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The propensity to engage in risky behaviors including excessive alcohol consumption
may impose increased medical, emotional, and psychosocial burdens. Personality and
behavioral traits of individuals may contribute in part to the involvement in risky behaviors,
and therefore the classification of one’s traits may help identify those who are at risk
for future onset of the addictive disorder and related behavioral issues such as alcohol
misuse. Personality and behavioral characteristics including impulsivity, anger, reward
sensitivity, and avoidance were assessed in a large sample of healthy young adults
(n = 475). Participants also underwent diffusion tensor imaging for the analysis of
structural brain networks. A data-driven clustering using personality and behavioral traits
of the participants identified four subtypes. As compared with individuals clustered into
the neutral type, individuals with a high level of impulsivity (A subtype) and those with
high levels of reward sensitivity, impulsivity, anger, and avoidance (B subtype) showed
significant associations with problem drinking. In contrast, individuals with high levels of
impulsivity, anger, and avoidance but not reward sensitivity (C subtype) showed a pattern
of social drinking that was similar to those of the neutral subtype. Furthermore, logistic
regression analysis with ridge estimators was applied to demonstrate the neurobiological
relevance for the identified subtypes according to distinct patterns of structural brain
connectivity within the addiction circuitry [neutral vs. A subtype, the area under the
receiver operator characteristic curve (AUC) = 0.74, 95% CI = 0.67–0.81; neutral vs.
B subtype, AUC = 0.74, 95% CI = 0.66–0.82; neutral vs. C subtype, AUC = 0.77, 95%
CI = 0.70–0.84]. The current findings enable the characterization of individuals according
to subtypes based on personality and behavioral traits that are also corroborated by
neuroimaging data and may provide a platform to better predict individual risks for
addictive disorders.

Keywords: alcohol misuse, impulsivity, reward sensitivity, avoidance, anger, addiction circuitry, structural brain
network

INTRODUCTION

Addictive behaviors in everyday life may be frequently associated with negative consequences on
health and psychological well-being (Deleuze et al., 2015). While the debate over the relationship
between personality traits and behavioral outcome continues, recent trends focus on the role
of particular behavioral and personality characteristics in the propensity to engage in addictive
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behaviors as well as vulnerability to the future onset of addictive
disorders (Berglund et al., 2011; Whelan et al., 2014; Egervari
et al., 2018). For instance, growing literature suggest the
importance of personality traits in addiction, such as the role of
personality in the vulnerability or resilience towards substance
use disorders (Belcher et al., 2014) and addictive behaviors
(Barkin et al., 2002), as well as the identification of specific
traits that have been demonstrated as prevalent in substance
users (Terracciano et al., 2008). In particular, traits such as
impulsivity (de Wit, 2009; Ersche et al., 2012a,b) and reward
sensitivity (Ersche et al., 2013) have been previously reported
in association with substance use. Furthermore, structural
alterations of specific brain regions may act as neural correlates
of addictive behaviors, such as response inhibition (Nigg et al.,
2006) and neurobehavioral disinhibition (Tarter et al., 2003)
which have been demonstrated as a potential predictor for
problem drinking and substance use disorder, respectively.
Considering this, an investigational approach that can reliably
identify at-risk individuals may be beneficial in the assessment
of individual prognosis for addictive disorders, and necessary in
building personalized preventive and intervention strategies.

Recent advances in neuroimaging and computational
techniques greatly enhanced our understanding of the
human brain and behavior and enabled the quantification
of their variations across individuals in both healthy and
disease conditions (Gabrieli et al., 2015). Studies revealed
possibilities for the discovery of brain measures and their
correlation with our predictive ability in health-related behaviors
(Helfinstein et al., 2014; Gabrieli et al., 2015; Poldrack et al.,
2018). Furthermore, recent large-scale longitudinal studies
on adolescents demonstrated that individual personality and
cognitive differences, environmental factors, and candidate
genes along with brain structural and functional characteristics
not only identified current alcohol misuse but also predicted
future alcohol misuse (Whelan et al., 2014; Heinrich et al., 2016).

Increasing evidence suggests that the neuropathological
features of a set of brain regions that make up the ‘‘addiction
circuitry’’ play an important role in the development and
progression of addictive disorders (Koob and Volkow, 2016).
According to previous research, abnormalities in individual
brain regions, as well as the interconnections within the
addiction circuitry, may be considerably involved in addictive
behaviors (Koob and Volkow, 2016). Likewise, a series of recent
studies on structural brain networks demonstrated alterations
in interconnections of brain regions of the addiction circuitry
in relation to alcohol dependence and other forms of substance
dependence (Lim et al., 2002; Romero et al., 2010; Ersche et al.,
2012a,b; Zhang et al., 2016). As such, following the recent trend
of applying a connectome-based approach may be useful in
identifying the distinct brain correlates that are reflective of
various personality and behavioral traits in relation to risks for
alcohol misuse.

