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We present a working model of the compensatory eye movement system in mice. We

challenge the model with a data set of eye movements in mice (n =34) recorded in

4 different sinusoidal stimulus conditions with 36 different combinations of frequency

(0.1–3.2Hz) and amplitude (0.5–8◦) in each condition. The conditions included vestibular

stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic

reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular

reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully

reproduced the eye movements in all conditions, except for minor failures to predict

phase when gain was very low. Most importantly, it could explain the interaction of VOR

and OKR when the two reflexes are activated simultaneously during vVOR stimulation.

In addition to our own data, we also reproduced the behavior of the compensatory

eye movement system found in the existing literature. These include its response to

sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the

flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our

model is based on ideas of state prediction and forward modeling that have been widely

used in the study of motor control. However, it represents one of the first quantitative

efforts to simulate the full range of behaviors of a specific system. The model has two

separate processing loops, one for vestibular stimulation and one for visual stimulation.

Importantly, state prediction in the visual processing loop depends on a forward model of

residual retinal slip after vestibular processing. In addition, we hypothesize that adaptation

in the system is primarily adaptation of this model. In other words, VOR adaptation

happens primarily in the OKR loop.
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INTRODUCTION

Compensatory eye movement (CEM) is a general term for
several reflexes whose goal is to maintain a stable image on the
retina during movements of the head by moving the eyes in
the opposite direction (Delgado-García, 2000). In other words,
these reflexes serve to reduce retinal slip (movement of the
visual image across the retina). In afoveate animals like mice,
the CEM comprises two reflexes: the vestibulo-ocular reflex
(VOR) uses vestibular input to predictively compensate retinal
slip and the optokinetic reflex (OKR) is driven by the retinal slip
itself. The two reflexes have roughly complementary properties:
the OKR performs well in low velocities and the VOR works
well at high frequencies. The existence of these reflexes allows
accurate compensation of retinal slip velocities experienced in
normal behavior. However, a challenge for any model of the
CEM is to explain the interaction between VOR and OKR. In
many conditions, the combined action, with a gain of almost
exactly one, is much less than the sum of the two reflexes driven
separately. The main aim of this paper is to produce a model of
the system and that can simulate the behavior of the VOR, OKR
and their interaction. Importantly, the model should be able to
reproduce these behaviors with a single set of parameters and
be based on the known neuroanatomy. The model must also
function in the presence of motor and sensory noise as well as
including realistic delays involved in visual sensation.

The CEM system has a number of properties that make it
a popular candidate for quantitative modeling of sensorimotor
processes (for review see Glasauer, 2007). First, its goal,
minimizing retinal slip, is clear and invariant over time
(Robinson, 1981). Second, the dynamics of the system as a whole
are close to linear. Third, the output only has three degrees of
freedom. Moreover, horizontal CEM can be isolated from the
other two degrees of freedom and treated as a systemwith a single
degree of freedom. There is a rich tradition in developing models
of the CEM (Raphan et al., 1979; Robinson, 1981; Kawato and
Gomi, 1992; Merfeld and Young, 1995; Laurens and Droulez,
2007; Lisberger, 2009; Karmali and Merfeld, 2012; Clopath et al.,
2014; Laurens and Angelaki, 2017). The different models address
different aspects of the CEM system, and we discuss here two key
features shared by some of the models: containing an internal
model that is used to predict sensory feedback and explaining the
interactions of VOR and OKR.

One of the most enduring models is based on the Merfled
Observer Model (Merfeld and Young, 1995; Karmali and
Merfeld, 2012). In this model the brain uses forward modeling
and sensory prediction error to appropriately compensate for
unexpected perturbations. However, they only model VOR
leaving open the question of the interaction of VOR and OKR.
Laurens and Angelaki (2017) similarly propose a model based
on internal models and sensory prediction. Their focus is on
comparing active and passive movements, but, like Merfeld,
they do not concentrate on the interaction of OKR and VOR
and they do not consider the actual motor signals that reach
the eye and the way that feedback from the eyes influences
eye movements. Our model is in the spirit of these two earlier
models in that it is based on the hypothesis that the brain

uses internal models to predict upcoming sensory signals and
make appropriate corrections. However, we are not primarily
concerned with estimate of the movements of the body, but
rather with reduction of retinal slip. Thismeans wemust consider
both the VOR and the OKR, their interactions, and the way the
system is driven by visual input.

The only models that attempt to combine VOR and OKR, to
our knowledge, are Raphan et al. (1979) and the related model of
Laurens and Angelaki (2017). While our model has some strong
similarities to Raphan et al. (1979), their approach lacks the
explicit notion of internal modeling which characterized more
recent approaches. Our own model, while similar in important
ways to other approaches, is originally based in efforts to connect
the CEM with the ideas borrowed from optimal control theory
that have been productive in the study of reaching movements
(Shadmehr and Krakauer, 2008; Frens and Donchin, 2009; Haar
and Donchin, 2019). Optimal control suggests that the motor
system operates in a “full feedback” mode: generating motor
commands in response to the best guess regarding the current
situation as opposed to using a pre-defined plan (Todorov and
Jordan, 2002). However, it has proved very difficult to build
optimal control models that make specific predictions for real,
physiological motor circuits. Our original thinking was that the
CEM was a sufficiently simple motor system to allow for the
use of this framework. In the end, our model is consistent with
earlier models in the field but extends them by combining VOR
and OKR and internal modeling in a manner consistent with the
optimal feedback approach used in other motor fields.

