapses
from the time of initial placement of the intruder into the
resident’s cage. The barrier allows for visual, auditory, and
olfactory contact but prevents any further physical contact. As
a way to minimize risk for excessive injury, if no defeat occurs
within 15 min (900 s), the rats are separated with a wire mesh
barrier for the remaining 15 min; in this case, the defeat latency
is entered as 900 s. Once the 30-min social stress procedure
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FIGURE 1 | Experimental paradigm, Average defeat latency, and body weights. (A) Experimental paradigm depicting the timeline for implantation of telemetry
devices, continuous wireless Electroencephalogram (EEG)/Electromyogram (EMG) recordings, and 7-day social defeat exposure. (B) Representative EEG, EMG, and
activity traces of Wake (denoted as W), slow-wave sleep (denoted as S) and rapid eye movement (REM) sleep (denoted as P for paradoxical sleep). (C) Average
defeat latency over 7 days of social defeat. Passively coping rats (n = 15) have a lower average defeat latency than actively coping rats (n = 8; 540 + 22 s vs.
776 + 22 s, respectively). (D) Body weights for control (n = 7), passively (n = 15), and actively (n = 8) coping rats on the first day of defeat, last day of defeat, and
2 weeks later. Groups do not differ in body weight on day 1 or day 7 of defeat, but passively coping rats weigh significantly less than control or actively coping rats
2 weeks after defeats have ended. *P < 0.05, ***P < 0.001.

has concluded, the experimental rat is returned to its home
cage. The average defeat latency for each rat over the course of
7 days was then calculated and entered into an R script used
to perform cluster analyses on average defeat latencies (code
available at www.github.com/cookpa/socialdefeat) as described
in Grafe et al. (2018). Briefly, the bootstrap classification starts
from the assumption that the average latencies are drawn from
a bi-modal distribution. Latencies that are reliably classified
as active coping have probability 1.0, and those classified
consistently as passive coping have probability 0.0. Some rats
with a value between 0.1 and 0.9 changed their classification in
more than 10% of the bootstrap samples; in the present study,
three animals were excluded based on this criterion. Many more
animals were classified as passive copers than active copers. In
past work, using this analysis has yielded similar segregation
of groups (Chen et al., 2015; Pearson-Leary et al., 2017, 2019;

Grafe et al.,, 2018). Moreover, three additional animals had
unreadable telemeter recordings (see next section). Ultimately,
the numbers per group were as follows: Controls (7), Passive
Coping (15), Active Coping (8).

Sleep Scoring and Analysis

Neuroscore software (Data Science International, St. Paul, New
Brighton, MN, United States) was used for sleep scoring in 10 s
epochs. Wake and sleep percentage data were calculated using
the automated Rodent Sleep Scoring Module 2 in Neuroscore.
Neuroscore uses a probability matrix to determine the most
likely wake or sleep state. The general states scored are: wake
(denoted as W on traces), slow-wave sleep (denoted as S on
traces) and REM sleep (denoted as P on traces, for paradoxical
sleep); For example traces of each state, see Figure 1B. To
determine each state, three signals are used: EEG, EMG and
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Activity. The EEG data is analyzed by Fast Fourier Transform
(FFT), an algorithm that calculates the discrete Fourier transform
(DFT) of a sequence, or its inverse (IDFT). A Fourier analysis
converts a signal from its time-domain (in the case of EEG) to
a representation in the frequency domain. The two bands of
interest examined in EEG are Delta power (default 0.05-4 Hz)
and the Theta power (default 4-8 Hz). EMG signals are
analyzed by amplitude in relation to the baseline. Activity
data are derived from an algorithm that compares the signal
strength between the device and the receiver with which it
is communicating. There are natural fluctuations that occur
when the animal is moving, and from those fluctuations, the
algorithm generates an activity measurement in counts. For
more information, see https://support.datasci.com/hc/en-us/
articles/115005030328-Understanding-the-Ponemah-Activity-
Derived-Parameter. Depending the value of EMG and presence
of activity (meaning transmitter is moving), the epoch will
likely be scored as awake. If EMG is low and there is no activity
then the Delta Ratio (Delta power dived by total power from
0.5 Hz to 25 Hz) and the Theta Ratio (Theta power divided
by Delta power) is examined. If there is high Delta power
the epoch is likely scored as SWS, and if there is high Theta
power, the epoch is likely scored as REM. As long as the
signals are relatively clean, this algorithm is very reliable. The
accuracy of the recognition of sleep-wake stages was visually
cross-checked by two separate research assistants blind to group
conditions. Percentage time in wake and sleep states (wake,
slow-wave sleep, REM sleep), number of occurrences of total
awakenings vs. exaggerated motor activation at awakening, as
well as REM sleep continuity were analyzed. The data were
analyzed and averaged across the two baseline days; then for
days 1, 4, and 7 of defeat; and then for 1 day 2 weeks later.
Sleep stage percentages were split into light and dark periods
and presented as change relative to baseline. In the light period
(Figure 2), data were analyzed from 10 am to 7 pm on the days
of defeat (in order to capture the light period after the end of
defeat until lights-off). The same time frame (10 am-7 pm) was
analyzed for the baseline and the “2 weeks later” time points.
For the dark period (Figure 3), data were analyzed from 7 pm
to 6 am (starting at lights-off) at the same time points as in the
lights-on analyses.