The present study aims to identify distinct subtypes according
to the observable behavioral characteristics in a large non-clinical
sample of young adults and to examine whether these subtypes
were related to alcohol drinking patterns. Behavioral and
personality characteristics including impulsivity, anger, reward-

sensitivity, and avoidance, all of which have been reported as
being associated with the vulnerability to addictive behaviors
(Castellanos-Ryan et al., 2013; Egervari et al., 2018), were
included in this data-driven model. In addition, in an effort
to provide reliable neurobiological correlates of this clinical
data-based clustering, further validation steps included the
classification of each individual into a particular subtype
according to one’s neurobiological measures, such as white
matter fiber interconnections among the brain regions of the
addiction circuitry.

We hypothesized that individuals who are categorized
under a distinct subtype based on behavioral traits would
show type-specific neurobiological abnormalities as observed
by neuroimaging data, including altered white matter fiber
interconnections within the addiction circuitry.

MATERIALS AND METHODS

Participants
A total of 475 young adults [387 men and 88 women;
mean age ± standard deviation (SD) 27.1 ± 3.7 years old]
who were screened for the absence of any major medical or
neuropsychiatric diseases using medical history taking and the
Structured Clinical Interview for DSM-4 (First et al., 1997),
respectively, were recruited from the community. Individuals
were excluded if they had any past or current alcohol or substance
dependence, were shown positive on the pregnancy test, had
a history of traumatic brain injury with loss of consciousness,
or had any contraindications to brain magnetic resonance
imaging (MRI).

All participants underwent a two-part evaluation: (1) clinical
assessments of addiction-related behavioral and personality
characteristics including alcohol misuse, impulsivity, anger,
reward-sensitivity, and avoidance; and (2) neuroimaging
assessments of structural brain networks.

This study protocol was approved by the Institutional Review
Board of Ewha W. University. Written informed consent was
obtained from all participants prior to enrollment.

In the current study, unsupervised hierarchical clustering
analysis was performed to identify particular subtypes related
to addictive behaviors according to similarities in behavioral
and personality characteristics (Step 1 subtype identification
in Figure 1). The most discriminative connection features
for classifying each subtype were then selected using logistic
regression analysis with ridge estimators in order to provide
the neurobiological relevance for these identified subtypes (Step
2 subtype validation in Figure 1).

Behavioral and Personality Assessments
Addiction-related behavioral and personality characteristics
were assessed using five scales including the Alcohol Use
Disorders Identification Test (AUDIT; Saunders et al.,
1993), Barratt impulsiveness scale (BIS; Barratt, 1994; Patton
et al., 1995), State-Trait Anger Expression Inventory (STAXI;
Spielberger, 1988), Behavioral Inhibition System scale (Carver
and White, 1994) and Behavioral Approach System scale
(Carver and White, 1994).
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FIGURE 1 | A flow chart demonstrating the conceptual approach of the study design including subtype identification and validation. (A) Subtypes were identified by
unsupervised hierarchical clustering analysis using scale scores of alcohol misuse, impulsivity, anger, reward sensitivity, and avoidance. (B) Subtypes that were
clustered according to behavioral and personality characteristics were validated by a supervised approach using structural connectivity data of the addiction circuitry
encompassing of DLPFC, OFC, limbic structure, dorsal striatum, and interoceptive salience processing brain regions. Logistic regression analysis with ridge
estimators was applied to predict each individual’s subtype under the framework of nested 10-fold cross-validation. DLPFC, dorsolateral prefrontal cortex; OFC,
orbitofrontal cortex.

As supplementary measures, personality characteristics
were assessed using the personality diagnostic questionnaire-
4+ (PDQ-4+; Hyler, 1994), and composite scores for two
personality tendencies which are extroverted and anxious-
depressive characteristics were calculated and used for
further analyses.

See Supplementary Methods for details of each measure.