We build a working quantitative model (Figure 1) of the
compensatory eye movement system (CEM) starting from the
ideas developed in the Frens and Donchin state predicting
feedback control (SPFC) scheme (Frens and Donchin, 2009).
It explains data collected from CEM in mice across a broad
range of frequencies and amplitudes and different stimulation
conditions. The model reproduces the main characteristics of
mouse vVOR (rotation of the animal in the light, providing
simultaneous visual and vestibular stimulation). Importantly,
the same set of parameters also results in good predictions
of responses in VOR, OKR and additional conditions, i.e.,
suppressed VOR (sVOR; simultaneous rotation of the animal and
its visual surroundings), and responses to sum-of-sines (SOS)
stimuli. To test a hypothetical mapping of the model onto the
underlying anatomy, we simulate lesions in specific parts of the
model and compare the results with actual lesion studies in mice.
Finally, the model also successfully captures VOR adaptation.
We introduce the novel proposal that VOR adaptation actually
occurs through changes in the way OKR predicts inaccuracies in
the VOR.

The interaction of the VOR and OKR might be explained if
OKR is capable of predicting the retinal slip not compensated
by VOR. This is at the core of the model that we present. The
current model is essentially hierarchical, with the vestibular and
the visual components of the CEM handled in two distinct loops
(see Figure 1). This is close to the traditional view of CEM which
also incorporates two, more or less separate, mechanisms for
the VOR and OKR (Wakita et al., 2017). The VOR operates in
a partially open-loop fashion with feedback used to drive only
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FIGURE 1 | General layout of the model. Green areas are vestibular, orange areas are optokinetic. Hexagons represent Forward Models, ellipses are State Estimators.

Dashed arrows indicate processes in the real world, solid arrows are neural processes. Details of the model are specified in the text and Supplementary Material.

The connection between the vestibular sensation and the Post-VOR Slip forward model is one of the main innovations in the model and represents the OKR modeling

the inaccuracies in the VOR loop.

the forward model of the eye without modifying processing of
the vestibular state itself. In our model the OKR loop, on the
other hand, incorporates forward models of the eye, the visual
input, and also the VOR system. That is, the OKR not only
predicts current retinal slip based on models of the environment
and the eye movements, it also incorporates a model of the
residual retinal slip that remains after the actions of the VOR
loop. This represents a crucial expansion of previous models in
which sensory systems and plant dynamics have been included in
the internal model, so that now the VOR reflex itself is modeled
by the OKR system (Post-VOR Slip, Figure 1). The sensitivity
of the OKR loop’s estimate of inaccuracies in the VOR loop is
determined by a single parameter, ζ (see Equation 5, Equation
29 in Supplementary Material). An additional test of our model
is that it should be possible to set the value of ζ adaptively,
thus mimicking VOR adaptation. Thus, adaptation of the CEM
system (at least to first approximation) is mostly adaptation of
the OKR model of VOR inaccuracies (Figure 1; Post-VOR Slip).
This is consistent with experimental findings (as reviewed in the
discussion) and also with our hypothesis that the OKR loop is
more dependent on forward model prediction than the VOR.

We chose to model and perform experiments in mice because
mice, being afoveate, lack a confounding smooth pursuit system.
Moreover, we concern ourselves only with the horizontal CEM
as is commonly done in the experimental literature. However,
since rotations are non-commutative, expanding the model to

three dimensions is not trivial and this is an area that has been
tackled in other models (Merfeld and Young, 1995; Laurens and
Angelaki, 2017). We ultimately decided to constrain ourselves to
modeling only the horizontal CEM as there exists a great deal
more literature on this than the vertical or torsional responses in
mice. In order to compare our model to data, we collected from
mice in a large set of conditions (VOR,OKR, vVOR, sVOR, SOS),
frequencies and amplitudes. Such a data set was lacking in the
literature so that our contribution in this work, beyond a model
that fits all existing data, is a comprehensive data set showing
CEM behavior across a complete array of stimuli. Importantly,
the Matlab code for implementing the model as well as the
behavioral data and analysis code are all freely available online to
encourage the extension of the model into untested conditions.

MATERIALS AND METHODS

Model
The model was implemented in Matlab (version 2016a; The
MathWorks, Natick, MA, USA) and calculations were performed
via matrix multiplication with a time step of 1ms. In describing
the model we first provide a brief outline of the neuroanatomical
basis and subsequently outline our approach to modeling. We
do this separately for the VOR and OKR parts of the model
(green and orange areas in Figure 1, respectively). In the Model
Specification section we provide a summary of the mathematical
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specification of the model, with full details provided in the
Supplementary Material.