Total awakenings over a 6-h period (10 am-4 pm) were
counted by neuro score software on defeat days 1 and 7; and
2 weeks after the last defeat. Within those same time points,
exaggerated motor responses to waking were identified by visual
examination of the nuchal EMG and locomotor activity over
a 10 s period following the termination of each sleep bout.
Awakenings were categorized as exaggerated when the burst
of nuchal EMG crossed a pre-set threshold (200 wV), and
there was concurrent locomotor activity, within the first 10 s
after awakening. The EMG threshold used in this analysis was
validated in a separate subset of rats in which a systematic
search was conducted for a threshold value that effectively
discriminated between awakenings with and without immediate
transition into a motor response. Figures 4A,B show example
traces of a typical awakening and an exaggerated motor response
to waking, respectively.
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FIGURE 2 | Percent wake, SWS, and REM in the light period presented as
change from baseline on Day 1, 4, and 7 of Defeat, and 2 weeks later.

(A) Percent time spent awake during the light period in control (n = 7),
passively (n = 15), and actively (n = 8) coping rats. Passively coping rats
spend more time awake than control and actively coping rats after 7 days of
defeat and this persists 2 weeks after defeat. (B) Percent time spent in
slow-wave sleep (SWS) during the light period in control (n = 7), passively

(n = 15), and actively (n = 8) coping rats. Passively coping rats displayed
significantly less time in SWS compared to the other two groups after 7 days
of defeat, and this persisted 2 weeks after defeat. (C) Percent time spent in
REM sleep during the light period in control (n = 7), passively (n = 15), and
actively (n = 8) coping rats. No significant differences in REM sleep were
detected between groups at any time point during the light period. *P < 0.05,
P < 0.01.

Fragmentation of REM sleep was assessed by visually scoring
the relative times of occurrence of individual REM sleep episodes.
According to the classification introduced by Amici et al. (1994),
two types of REM sleep episodes were distinguished: those that
are followed by another REM sleep episode after an interval
longer than 3 min (“single” episodes, sin-REM), and those
followed by another REM sleep episode after an interval of 3 min
or less (“sequential” episodes, seq-REM). The total numbers
of episodes of each type were counted over 6 h of recording
(10 am-4 pm) at baseline; on defeat days 1, 4 and 7; and 2 weeks
after the last defeat. Seq-REM episodes are, on average, of shorter
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FIGURE 3 | Percent wake, SWS, and REM in the dark period presented as
change from baseline on Day 1, 4, and 7 of Defeat, and 2 weeks later.

(A) Percent time spent awake during the dark period in control (n = 7),
passively (n = 15), and actively (n = 8) coping rats. Groups did not significantly
differ in the percent of time they spent in wake at any time point. (B) Percent
time spent in slow-wave sleep (SWS) during the dark period in control (n = 7),
passively (n = 15), and actively (n = 8) coping rats. Groups did not significantly
differ in the percent of time they spent in SWS at any time point. (C) Percent
time spent in REM sleep during the dark period in control (n = 7), passively

(n = 15), and actively (n = 8) coping rats. Groups did not significantly differ in
the percent of time they spent in REM at any time point.

duration than sin-REM episodes. Also, seq-REM episodes tend
to occur in clusters (Amici et al, 1994). Importantly, a shift
toward more seq-REM was previously shown to be indicative
of increased fragmentation of REM sleep (Amici et al., 1994;
DaSilva et al., 2011).