Unsupervised Clustering of Individuals
According to Behavioral and Personality
Measures
Agglomerative hierarchical clustering analysis was performed
on the standardized scores of the five abovementioned scales
on addiction-related behavioral and personality characteristics
to determine the number of significant clusters and identify
clustered subtypes. Using Ward’s minimum variance method
while considering the squared Euclidean distance (Ward,
1963), a dendrogram strongly suggested a 4-cluster solution
(Figure 2). This 4-cluster solution was considered most
optimal for discriminating participants into clusters that are
maximally dissimilar from each other. We also ensured that
the 4-cluster solution could be theoretically interpreted while

having each individual cluster consist of at least 20% of the
total participants. Discriminant function analysis with a leave-
one-out cross-validation was applied to validate the identified
optimal clustering solution, which yielded a high accuracy of
80.2% across clusters. The process of the identification subtypes
is conceptually summarized in Figure 1A.

Construction of Structural Connection
Matrix of Addiction Circuitry and Group
Comparisons
For the construction of structural brain connectivity matrix,
high-resolution T1-weighted and diffusion-weighted images
were acquired using a 3.0 Tesla whole-body imaging system.
Diffusion tensor was calculated using the Diffusion Toolkit1,
and white matter pathways within the addiction circuitry
were reconstructed using the Fiber Assignment by Continuous
Tracking (FACT) algorithm (Mori et al., 1999). The Trackvis2

software package was applied to reconstruct all fiber tracts
that were interconnecting the nodes of interest (NOIs). See

1http://trackvis.org/dtk
2http://trackvis.org
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FIGURE 2 | Hierarchical clustering of a sample into distinct subtypes according to behavioral and personality characteristics including alcohol misuse, impulsivity,
anger, reward sensitivity, and avoidance (A) and scale scores for these characteristics in each subtype (B). The subtypes were defined as the neutral subtype
(n = 128), A subtype (n = 87), B subtype (n = 152), and C subtype (n = 108). Values in the radar charts were transformed into standardized z scores using the means
and standard deviations of the scale scores from the neutral subtype. Stacked horizontal bar graphs in panel (B) indicate that, as compared with those under the
neutral subtype, individuals with A and B subtypes may display more alcohol-related problems. There are no differences in the frequency of problem drinking
between the neutral and C subtypes.

Supplementary Methods for a detailed description of the image
data acquisition and preprocessing.

A total of 34 brain regions (17 regions per each hemisphere)
were identified as regions that are part of the addiction circuitry
and involved in the pathophysiology of addictive disorders (Koob
and Volkow, 2016; Volkow et al., 2016). These regions were
defined as network NOIs of the addiction circuitry based on
individual parcellation maps according to the Desikan-Killiany
atlas (Desikan et al., 2006) generated using the FreeSurfer
software suite3. The NOIs were grouped into five regions of
interest (ROIs) according to their anatomical locations and
functions as follows: the dorsolateral prefrontal cortical region
(DLPFC), orbitofrontal cortical region (OFC), limbic region,
dorsal striatal region, and interoceptive salience processing
region, all bilaterally (Figure 3A). Individual brain regions of
each ROI are presented in Supplementary Table S1. Brain
regions clustered into the DLPFC ROI are known to be involved
in functions of executive control related to addiction, while those
into the OFC and limbic ROIs may play an important role in
the processing of withdrawal-negative effect related to addiction
(Koob and Volkow, 2016). The reward and incentive salience
processing related to addiction may be modulated by brain
regions of the dorsal striatal and interoceptive salience processing
ROIs (Koob and Volkow, 2016). Each structural connection
(edge) between two NOIs was defined as having a minimum of

3http://surfer.nmr.mgh.harvard.edu

three interconnected streamlines, which were measured using
the deterministic fiber tracking method (Yoon et al., 2016). For
each individual, a 17 × 17 structural connection matrix was
constructed per hemisphere. The strength of the connections
between each pair of NOIs was measured using the number of
streamlines connected and were entered into the classification
models as relevant connection features. A total of 272 bilateral
intra-hemispheric connections were then used as connection
feature candidates.

The degree of each NOI was defined as the number
of connections to other NOIs (Rubinov and Sporns, 2010),
and was normalized by the total number of connections
within the reconstructed matrix. The sum of the normalized
degree of NOIs was calculated for each of the five ROIs
and values for each subtype are presented in Supplementary
Table S2. The normalized degrees of ROIs were compared
between the groups using the general linear model with sex
as a relevant covariate. Permutation-adjusted P values were
calculated (10,000 permutations) in order to correct for multiple
comparisons (Westfall and Young, 1993).