VOR
The mouse VOR uses vestibular input from the semi-circular
canals (labyrinth) to compensate head movement (Delgado-
García, 2000). Vestibular afferents from the labyrinth project
directly to VN with a small delay (2ms; Sohmer et al., 1999).
Their activity accurately reflects head velocity at high frequencies
but not at low frequencies (Robinson, 1981) due to filtering
properties of the vestibular labyrinth (Yang and Hullar, 2007).

Thus, in modeling VOR, the processing is quite simple (green
areas in Figure 1). Since the system has no access to the actual
head velocity, we use the vestibular signal as an approximation of
the head velocity. Neither system dynamics nor the oculomotor
command affect head dynamics. Note, therefore, that this model
currently does not distinguish between active and passive head
movements, i.e., it does not incorporate efference copy or
proprioceptive information about head movement.

OKR
In the mouse, the OKR originates in velocity sensitive neurons
of the retina, which project through the Accessory Optic System
(AOS) and Nucleus Reticularis Tegmenti Pontis (NRTP) to the
vestibular nucleus (VN) and the vestibulo-cerebellum (Gerrits
et al., 1984; Langer et al., 1985; Glickstein et al., 1994). The VN
output is sent to the brainstem nuclei, which drive the extra-
ocular muscles. In the case of horizontal eye movements, these
are the abducens nucleus (Ab), the oculomotor nucleus (OMN),
and nucleus prepositus hypoglossi (NPH; Büttner-Ennever and
Büttner, 1992). The OKR has a species-dependent response
delay of 70–120ms (Collewijn, 1969; van Alphen et al., 2001;
Winkelman and Frens, 2006) primarily caused by the visual
processing in the pathway from retina to VN (Graf et al., 1988).
The retinal afferents saturate at high velocities (Oyster et al., 1972;
Soodak and Simpson, 1988), causing non-linearities in the OKR
in this range (Collewijn, 1969; van Alphen et al., 2001). Thus, the
OKR is ineffective in compensating high velocity (and thus often
high frequency) visual stimuli.

One main innovation in our model is that the OKR system
assumes that the VOR only compensates for some proportion
of the head movement. The role of the rest of the control
system (orange areas in Figure 1) is to estimate the retinal
slip that will remain after the action of the VOR loop (Post-
VOR Slip) and provide this information for the OKR controller.
Post-VOR slip arises from two sources: from changes in the
velocity of the visual stimulus and from head movements
not compensated by the VOR. Thus, our forward model
estimate of movement of the visual surrounding (Post-VOR
Slip; left orange hexagon in Figure 1) will be updated by a
factor proportional to head acceleration (Equation 5, See also
Equation 29 in Supplementary Material). The specific constant
of proportionality, ζ , is discussed in the section on VOR
adaptation below. The combination of this predicted retinal slip
(Post-VOR Slip) combined with an estimate of how much the
OKR ismoving the eye, gives theOKR’s forwardmodel prediction
of uncompensated retinal slip (right orange hexagon in Figure 1).

As one can see in Figure 1, state estimation produces estimates
of both Post-VOR slip, and uncompensated retinal slip (oval
boxes). Post-VOR slip is retinal slip after VOR compensation
and uncompensated slip is that remaining after the action of
both systems. In both cases, we chose to use an approximation
of a Kalman filter to perform state estimation. Kalman filters
estimate state using an optimal combination of previous state
and incoming sensory data, optimized relative to the variance
associated with each of them (Porrill et al., 2013). That is, they
generate the estimate which is most likely to be closest to the
true value, given their inputs. In our case, the two inputs were
not optimally mixed, but rather the mixing was chosen to match
the data (see Supplementary Material, Equation 42). We are not
claiming that the mouse brain implements a true optimal Kalman
filter, but rather some weighted mixing of sensory input and
forward model prediction. Thus, through the model architecture,
vestibular input only affects our estimate of the head velocity,
and retinal input affects both our estimate of retinal slip and our
estimate of uncompensated retinal slip.

VOR Adaptation
VOR adaptation occurs when gaze consistently fails to
compensate head movement (Blazquez et al., 2004; Schonewille
et al., 2010; Shin et al., 2014). In a laboratory environment, a
rotating visual environment can lead such failure (as described
in the Methods below). This causes persistent changes in the
VOR, such that retinal slip is reduced in the new situation. In
our model, such a mismatch would affect the proportionality
constant ζ. This is because the OKR system’s assumption that
retinal slip is the result of inaccuracies in the VOR loop.

Summary of Model Specification
What follows is a brief description of the mathematical
specification of the model. A full description is available in
the Supplementary Material. We use a standard linear systems
formulation (Frens and Donchin, 2009):

xk+1 = Axk + Buk + zk + nk
yk = Dxk

(1)

with dynamicsA applied to system state, xk, which is also affected
by the command signal, uk, the external state of the world, zk, and
noise, nk. Finally, this state leads to sensory input, yk. zk is the
external input and includes the change in the actual head velocity,
vestibular sensory signal, and movement of the visual stimulus.