Statistical Analysis

Data are presented as the mean =+ standard error of the
mean (SE). For comparison of defeat latencies between the
actively coping and passively coping groups, as validated in
our previous studies (Wood et al, 2010; Chen et al, 2015;
Pearson-Leary et al., 2017, 2019; Grafe et al., 2018), we used a
Student’s t-test. For analysis of all other measures, a two-way
repeated-measures ANOVA (Group x Time before/during/after

defeat exposure) was used followed by Tukey’s post hoc t-
tests (GraphPad Prism; GraphPad Software, La Jolla, CA,
USA). In all analyses o = 0.05 was regarded as indicative of
statistical significance.

RESULTS

Animals exposed to repeated social defeat were categorized as
either passively coping or actively coping rats based on their
average latency to defeat over 7 days (Figure 1C). The average
latencies for the seven defeat days were 540 £ 22 s vs. 776 = 22 s
(p < 0.0001) in the passively coping and actively coping groups,
respectively. Body weights for the control and the passively and
actively coping rats were recorded on the first and last days
of defeat, and 2 weeks later (Figure 1D). A two-way ANOVA
revealed a main effect of day and an interaction between day
and group (Day, F(y54) = 675.2, p < 0.0001; Day x Group,
F451) = 8.0, p < 0.0001). Post hoc tests revealed that the groups
did not differ from each other in body weight on day 1 or day
7 of defeat, but passively coping rats weighed significantly less
than both control and actively coping rats 2 weeks after defeats
had ended. Thus, the coping strategy used during repeated social
defeat had a long-term effect on body weight.

Percentages of time in wake and different sleep stages during
the light period were calculated and presented as change from
baseline on Days 1, 4, and 7 of defeat, and 2 weeks later in
the control and passively and actively coping groups (Figure 2;
For raw percentage data including baseline recordings, please
see Supplementary Figure S1). A 2-way ANOVA revealed a
significant main effect of group for percent time in awake
(wake time/total recording period time; Figure 2A; Group,
F2) = 8.5, p < 0.01). Post hoc tests revealed that, compared
to control and actively coping rats, passively coping rats had
a higher wake percent after 7 days of defeat and this persisted
2 weeks after defeat. For SWS, a 2-way ANOVA revealed main
effects of time and group, and an interaction between time
and group (Figure 2B; Time, F;37) = 6.3, p = 0.006; Group,
F(2)23) = 5.6, p= 0.01; Time x Group, F(6,62) = 2.8, p= 002)
Specifically, post hoc tests indicated that by day 7 of defeat,
the passively coping group displayed a significantly lower SWS
percent compared to the other two groups, and this persisted
2 weeks after the last defeat. Finally, no significant differences
in REM sleep percent (REM sleep time/total recording period
time; Figure 2C) were detected between groups at any time
point during the light period. In sum, after repeated social
defeat, passively coping rats showed a distinct decrease in
SWS and an increase in wake during the light period (when
sleep should be prominent) compared with control and actively
coping rats.