Subtype Validation: Model Construction for
Classifying Identified Subtypes Using
Neuroimaging Data
Feature Processing and Reduction
Bilateral intra-hemispheric connection features of the addiction
circuitry were normalized within the range of 0–1 in order to
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FIGURE 3 | Schematic representation of the group-averaged reconstructed structural brain network among the brain regions (nodes) related to the addiction
circuitry, which were then grouped into 5 ROIs including the DLPFC, OFC, limbic, dorsal striatal, and interoceptive salience processing regions (A) and radar charts
for the normalized network connections (degrees) of each ROI in each subtype (B). For the purpose of presentation, the spheres are colored according to the ROIs
to which they belong, and are placed in the center of each brain region (node) as according to the Desikan-Killiany atlas. The node size is proportional to the number
of network connections (degree). Values of normalized degrees were transformed into standardized z scores using the means and standard deviations of those from
the neutral subtype. Asterisks (*) in the radar charts indicate significant differences in normalized degrees of each subtype as compared with those in the neutral
subtype at permutation-adjusted P < 0.05. For presentation purposes, a marginal statistical significance of group differences in normalized degrees at
permutation-adjusted P < 0.09 was also noted using crosses (†). DLPFC, dorsolateral prefrontal cortex; rMFC, rostral medial frontal cortex; SFC, superior frontal
cortex; cMFC, caudal medial frontal cortex; OFC, orbitofrontal cortex; LOFC, lateral orbitofrontal cortex; MOFC, medial orbitofrontal cortex; NA, nucleus accumbens;
ACC, anterior cingulate cortex; L, left; R, right.

minimize noise-related scaling effects. Among 272 connection
features, the top 20% of connection features (n = 54) that were
identified as being different compared to the neutral subtype
remained for each classification model. A total of 54 connection
features remained after the initial feature reduction, and are listed
in Supplementary Table S3.

Feature Selection, Classification Algorithm, and
Evaluation of Classification Performance
In addition to the initial feature reduction, suboptimal and
redundant connection features were subsequently removed
using a feature selection algorithm based on the wrapper
approach in order to avoid the overfitting problem (Friedman
et al., 2001). As compared with the filter methods for
feature selection, nested cross-validation based on the wrapper
approach would have the benefit of efficient control of the
multicollinearity issue among features (Mwangi et al., 2014),
which is a prevalent concern in neuroimaging data due to its
high dimensionality.

Nested cross-validation with the outer 10 folds was applied
to estimate the classification accuracy, and the inner five folds
to select the optimal set of connection features, as was done
in previous studies (Whelan et al., 2014; Cui et al., 2016). At
the inner fold, 72% (80% of 90%) and 18% (20% of 90%) of
individuals were used as training and test sets, respectively.
The outer fold for validating the classification model generated
a total of 10 models using 90% and 10% of individuals as
training and test sets, respectively (Figure 1B). The selection
of optimized features was followed using only the training data
to avoid circularity (Janssen et al., 2018). A wrapper approach
using greedy forward selection was employed to select a subset

of features that had the highest relevance to the classification of
subtypes (Mwangi et al., 2014).

Logistic regression with ridge estimators (Le Cessie and
Van Houwelingen, 1992) was applied as a classification model
to identify the individuals’ subtype. Preprocessed connection
features were entered into a one-vs.-one algorithm, with
the neutral subtype as reference. All procedures of feature
selection and model construction with nested cross-validation
was conducted using the open-source Waikato Environment for
Knowledge Analysis (WEKA) software version 3.84.

Model performance was estimated using the receiver
operating characteristics (ROC) analysis. The mean area under
the curve (AUC) was calculated for each classification model.

Discriminative Features for Each Model
The frequency of the selected features in each fold was
calculated to estimate feature contribution and importance in
the classification process to identify discriminative connection
features for each model. The model performance using logistic
regression with ridge estimators of the top 30% of the most
frequently selected connection features was estimated with
10-fold cross-validation. In addition, a linear support vector
machine classifier was also applied in order to validate the results,
as done in a previous study (Cui et al., 2016). The error range for
the AUC was computed using a bootstrapping procedure with
resampling of 5,000 times. Z-statistics was used to determine
whether the AUC is significantly greater than chance (Hanley
and McNeil, 1983). The schematic overview of the validation is
shown in Figure 1B.

4https://www.cs.waikato.ac.nz/ml/weka/
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RESULTS

Identified Subtypes According to
Behavioral and Personality Characteristics
The unsupervised clustering algorithm identified four subtypes,
which included the neutral subtype (n = 128, 27.0%), A
subtype (n = 87, 18.3%), B subtype (n = 152, 32.0%), and
C subtype (n = 108, 22.7%; Figure 2A). The detailed clinical
characteristics of the participants clustered into each subtype
label are summarized in Table 1.