The state vector includes some easily recognizable quantities
like head state (position, H, and velocity, Ḣ), eye state (E and Ė)
and state of the visual scene (T and Ṫ). However, it also includes
two enigmatic variables (V and R). One is the filtered head
velocity signal that represents vestibular input. The semicircular
canals are described as a high pass filter that acts on head velocity:

V̇ = −
1

Tv
V + Ḣ (2)

Where V is the neural signal generated by the velocity sensitive
vestibular afferents (as can be seen by comparing with the
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Supplementary Material, the equations here are simplified for
clarity). TV is the time constant of the filter.

The other more abstract quantity is the combination of head,
eye, and visual input that creates retinal slip (R = Ḣ + Ė − Ṫ
with a saturation cutoff at Rmax = 0.65 deg/sec). Input delays
are represented by including time delayed versions of retinal slip
and vestibular input in the state vector and only the delayed
versions are available to the internal state estimation. Thus, the
state vector is:

x =
[

H Ḣ V E Ė T Ṫ R · · ·
]

(3)

with the three dots indicating extra time-delayed copies of
vestibular and retinal signals.

In modeling the noise, we opted for model simplicity over
realistic modeling of the noise. We followed Todorov (2004)
and Harris and Wolpert (1998) in making noise magnitude
proportional to the signal. We ran the model with different
constants of proportionality for the noise and did not see a
change in the results. Given that we have no available data on the
amount of sensory or motor noise in the system we used values
well in the middle of stable range.

In additional to the external state and the input, we also
modeled the controller itself. Our controller is split into two
parts, one for the VOR (subscripted V) and one for the OKR
(subscripted R):

x̂V,k+1 = A′
Vx̃V,k + BVuV,k

x̃V,k+1 = x̂V,k+1
+KV

(

V̇k−δV − D′
Vx̂V ,k+1

)

x̂R,k+1 = A′
Rx̃R,k + BRuR,k

x̃R,k+1 = x̂R,k+1

+KR
(

Rk−δR − h(R̃k)
)

(4)

Both parts of the controller have the same structure: a forward
model of the dynamics (first equation in each) followed by
state estimation, which combines forward model prediction with
sensory input (second equation in each). Note that sensory
inputs, V̇k−δV and Rk−δR , are the delayed versions and that
internal estimates of retinal slip must be saturated [h (•)] to allow
meaningful comparison to sensed retinal slip. KV and KR are
mixing constants that determine the relative weight of forward
model output and sensory input. The vestibular system weights
sensory input very heavily while the retinal system weights
prediction more heavily.

We use hat notation, x̂, for estimates produced by the forward
model and tilde notation, x̃, for the combined state estimate.
The internal state of the controller, represented by x̂ and x̃,
represents internal estimates of the system state (Equation 3)
described above with some additions. First, it contains two
different estimates of eye state, separately represented by the
VOR and OKR controllers. This allows the controller to make
different calculations. Second, it contains two different estimates
of retinal slip. The first is called the uncompensated retinal slip. It
reflects an estimate of the retinal slip that remains after both the
VOR and OKR contributions. This is the R̃ that appears in the
equation above (with the tilde indicating that it is a state estimate
resulting from aKalman filter calculation and forwardmodeling).

It is compared to the actual retinal slip to produce retinal slip
prediction error.

The other estimate of retinal slip in the internal state is called
the Post-VOR slip, R̃∗. It reflects an estimate of the amount
of retinal slip that will remain after the VOR contribution. It
is used to determine the OKR controller output. This estimate
exists because the OKR controller assumes that that some head
movement remains uncompensated by the VOR. The forward
model estimate of uncompensated post-VOR retinal is thus
updated by a factor proportional to head acceleration:

R̂∗k+1 = R̃∗k + ζ

(

ˆ̇Hk −
ˆ̇Hk−1

)

(5)

The constant of proportionality, ζ , is the quantity that is actually
being estimated by VOR adaptation. Our data was best fit by
using ζ = −0.6 which means that OKR assumes VOR tends to
overcompensate for head rotation.

Finally, the motor command for both OKR and VOR is
generated by using the equations: uR = −LR · x̃R and uV =

−LV · x̃V and u = uR + uV where LR and LV are called
the command policy. These are linear functions of the internal
estimate of state and the command policy was calculated using
an approximation of the equations in optimal control theory
(The Riccati equations for a linear-quadratic-regulator, please
see Supplementary Material for more details). Other approaches
to finding a reasonable control policy are also possible (Harris
and Waddington, 2013). The controller must, in any case,
compensate for the estimated error while correcting for known
dynamics of the motor plant and different ways of reaching
similar solutions exist.