Percentages of time in wake and different sleep stages during
the dark period were also calculated and presented as change
from baseline on Days 1, 4, and 7 of defeat, and 2 weeks later in
the control and passively and actively coping groups (Figure 3;
For raw percentage data including baseline recordings, please see
Supplementary Figure S2). In contrast to the group differences
observed in the light period, no significant differences in the
wake, SWS, or REM were detected during the dark period.
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FIGURE 4 | Number of exaggerated motor responses during transitions to waking from SWS or REM sleep in the light period at baseline, Day 1 of defeat, Day 7 of
defeat, and 2 weeks after the last defeat. (A) Representative typical awakening: a trace of EEG, EMG, and locomotor activity data during arousal from a REM sleep
episode (initiated at arrow). Note that EMG spikes do not go above the 200 pV threshold in red within 10 s of the sleep transition. (B) Representative exaggerated
motor response at awakening: a trace of EEG, EMG, and locomotor activity data during arousal from a REM sleep episode (initiated at arrow). Note the recurrent
EMG spikes greater than 200 nV (denoted with black arrows) that occur within 10 s of the sleep transition with concurrent locomotor activity. (C) Total counts of
awakenings during 6 h of the light period at baseline, defeat day 1, defeat day 7, and 2 weeks after the last defeat exposure. No significant differences in the total
number of awakenings were detected between groups at any time point. (D) Total counts of exaggerated motor responses to waking during 6 h of the light period at
baseline, defeat day 1, defeat day 7, and 2 weeks after the last defeat exposure. Actively coping rats (n = 8) displayed less exaggerated motor responses to waking
than both control (n = 7) and passively coping rats (n = 15) after day 7 of defeat, and this persisted 2 weeks later. (E,F) Exaggerated motor responses counted
separately for arousals from SWS and REM sleep, respectively. Compared to control (n = 7) and passively coping rats (n = 15), actively coping rats (n = 8) had
significantly fewer exaggerated motor responses to waking from REM sleep specifically but not from SWS. *P < 0.05, *P < 0.1.

In the analysis of sleep to wake transitions, we counted
the total awakenings as well as the episodes of exaggerated
motor responses to waking during the light period. No
significant differences in the total number of awakenings were
detected between groups at any time point (Figure 4C). A
2-way ANOVA revealed a main effect of time on the total
number of exaggerated motor activations at waking (Figure 4D;
Faus) = 11.0, p < 0.0001). Further analysis revealed that,
compared to both control and passively coping rats, actively
coping rats displayed fewer exaggerated motor activations
to waking on day 7 of defeat, and this persisted 2 weeks
later. We then separately counted episodes of exaggerated
motor activation at awakening from SWS and REM sleep. No
group-related differences were present on any day for SWS

(Figure 4E). In contrast, for REM sleep, actively coping rats
showed significantly fewer exaggerated responses compared with
control or passively coping rats on defeat day 7, and these
effects persisted at the 2-week time point (p = 0.0476 and
p = 0.0428, respectively; Figures 4E,F). Thus, rats coping
actively during defeat exhibited lower exaggerated motor
responses at awakening on the 7th day of defeat, these
lower numbers persisted 2 weeks post-stress and were due to
awakenings from REM rather than awakenings from episodes
of SWS.

As coping strategy during social defeat stress affected
arousal from REM sleep, we also investigated REM sleep
continuity by examining REM sleep microarchitecture
(Table 1). As described in the “Materials and Methods”
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TABLE 1 | Continuity of REM sleep (single vs. sequential episodes of REM) in the light period at baseline, Day 1 Defeat, Day 4 Defeat, Day 7 Defeat, and 2 weeks later.

Number of Single REM Episodes

Number of Sequential REM Episodes

Control Passive Active Control Passive Active
Baseline 16.67 +£1.3 16.50 + 1.4 1317 +£2.2 9.50+ 1.8 9.08 £0.9 8.33+1.9
Day 1 Defeat 9.83+22 13.756+ 1.0 13.33+22 11.50+1.6 11.08 £ 1.3 10.50 + 1.8
Day 4 Defeat 13.00+ 1.9 10.42 £ 0.8 12.00 + 1.7 12.00 £ 0.9 13.08 £ 0.9 8.67 +£1.0*
Day 7 Defeat 1333+ 25 11.92 + 1.1 1317+ 1.4 8.67+1.8 8.92 £0.9 10.50 + 0.6
2 Weeks Later 14.00 + 1.9 1425+ 1.5 13.67 £ 2.7 7.67 £141 575+1.6 7.00 £2.3

The number of single REM sleep episodes did not significantly differ between groups at any time point. For the sequential REM sleep episodes (those with an inter-REM episode
of <3 min), actively coping rats had significantly less sequential REM sleep episodes than control or passively coping rats after Day 4 of defeat. *P < 0.05.

section, single and sequential REM sleep (sin-REM and
seq-REM) episodes were counted. The number of sin-REM
sleep episodes did not significantly differ among groups at
any time point. In contrast, a 2-way ANOVA revealed a
main effect of time (F;36) = 44, P < 0.01) for seq-REM
sleep episodes. Further analysis indicated that, compared
to control and passively coping rats, actively coping rats
had significantly fewer seq-REM sleep episodes on defeat
day 4.