The A subtype showed notably higher scores on the BIS
(Barratt, 1994; Patton et al., 1995), as compared to the neutral
subtype. The B subtype was characterized by high scores on
the Behavioral Approach System scale for reward sensitivity,
relative to the neutral subtype as well as the other two subtypes.
Individuals classified under the B subtype also showed higher
scores on other behavioral characteristics including impulsivity,
anger, and avoidance. The C subtype displayed a similar profile in
behavioral characteristics to the B subtype except for scale scores
on the Behavioral Approach System scale.

Scores for the AUDIT (Saunders et al., 1993) were
significantly higher in the A subtype (z = 10.2, P < 0.001) and
B subtype (z = 11.3, P < 0.001) relative to the neutral subtype.
However, there were no differences in AUDIT scores between
individuals in the C subtype and neutral subtype (z = 1.80,
P = 0.07). Similar to the neutral subtype, the C subtype was
the group without any indicators of alcohol misuse. As for the
frequency of problem drinking, individuals under the A subtype
(n = 38, 43.7%) and B subtype (n = 72, 47.4%) demonstrated
greater potential for problem drinking, which is defined as a
score of 12 or higher on the AUDIT (Lee et al., 2000; Figure 2),
compared to the neutral (n = 3, 2.3%) and C subtypes (n = 5,
4.6%). As auxiliary analyses, we have repeated the agglomerative
hierarchical clustering analysis using four scale scores, excluding
the AUDIT, and a 3-cluster solution was produced. As compared
with the original findings, individuals under the C subtype were
likely to be combined with the neutral subtype when the AUDIT
scores were excluded. Similar to the original findings, there
were significant differences in self-reported alcohol use between

individuals under the neutral and A subtypes as well as the
neutral and B subtypes. Details for these auxiliary analyses are
presented in Supplementary Result 1.

In addition, the B subtype (extroverted, z = 9.20, P < 0.001;
anxious-depressive, z = 6.63, P < 0.001) and C subtype
(extroverted, z = 4.95, P < 0.001; anxious-depressive, z = 8.44,
P < 0.001) revealed higher composite scores on the PDQ-4+
compared to the neutral subtype (Figure 2). There were
no differences in composite scores for the two personality
dimensions between individuals under the A subtype and neutral
subtype (extroverted, z = 0.77, P = 0.44; anxious-depressive,
z = 0.04, P = 0.97; Figure 2).

Subtype-Specific Differences in Structural
Connections Among the Brain Regions of
Addiction Circuitry
Individuals under the A subtype showed significant differences
in normalized degrees of the right OFC region (z = 2.46,
permutation-adjusted P = 0.01), right limbic region (z = 2.31,
permutation-adjusted P = 0.02), right interoceptive salience
processing region (z = −2.39, permutation-adjusted P = 0.01),
and left interoceptive salience processing region (z = −2.07,
permutation-adjusted P = 0.04) compared to the neutral subtype
(Figure 3). Individuals under the C subtype also revealed
significant differences in normalized degrees of the right DLPFC
region (z = 2.27, permutation-adjusted P = 0.02), as compared
with the neutral subtype (Figure 3). Furthermore, although the
differences did not reach statistical significance, the normalized
degrees of the left limbic regions were reduced in individuals
under the B subtype (z = −1.72, permutation-adjusted P = 0.09)
and C subtype (z = −1.77, permutation-adjusted P = 0.07)
relative to the neutral subtype, respectively. In addition, the
normalized degrees of each NOI were also compared between
subtypes and presented in Supplementary Table S4.

Classification of Identified Subtypes
According to Neuroimaging Data
The logistic regression analysis with ridge estimators generated
three independent binary classification models (neutral vs.

TABLE 1 | Behavioral and personality characteristics of each subtype categorized by unsupervised clustering analysis.