Parameters
In the model only a few parameters were set to match the
data. They were set to match data in the vVOR condition and
then the same parameters were used for all conditions. Most
variables were either taken from literature, or experimentally
derived by us in separate experiments. Interestingly, it turned
out that the model produced very similar behavior across a wide
range of values for most parameters although it was sensitive to
a few parameters (see Table 1). As much as possible, parameters
were determined from the literature or from our own data. For
example, we determined the maximum VOR and OKR gains
from our own data. We used the response to high frequency
stimulation to set the maximum gain of the VOR in the model
and the response to low velocity stimulation to set the maximum
gain of theOKR in themodel. The response of the retina to retinal
slip saturates at high velocities leading to non-linearity in the
response, the value of the parameter representing the saturation
point (Rmax) was fit to published results (Oyster et al., 1972;
Soodak and Simpson, 1988). On the other hand, the filter of the
vestibular afferents was shaped to achieve the best fit to the data.
Ultimately, the filter that fit our data best was also compatible
with the literature. We used a first order high pass filter with
a time constant of 4 s (Yang and Hullar, 2007). Similarly, drift
velocity and VOR adaptation speed were fit to data and later
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TABLE 1 | Overview of all parameters used in the model, their values, the equations they are used (described in Supplementary Material), and a short description of

their meaning.

Value Equations Meaning Is it

critical?

How was it set?

dt 1ms Time step

Tp 0.5 s (1, 2, 15, 17, 24, 33, 38) Leaky integrator time constant for motor nuclei No Stahl and Simpson, 1995; Stahl et al., 2015

Tv 4 s (3, 15) High pass filter constant for the vestibular inputs Yes Fit to data. Close to value found for actual

vestibular afferents by Yang and Hullar (2007) (3 s)

δV 2ms (5, 20) Vestibular sensory delay No

aV 0.1 (6, 16) Vestibular sensory noise proportionality constant No Middle of the stable range

Rmax 0.65 deg/s (8) Retinal saturation Yes Oyster et al., 1972

δR 70ms (9, 20, 31) Visual processing delay Yes van Alphen et al., 2001

aR 0.1 (10, 16) Visual sensory noise proportionality constant No Middle of the stable range

au 0.1 (15, 16) Motor noise No Middle of the stable range

ζ −0.6 (29, 33, 38, 48) Assumed VOR inaccuracy No Fit to match VOR performance in the dark.

κV 1 (22, 42) Kalman gain of vestibular input No Set so VOR is not eliminated by floccular lesion

κT 0.05 (30, 42) Kalman gain for the effect of retinal slip prediction

error on assumed external motion (post-VOR

retinal slip)

No Fit to data

κR,k 0.05 (31, 35, 42) Kalman gain for the effect of retinal slip prediction

error on estimate of uncompensated retinal slip

No Fit to data

γ e
1

150 (44) Discount parameter for cost function No Fit to produce credible drift in the dark

θ 2 (44) Weight of position factor in cost function No Fit to produce credible drift in the dark

100,000 Number of terms kept in infinite cost function sum No Arbitrary

The last two columns describe whether they are critical, and how they were set. We determined how critical the parameters were, by varying them over an order of magnitude, and

observing the changes in results.

found to be compatible with the literature (Stahl et al., 2006;
Schonewille et al., 2010).

Animals
In order to test the model we recorded CEM in 13 C57Bl/6J
mice (Charles River, Wilmington, MA, USA). C57Bl/6J mice are
commonly used in oculomotor research enabling comparison
of our results to previously published data. We employed four
different paradigms i.e., OKR, VOR, sVOR, and vVOR and in
each condition we tested a wide range of frequency and amplitude
combinations. Details on the experiments are described in the
Supplementary Material. Additionally, we measured the drift of
the eye back to a central position in the dark (N = 6) and the rate
of adaptation of the VOR (N = 7), full details of the methods
are described in the Supplementary Material. All experiments
were performed with approval of the local ethics committee and
were in accordance with the European Communities Council
Directive (86/609/EEC).

Prior to all eyemovement recordings, mice underwent surgery
to prepare them for head fixation andwere allowed sufficient time
to recover, details are provided in the Supplementary Material

and the full procedure is described in van Alphen et al. (2009).
During an experimental session, mice were immobilized by

placing them in a plastic tube with the head protruding and
the head fixation attached to the turntable with the eye in the
central position. Eye movements were recorded via an infra-red
video system (Iscan ETL-200, Iscan, Burlington, MA, USA) at
a frequency of 120Hz. Visual stimuli were presented using a

modified projector (Christie Digital Systems, Cypress, CA, USA)
displaying a panoramic field of 1,592 green dots on virtual sphere
fully surrounding the animal. Rotation of the sphere around the
vertical axis provided the moving stimuli. Vestibular stimulation
was provided via a motorized turntable Mavilor-DC motor 80
(Mavilor Motors S.A., Barcelona, Spain) on which the mouse and
eye movement recording system were mounted. Further details
are provided in the Supplementary Material and a schematic
representation of the stimulus and eye movement recording
apparatus in Figure 2.

The VOR adaptation experimental paradigm consisted of an
identical stimulus setup with the animal undergoing 6 VOR trials
(1min duration, 1Hz, 5◦) to measure the gain alternating with 5
sVOR trials (5min duration, 1Hz, 5◦) to induce adaptation.