DISCUSSION

These experiments are the first to examine individual differences
in sleep amount and structure in relation to the coping
strategy following exposure to social defeat. Specifically, we
used a social defeat paradigm that generates two different
populations of rats that demonstrate either a passive or
an active coping strategy, based on the average latency to
defeat. These distinct strategies previously have been related to
vulnerability or resilience to stress, respectively (Wood et al,,
2010; Chen et al., 2015; Pearson-Leary et al, 2017, 2019).
Notably, passively coping rats exhibit increased immobility in
the forced swim test and reduced social interaction, indicative
of increased helplessness and anxiogenic behavior, respectively.
We hypothesized that actively coping (resilient) and passively
coping (vulnerable) rats would exhibit differences in sleep
architecture during exposure to social defeat, and that these
differences would again be demonstrated 2 weeks after the last
defeat session. We found that, compared to actively coping
rats, passively coping rats had a higher wake percent and
a lower SWS percent during, and 2 weeks following, social
defeat. In addition, actively coping rats demonstrate resilience
to particular sleep deficits such as exaggerated motor responses
during spontaneous awakenings and reduced fragmentation
of REM sleep episodes after social defeat. Together, these
data suggest that a passive, compared to an active, coping
strategy during and following repeated social defeat stress is
associated with long-lasting sleep changes that can be construed
as impairments.

We found that a single exposure to social defeat did not reduce
SWS, consistent with other studies (Meerlo et al., 1997, 2001).
We also did not see significant differences in SWS with 4 days
of defeat. However, after 7 days of defeat, passively coping rats
displayed significantly reduced SWS. This time dependence was
expected because coping strategy becomes fully established after

the fourth defeat (Wood et al., 2010). Among the highly variable
polysomnographic findings in PTSD, decreased SWS is one of the
most consistent abnormalities across studies (Kobayashi et al,,
2007; Richards et al., 2013; Pace-Schott et al., 2015). Thus, our
findings showing decreased slow-wave sleep after the use of a
passive coping strategy in response to social defeat may have
clinical relevance.

A recent study examined how confrontational behaviors
during a single social defeat affected sleep (Kinn Rod et al.,
2014). Although defeated rats, compared with controls, did not
show changes in SWS, a subgroup demonstrating more fighting
behaviors exhibited fragmented SWS. Hence, in this short term
model of social defeat, an active coping strategy may not be
beneficial, but with additional defeat experiences, as in the
current paradigm, active coping behavior may be associated with
resilience to the effects of defeat on sleep.

In parallel to the reduction in time spent in SWS, passively
coping rats also displayed increased time in wake after 7 days
of defeat, and this persisted 2 weeks after the end of social
defeat. Insomnia is prominent in individuals exposed to trauma,
including those who go on to develop PTSD (Lavie, 2001;
Mellman and Hipolito, 2006). Thus, the increase in wake we
observed in the light period, rats’ inactive time, may have a
clinical counterpart.