Neutral subtype A subtype B subtype C subtype

No. of individuals 128 87 152 108
Problem drinking, No (%) 3 (2.3) 38 (43.7) 72 (47.4) 5 (4.6)
Behavioral characteristics

AUDIT scores, mean (SD) 5.01 (3.73) 11.49 (4.83)a 12.11 (6.44)a 5.53 (3.51)
BIS scores, mean (SD) 59.0 (5.9) 67.7 (5.1)a 67.8 (7.8)a 66.3 (5.1)a

STAXI scores, mean (SD) 23.8 (3.3) 23.7 (2.9) 28.3 (5.5)a 30.7 (5.2)a

Behavioral approach system scores, mean (SD) 37.3 (4.3) 34.3 (2.2)a 41.7 (3.9)a 35.6 (4.0)a

Behavioral inhibition system scores, mean (SD) 16.5 (3.2) 17.1 (1.8) 19.0 (2.6)a 20.6 (3.1)a

Personality characteristics
Extroverted personality dimensionb, mean (SD) 0.0 (0.69) 0.01 (0.84) 0.94 (0.97)a 0.57 (0.92)a

Anxious-depressive personality dimensionc, mean (SD) 0.0 (0.73) −0.02 (0.77) 0.75 (1.09)a 1.15 (1.25)a

aThe statistical significance at P < 0.01 in behavioral and personality characteristics of each subtype as compared with those of the neutral subtype. The general linear models were
applied to examine group differences in continuous measures of scale scores after adjusting for sex. bComposite scores for extroverted personality dimensions were calculated by
averaging the standardized scores of the subscales for antisocial, borderline, histrionic, and narcissistic personality domains of the PDQ-4+. cComposite scores for anxious-depressive
personality dimensions were calculated by averaging the standardized subscale scores of the avoidant, depressive, obsessive-compulsive, and dependent personality domains. No,
number; AUDIT, Alcohol Use Disorder Identification Test; BIS, Barratt Impulsiveness Scale; STAXI, State-Trait Anger Expression Inventory; SD, standard deviation.
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A subtypes; neutral vs. B subtypes; neutral vs. C subtypes)
using the structural network connection strength within
the addiction circuitry as relevant features. Classification
performance of three models which identify each subtype
relative to the neutral subtype, respectively, yielded the average
(overall test sets) AUCs of 0.70, 0.65, and 0.67 for the A
subtype, B subtype, and C subtype as compared with the
neutral subtype, respectively (Figure 4). We have repeated all
analyses using the initially selected feature sets with various
selection criteria for the feature reduction step, and the results
remained similar (Supplementary Result 2 and Supplementary
Figure S1).

The contribution of each connection feature to the
classification performance was examined by calculating the
frequency of the selected features appearing in cross-validation
runs. Frequently selected features were considered to indicate
higher reliability, where they provide relevant information for
the classification of target subtypes in a consistent manner.
The location and frequency of the selected neural connections
that best separated each subtype from the neutral subtype
and are above the 30th percentile are shown in Figure 4.
Discriminative connection features specifically for identifying
the A subtype mainly derived from the OFC and dorsal
striatal regions. Connections to the limbic regions were
robust classifiers for the B subtype, and connections to the
DLPFC primarily contributed to the classification of the C
subtype relative to the neutral subtype. The list of all the
connection features that were selected above a frequency of
0.4 over the repeated cross-validation trials is presented in
Supplementary Table S5.

Classification models using only the top 30% of the most
frequently selected connection features were also generated,
which identified the A subtype, B subtype, and C subtype
based on 13, 13 and 16 of the most relevant connection
features, respectively. Individuals classified under the A subtype,
B subtype, and C subtype were discriminated from those under
the neutral subtype with AUCs of 0.74 [95% confidence interval
(CI) = 0.67–0.81, P < 0.001], 0.74 (95% CI = 0.66 -0.82,
P< 0.001), and 0.77 (95%CI = 0.70–0.84, P< 0.001), respectively
(Figure 4). Histograms of AUCs after bootstrapping procedure
with resampling of 5,000 times are presented in Supplementary
Figure S1, where the dashed black lines indicate the AUC for
classifying each subtype apart from the neutral subtype. To
validate the robustness of the current results, we additionally
applied the linear support vector machine classifier, which is
similar and comparable to the regularized logistic regression
in obtaining a linear classifier (Cui et al., 2016), for classifying
the three subtypes relative to the neutral subtype, respectively.
Specifically, the linear support vector machine models used the
same feature sets that included the 13, 13, and 16 most relevant
connection features to classify A, B, and C subtypes, respectively,
from the neutral subtype. The accuracy of the AUCs in classifying
the A, B, and C subtypes were 0.73 (95% CI = 0.64–0.81,
P < 0.001), 0.73 (95% CI = 0.65–0.80, P < 0.001), and 0.75
(95% CI = 0.68–0.83, P < 0.001), respectively. Histograms of the
AUCs using bootstrapping resampling (n = 5,000) are presented
in Supplementary Figure S2.