In the Sum-of-sines (SoS) conditions, the two constituent
frequencies were chosen that had no harmonic relation. Four
SoS frequency combinations were used in this study: 0.6/0.8,
0.6/1.0, 0.8/1.0, and 1.0/1.9Hz. Amplitude was either one or two
degrees for each frequency component. Either both frequencies
had the same amplitude (both 1◦ or both 2◦) or they had different
amplitude (one at 1◦ and the other at 2◦). This led to a total of 24
types of stimuli in each of the OKR, VOR, vVOR, and sVOR SoS
conditions. Eight mice were used in this paradigm and they all
performed all conditions.

Data Analysis
Every mouse was tested once in each condition, and each
stimulus consisted of at least five cycles. Only cycles after the
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FIGURE 2 | Schematic representation of the experimental setup. (A) Top view. A mouse in the setup, with its left eye in the center and surrounded by three screens

on which the visual stimuli are projected. The visual stimuli were programmed and displayed in such a way that from the point of view of mouse it appeared as a virtual

sphere. (B) Front view. A mouse placed in front of a hot mirror, which enabled the infrared camera underneath the table to record the eye movements.

initial transients of the response had decayed were included
in analysis. Full details of the analysis details are provided
in the Supplementary Material. Briefly, following filtering and
removal of fast phase eye movements gain and phase data
was calculated by a Bayesian fitting procedure in OpenBugs
(Version 3.2.3, http://www.openbugs.net, Lunn et al., 2009)
and Matlab curve fitting routines, for single sinusoid stimuli
and for SoS stimuli, respectively. The Matlab code and data
required for replication of the analysis presented in this
paper is available on the Open Science Framework website
(https://osf.io/feq7c/).

RESULTS

Responses to Sinusoidal Stimulation
The behavioral data that we present are in agreement with the
values that have been previously published for the C57BL/6
mouse strain (Stahl et al., 2000; Faulstich et al., 2004; van Alphen
et al., 2010; Schonewille et al., 2011). The VOR (Figure 3) in
the dark responded to high frequency stimulation, and the OKR
(Figure 4) was mainly active in response to low velocity stimuli
(van Alphen et al., 2001). The vVOR (Figure 5) was more or
less veridical over the whole stimulus range while suppression
in the sVOR (Figure 6) paradigm mainly happened at low
frequency/velocity conditions.

In Figure 3 we show a comparison of experimental and
simulated VOR. Figure 3A displays examples of a single cycle of
themodel output for four examples of specific stimuli.We can see
that the model response falls mainly within the red shaded region
which represents variance of the population of mice responding
to the same stimulus. The high frequency noise in the model
response are due to the addition of motor and sensory noise. The
high frequency noise is not seen in the mouse response as it is an
estimate of mean mouse behavior. A comparable estimated mean
model response is shown in Supplement Figure 2. Bode plots
of mouse and model response across multiple frequencies and

amplitudes is shown in Figure 3B. The figure demonstrates that
model output falls within the region of typical mouse behavior
across a range of frequencies of stimulation, both in terms of
response gain and phase. We see that there is a good match
between simulation and average experimental response over the
whole stimulus range. First, a high gain at high frequencies and
lower gain at low frequencies is clearly observable. Furthermore,
we see a phase lead at low frequencies which diminishes with
increasing stimulus frequency. Whilst the model fit well with the
average of the population of mice tested, there is considerable
variation between individual mice’s responses to the various
stimulations. In Figures 3–6Bwe present the confidence limits of
estimates of each individual mouse and display any mice outside
the limits of the plot as cross symbols on the limits of the y-axis.

Figure 4 follows the same format as Figure 3 but compares
simulation to experimental results for the OKR response. The
simulation nicely predicts themain features of the OKR response.
The gain decreases and the phase lag increases with increasing
stimulus velocity.

Figure 5 shows how well simulations predict experimental
data for combined visual and vestibular stimulation (vVOR). In
both the simulation and experimental data, we observe high gain
and almost no phase lead or lag between response and stimulus.
These results show that VOR and OKR have complementary
results, which allows the combined system to produce excellent
compensation of the retinal slip.

Figure 6 depicts how the model fits experimental data
generated during sVOR—suppression of the VOR response
with visual input. The response in high frequencies looks very
similar to that in VOR because OKR is not responsive in high
frequencies (see Figure 4), and hence cannot suppress vestibular
triggered response. At low frequencies, there is a very small
response, because VOR has low gain and is further suppressed
by OKR. At these low frequencies, where the gain is low and
variable, the model systematically misrepresents the phase of the
eye movement.
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FIGURE 3 | Summary of VOR data and simulation. In (A) the upper row displays results for 1◦ stimuli, the lower row for 2◦ stimuli. The panels show the stimulus in

black (left: 0.2Hz; right 0.8Hz), with the simulated response (blue) and the mean measured responses (red). Shaded red regions represent the standard deviation (SD)

of the sample of mice showing that the model performance is credible given population variability. (B) Are Bode plots for Gain (top panels) and Phase (bottom panels)

for the simulated response (blue), individual mice with SD (red error bars). Crosses in the Bode plots indicate data that extend beyond the visible axes. The left and

right sides of (B) represent bode plots for 1◦ and 2◦ stimuli, respectively. Other stimulus conditions fit equally well.