Recurrent distressing dreams are a very common
reexperiencing symptom of PTSD (Ross et al., 1989; Mellman
et al., 1995; Mellman and Hipolito, 2006; Germain et al., 2008;
Germain, 2013). Such dreams often lead to awakening, in
which case they are defined as nightmares. Nightmares are
characterized by autonomic arousal, and the nightmares that
occur in PTSD, which may emerge from non-REM sleep, as
well as REM sleep, is associated with leg movements and/or
respiratory events (Phelps et al., 2018). Nightmares are highly
deleterious in PTSD, reducing the quality of life (EI-Solh, 2018).
Furthermore, treatments targeted to nightmares significantly
improve the overall quality of life (Calegaro et al, 2019)
Therefore, we investigated the characteristics of awakenings
from sleep in our social defeat model by analyzing motor
activation accompanying their spontaneous awakenings from
sleep. Actively coping rats did not have as many exaggerated
arousals from REM sleep as passively coping or control rats
and this was apparent 2 weeks after defeats ended. Thus,
an active coping strategy in response to repeated stress may
protect against a phenotype similar to nightmares as observed
in PTSD.
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As coping strategy during social defeat stress specifically
affected awakenings from REM sleep, we further analyzed the
continuity of REM sleep. In PTSD patients, the quality of REM
sleep appears to be altered. Notably, studies have found that
the latency of REM onset is delayed and REM episodes are
fragmented (Mellman et al., 2014; Yehuda et al, 2015) and
these are considered detriments in REM sleep initiation and
maintenance. We found that social defeat stress did not affect
latency to REM sleep (data not shown), thus it did not affect
REM sleep initiation. We assessed REM sleep maintenance
by classifying single and sequential REM episodes (Sin-REM
and Seq-REM, respectively; Amici et al., 1994). A sin-REM
episode is on average, longer, than a seq-REM episode, and
seq-REM episodes tend to occur in clusters (Amici et al., 1994).
Importantly, a shift toward more seq-REM was previously shown
to be indicative of increased fragmentation of REM sleep (Amici
et al., 1994; DaSilva et al., 2011).

Our data indicate that actively coping rats were resilient to
detriments in REM sleep maintenance compared to passively
coping rats. Specifically, actively coping rats had less seq-REM
episodes (fragmentation) after 4 days of defeat, when coping
strategies have just begun to establish (Wood et al, 2010).
However, this effect did not persist through the remainder of
the defeat and post-defeat period. Thus, coping strategy is not
associated with long-lasting changes in REM fragmentation after
social defeat.

The changes in sleep observed in our studies were present
2 weeks after the end of a defeat. Hence, these effects
are long-lasting. This has particular relevance for psychiatric
disorders such as PTSD, in which symptoms are often
chronic, albeit subject to waxing and waning. Undeniably,
these long-lasting alterations in sleep must be mediated by
neurobiological changes.

Recent studies have begun to uncover some possible neural
substrates underlying stress-induced sleep changes. For example,
one report indicates that a kappa-opioid receptor antagonist
reversed long-lasting social defeat stress-induced sleep deficits
(Wells et al., 2017). Another possible substrate of sleep changes
after social defeat is the orexins, neuropeptides that are
important in maintenance of wakefulness. We have previously
shown that actively coping rats have reduced orexin mRNA
compared to control and passively coping rats (Grafe et al,
2018). These reductions might protect actively coping rats
from the impact of social defeat stress on sleep amount
and continuity and, in particular, reduce the number of
transitions from REM sleep to wakefulness. Lastly, a very
recent study has uncovered a peripheral substrate that may
predict sleep changes after stress (brain-derived neurotrophic
factor, BDNF; Sweeten et al., 2020). Future studies are required
to determine both the neural and peripheral substrates that
underlie the enduring disruption in sleep observed in passively
coping rats.

In sum, a passive coping strategy in response to repeated
social defeat increases the percent time spent awake and
reduces the percent time spent in SWS compared to control
and actively coping rats, deficits similar to those observed in
PTSD. The slow-wave activity generated during SWS is thought

to facilitate the reorganization of cortical circuitry supporting
cognition (Wilckens et al., 2018). Thus, it is possible that a
passive coping strategy during repeated social defeat may lead
to cognitive impairment, a phenomenon frequently observed
in many stress-related disorders including PTSD (Vasterling
et al, 1998). In addition, actively coping rats show fewer
exaggerated motor activations during spontaneous awakenings
from REM sleep, a phenotype comparable to the occurrence
of nightmares in PTSD (Mellman and Hipolito, 2006).
Actively coping rats also show less REM sleep fragmentation,
a measure of REM discontinuity, compared with control
and passively coping rats during the light period, but this
effect is not long-lasting. Overall, the results presented here
demonstrate that coping strategy is an important determining
factor in the development of sleep deficits associated with
repeated stress. Taken together with our previous work,
individuals that passively cope with social defeat exhibit sleep
deficits accompanied by increases in anxiety-like behaviors
and pro-depressive helplessness behaviors. Accordingly, a
coping strategy may also be an important determinant of
sleep deficits in stressed humans. Future studies should
determine whether treatments that reduce anxiety-related
behaviors can also reduce these sleep deficits in passively
coping individuals.
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