FIGURE 4 | ROC curves for classifying each subtype using regularized
logistic regression based on structural connectivity data of the addiction
circuitry: (A) neutral vs. A subtypes; (B) neutral vs. B subtypes; (C) neutral vs.
C subtypes. Thin lines within each ROC graph indicate the ROC curve from
each outer fold test set and dotted lines were obtained by averaging ROC
curves of outer 10-fold test sets. Thick lines of the ROC graphs represent the
ROC curve from the model based on the most frequently selected connection
features for each model. The location and frequency of the most frequently
selected structural connections in all successive cross-validation trials were
presented in grass brains and bar graphs, respectively. The top 30% of the
most frequently selected connection features are presented. ROC, receiver
operating characteristic; AUC, area under the curve; cMFC, caudal medial
frontal cortex; MOFC, medial orbitofrontal cortex; LOFC, lateral orbitofrontal
cortex; NA, nucleus accumbens; ACC, anterior cingulate cortex; SFC,
superior frontal cortex; rMFC, rostral medial frontal cortex; L, left; R, right.

DISCUSSION

The present study identified neurobiologically distinct subtypes
in young adults without any prior history of addictive disorders
and examined whether patterns of alcohol misuse may differ
according to the subtypes. Specifically, the current sample of
young adults has been classified into four subtypes, each of
which demonstrated unique behavioral tendency and differential
propensity to alcohol misuse. Each of the four identified
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subtypes was then further validated and supported through
neurobiological data, by their unique patterns of structural
connections among brain regions within the addiction circuitry.

With the neutral subtype as the reference point, the three
other subtypes exhibited significantly distinct type-specific
behavioral and personality characteristics. For instance,
approximately 18% of the participants were characterized
as having an impulsive tendency (A subtype), while those
who exhibited high levels of behavioral symptoms related
to addictive behaviors, such as reward sensitivity, anger,
impulsivity, and avoidance were defined as the B subtype.
Individuals under the A subtype as well as B subtype were
more likely to show problematic drinking patterns as compared
with those under the neutral subtype, indicating a potential
risk for an addictive disorder. This finding is partly consistent
with previous reports which suggest the predictive roles
of impulsivity and reward sensitivity in vulnerability to
addiction (Castellanos-Ryan et al., 2013; Egervari et al., 2018).
Furthermore, several preclinical studies also indicated that
impaired impulse control plays a central role in the progression
to addiction (Fineberg et al., 2010; Winstanley et al., 2010;
Ersche et al., 2012a,b; Jupp et al., 2013). Specifically, impulsivity
may contribute to future drug self-administration and drug
exposure, along with increased impulsive responsiveness (de
Wit, 2009; Winstanley et al., 2010). The C subtype consisted
of 23% of the participants and was characterized as more
avoidant, impulsive, and angry, as compared with the neutral
subtype. However, the scores related to reward-sensitivity
within the C subtype were similar to those under the neutral
subtype. In addition, individuals within the C subtype were
less likely to engage in alcohol misuse, compared to the other
A and B subtypes. Considering that the major distinction
in terms of behavioral traits between individuals under the
B and C subtypes was leveled on reward sensitivity, the
contrasting traits between the two subtypes may indicate that
differences in responsiveness to rewards may lower the risk for
alcohol misuse.

More importantly, the current study identified potential
neurobiological characteristics that were most relevant to the
discrimination of subtypes. In particular, our cross-validation
approach demonstrated that the connections to the OFC and
limbic regions may play an important role in distinguishing
the A subtype apart from the neutral subtype. The current
findings support previous evidence in that the OFC and
limbic structure have been identified as important regions
for impulse control (Winstanley, 2007), and functional and
structural alterations in the OFC are evident in individuals
with substance and alcohol abuse (Crews and Boettiger, 2009;
Moorman, 2018). Given that the OFC and its connected
regions are also considered as common neural circuitry
that underlies impulsivity and addictive behavior (Volkow
and Fowler, 2000; Winstanley, 2007; Volkow and Morales,
2015), altered connections to the OFC may contribute to
the behavioral manifestations of impulsive tendency such as
comorbid alcohol misuse.

Furthermore, the current results indicate that alteration
in connections of the limbic regions including the nucleus

accumbens is robust classifiers for distinguishing between
individuals under the B subtype and neutral subtype. Notably,
individuals under the B subtype also exhibited higher levels
of propensity to other risk factors of addiction including
impulsivity, anger, and avoidance. The interaction between the
nucleus accumbens, limbic system and striatum has been known
to modulate motivational behavior, and play a significant role
in adolescent or early adult-onset addictive disorder (Sharma
and Morrow, 2016; Volkow et al., 2016). Also, this behavioral
constellation of the B subtype as observed in the present study
has been reported to be highly prevalent in early-onset alcohol
abusers (Dom et al., 2006) and associated with an increased risk
for clinically relevant addictive disorders later in life (Dom et al.,
2006; Nees et al., 2012).