In order to examine the overall quality of fit in each of the four
experimental conditions above, we calculated the Z-scores of the
overall fitting quality, these are displayed in Figure 7. Z-scores
were calculated by subtracting the model response at each time
point from the center of the region of typical mouse behavior
and dividing by the standard deviation. Subsequently, we take
the mean of these values across all timepoints. Therefore, the Z-
score represents the number of standard deviations the model

response is away from the mean mouse response. Note how the
overall fit quality is good (“cool” colors in the heat map), with
some poorer fits in the low frequency/high amplitude range of
the sVOR condition. Because of the low amplitudes and high
variability, the phase offset of the model at the lower frequencies
does not lead to large Z-scores.

In addition to the comparison ofmodel and data in terms of Z-
scores (Figure 7), we also used the Bayesian estimates to generate
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FIGURE 4 | Summary of OKR data and simulation. This figure follows the format of Figure 3, with panel (A) displaying the stimulus (black), model response (blue) and

measured response (red). (B) Are Bode plots for Gain (top panels) and Phase (bottom panels). Note that the phase response of stimuli with Gains < 0.25 could often

not reliably be determined.

probabilities for the model response falling outside the range of
the behavior of a “typical mouse.” These tests were carried out
for every frequency and amplitude combination and assessed the
similarity of gain and phase separately, a combined probability
was then generated from the product of these. The results of these
tests are presented in the Supplementary Material. Overall the
model responds within the range of a typical mouse for both gain
and phase individually and when combined.

Model Dynamics
The interaction of the different parts of the model in one
of the conditions (vVOR, amplitude 2, frequency 0.2Hz) are

shown in Figure 8. The figure shows one cycle of the activity
in each of the different areas being modeled during the steady
state response to this stimulus. The top two boxes show that
in this condition, the head is being rotated but the eyes are
moving to keep the retinal slip at 0. The head rotation passes
through the system in a feedforward manner to drive the
vestibular controller. Additionally, this controller is modulated
by knowledge of the eye position and velocity, driven by the
forward model integration of the vestibular command. The
figure also shows how the head rotation drives an estimate
of the retinal slip that would remain uncompensated by the
VOR controller. This is labeled post-VOR slip. Post-VOR slip
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FIGURE 5 | Summary of vVOR data and simulation. This figure follows the format of Figure 3, with panel (A) displaying the stimulus (black), model response (blue)

and measured response (red). (B) Are Bode plots for Gain (top panels) and Phase (bottom panels). Across the whole frequency range tested in both amplitudes there

was a very good match of model to experimental data.

in turn drives the activity of the OKR controller. Note that in
this condition, the system estimates that the VOR will over-
compensate for the head rotation and the OKR controller
generator actually generates a command that is roughly in
counter-phase with that of the VOR controller. The success of
the vVOR in generating eye movements that fully compensate
for the head movement are the result of a balance between
the VOR signal and the OKR signal. Without the balancing
OKR signal, the gain of the VOR would need to be lowered to
achieve veridical tracking, which would compromise the quality
of the VOR.

Figure 8 also shows that in this situation the OKR system has
stabilized, such that retinal slip prediction error is 0. If there
were prediction error, generated by either a transient visual or
vestibular perturbation, this would drive an increase in the post-
VOR slip which would then cause a transient increase in the OKR
command to correct for the extra slip. The OKR system thus
serves in two complementary roles: it generates a feedforward
correction for the inaccuracies of the VOR system (the size of
which is learned through adaptation, as described below) and
it generates an error driven correction for unexpected retinal
slip. The figure thus demonstrates the balance between the VOR
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FIGURE 6 | Summary of sVOR data and simulation. This figure follows the format of Figure 3, with panel (A) displaying the stimulus (black), model response (blue)

and measured response (red). (B) Are Bode plots for Gain (top panels) and Phase (bottom panels). Note that the phase response of stimuli with Gains < 0.25 could

often not reliably be determined. The pattern of the response in the behavioral data is clearly captured by the simulation.

command, post-VOR slip and OKR command that are necessary
to achieve veridical tracking in the vVOR condition. Figures in
the supplementary results show dynamic plots for the VOR and
OKR simulations at the same frequency and amplitude, but it is
their interaction which is the key innovation of our model.

Sum of Sines
When the mouse OKR responds to sum-of-sines (SoS) stimuli,
we have previously reported relative gain suppression of the
lower of two frequencies in the stimulus. Conversely, in sVOR,
results showed gain enhancement in the lower frequency
component. In both sVOR andVOR, an overall decrease in phase
lead was observed. For more details see Sibindi et al. (2016).

When applying these stimuli to the model, the main pattern of
effects is reproduced. Thus, we find qualitatively similar changes
in both the relative gain and delay of the constituting frequencies
(Figure 9A). Importantly, removal of retinal saturation (Rmax =

∞) eliminates the non-linearities expressed in the gain of the
response (Figure 9B).