The C subtype demonstrated higher scores on the behavioral
inhibition system while having lower scores on reward
sensitivity. Individuals under the C subtype also exhibited
high levels of anger and impulsivity, compared to the neutral
subtype. Given that problem drinking were less frequent
in this subtype, individuals clustered to the C subtype
may refrain from particular risky behaviors in order to
prevent facing negative consequences. Here, we speculate that
increased connections to the DLPFC within the addiction
circuitry as found in young adults under this subtype
may contribute to a more efficient control over risk-taking
behaviors such as impulsivity and anger. In addition, high
levels of impulsivity shown in individuals under the C
subtype seem efficiently controlled and may be able to refrain
from the manifestation of risky behaviors such as excessive
alcohol consumption. The C subtype demonstrated heightened
connections of the DLPFC within the addictive circuitry,
which may indicate the potential role of the DLPFC and
its connections to other addiction-related brain regions in
controlling impulsivity.

Limitation of the present study should also be discussed.
While the addiction circuitry has become a familiarized topic
in addiction research, debates continue regarding regions that
make up the addiction circuitry. Considering the sufficient
evidence regarding cerebellar alterations in many comorbid
neuropsychiatric disorders including addiction (Miquel et al.,
2016), future studies could extend the current findings with
the inclusion of additional brain regions that are significant
to addictive behaviors. Moreover, independent replication
of the current findings in a clinically-diagnosed sample of
addictive disorders may obtain adequate generalizability of
the current model. It is also noteworthy that altered patterns
of brain regional connectivity caused by chronic substance
use would differ from those underlying the vulnerability
towards substance use disorders (Ersche et al., 2012a,b;
Schulte et al., 2012; Whelan et al., 2014). Future longitudinal
studies on individuals who are at high risk for developing
addictive disorders is warranted to discriminate between
the brain network correlates of vulnerability to addiction
and those of adaptive or neurodegenerative changes due to
chronic addiction.

The current study also corrected for eddy current using
the ‘‘eddy_correct’’ function implemented in the FSL toolbox
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and used the FACT algorithm to reconstruct white matter
fiber tracts. While the current approaches are acceptable ways
to preprocess image data, future DTI studies using more up-
to-date preprocessing methodologies such as enabling of both
eddy current- and susceptibility-induced distortion corrections
(Sotiropoulos et al., 2013; Yamada et al., 2014), as well as fiber
tracking by probabilistic tractography algorithm (Li et al., 2013;
Jenabi et al., 2015), may outperform the current results.

Furthermore, despite excluding individuals with a past
diagnosis of alcohol or substance dependence, the current sample
may include those who refrain or abstain from drinking alcohol
due to previous adverse reactions to alcohol use (Hughes
et al., 1985; Stockwell et al., 2016). Considering that deliberate
effort to refrain from alcohol such as in individuals who
practice teetotalism may influence individual traits such as
mood (Randall et al., 2004), future studies that distinguish
individuals who refrain from alcohol use due to miscellaneous
justifications may provide supportive evidence in the distinct
personality and behavioral traits in relation to alcohol misuse.
The mean age of the current sample (27.1 years old) may
also be higher than the typical age of initiation for addictive
behaviors (Grant et al., 2001; Pitkänen et al., 2005; Pilatti et al.,
2017). Therefore, the present findings should be interpreted with
caution, and further research that replicates these findings using
a longitudinal approach may provide additional robust evidence
for a causal link between personality traits and problematic
alcohol use. Nevertheless, we were able to predict problematic
alcohol use measured using the AUDIT from personality
characteristics, showing the potential of machine learning in
precision psychiatry.

In summary, we identified distinct subtypes related to alcohol
misuse that are both theoretically plausible and neurobiologically
supportive in a group of young adults using a data-driven
approach that incorporates their behavioral and personality
characteristics. The high classification accuracy of the identified
subtypes according to brain connection patterns may further
validate that the current classification model of subtypes has
significant biological relevance. Our findings, if replicated
longitudinally, may contribute to the development of models
that better predict individual vulnerability to the future onset
of devastating addictive disorders, including the alcohol and

other substance dependence, in healthy young adults. This
approach may then further aid in the development of targeted,
personalized strategies of prevention and intervention for
addictive disorders according to individual behavioral and
personality characteristics.
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