VOR Adaptation
Perhaps counterintuitively, VOR adaptation occurs as a result
of changes in the OKR’s model of VOR. Adaptation modifies
the OKR’s prediction of post-VOR slip. Thus, adaptation in our
model involved allowing the parameter ζ to vary in response to
retinal slip prediction error using gradient descent. As derived

Frontiers in Systems Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 13

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Holland et al. State Prediction Model of CEM

FIGURE 7 | Summary of comparison of model and data for all amplitude and frequency combinations. The four panels depict the degree to which the model

response matched the experimental data for the four conditions. The degree of similarity is expressed in terms of the number of standard deviations the model

response was away from the mean behavioral response, cooler colors indicate a closer match. Across all amplitude and frequencies tested the model reproduces the

experimental data well, with the possible exception of high amplitude, low frequency sVOR. Gray regions indicate conditions not measured in the experimental data.

in the Supplementary Material, the gradient is in the direction
that decorrelates head acceleration and retinal slip prediction
error. The minimum error had a broad basin of attraction. Thus,
regardless of the starting value of ζ, it always converged to
the same value of −0.6, if the stimulation frequency was kept
constant at 1Hz. The value to which ζ converged depended on
stimulus frequency but not amplitude. Nevertheless, for a broad
range of frequencies ζ assumed a value around−0.6.

The adaptation protocol reduced the gain of the VOR in mice
to around 50% of its original value (Visible as a normalized gain
of close to 0.5 after 25min of training, Figure 10), comparable
to that which has been previously described in literature
(Schonewille et al., 2011).

Effects of Lesions
In the model we simulated a lesion of the flocculus and a lesion of
the NPH. The way in which this should be done in the model
depends on the role that is ascribed to either structure (see
section Discussion).

Flocculus Lesions
We modeled a lesion of the flocculus by removing all the
Forward Model boxes (Hexagon boxes in Figure 1). Figure 11A
shows the result. The OKR is virtually absent. Meanwhile
VOR gain is increased, and VOR phase increases at low
frequencies. Following a model floccular lesion, the VOR did not
adapt (Figure 10).

NPH Lesions
If one believes the NPH to be part of the controller (Green
et al., 2007), a lesion of the NPH would mean removing
the inputs of the two outer hexagonal Forward Model boxes
of Figure 1. A lesion of the flocculus would then be setting
the values of all Forward Model boxes to a constant value
of 0.

Alternatively, if one believes the NPH is the oculomotor
integrator (Cannon and Robinson, 1987), an NPH lesion means
setting the output of [outer, hexagonal (Figure 1)] integration
boxes to 0. A flocculus lesion then only affects the two inner FM
boxes of Figure 1 (“post-VOR slip” and “uncompensated slip”).
We tested both manipulations.

Both types of lesion of the NPH resulted in exactly the same
result. This is not surprising, since they are equivalent to setting
the input to the integration step to 0, or setting the output to
0. Both produced a small effect on the VOR with a decrease
in gain at low frequencies, reflecting the mainly feed forward
nature of response. OKR in contrast was greatly affected with
a large decrease in gain (Figure 11B). As expected (see section
Discussion), the lesion also had an effect on the drift of the eyes
back to the center in the dark, decreasing the time constant from
2.83 to 0.31s. Stahl et al. (2006) report a time constant on the
order of 5 s for the neural integrator in C57BL/6 mice, although
there was considerable variation between mice and over time.

Cheron et al. (1986a,b) made lesions in the NPH of cats. They
show that such a lesion reduces low frequency VOR responses
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FIGURE 8 | An example of the model dynamics for one cycle of the simulation in the vVOR condition (Stimulation amplitude of 2 degrees at a frequency of 0.2Hz) at a

time by which the system has reached a steady state. The layout matches the model schematic presented in Figure 1, Forward Models are labeled FM and State

Estimators are labeled SE. In each box the blue line represents the output of the computation performed, the green or orange line represents the appropriate stimulus,

vestibular and visual, respectively. In the supplement, we display the full model dynamics for the VOR and OKR conditions in isolation, respectively, for the same

frequency and amplitude of stimulation.

FIGURE 9 | Summary of the model response to Sum of Sines stimulation for the model with normal retinal saturation (A) and with the saturation of retinal input

removed (B). The response is described in terms of gains and lags relative to the gain and lag recorded in response to the single frequency component presented in

isolation. A linear system will produce only relative gains of 1 and relative delays of 0, indicated by dashed horizontal lines on each plot. The pattern of non-linearities

produced by the full model (A) matches closely the non-linearities found in behavioral data in response to the same stimuli (Sibindi et al., 2016). Figure 6 of Sibindi

et al. (2016) is reproduced with consent as a supplement to this figure, Supplement Figure 1. The removal of retinal saturation eliminates the non-linearities

expressed in the relative gains of the OKR and sVOR but those expressed in the relative lags of VOR and sVOR remain intact. Please note that the values for relative

gain for the 0.6Hz component of the 0.6/0.8 and 0.6/1.0Hz Sum of Sines in sVOR (A) are >2.
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FIGURE 10 | Time course of gain decrease adaptation of the VOR in response

to repeated sVOR stimulation. The decrease in gain measured experimentally

(red) with confidence limits representing SEM (shaded region) matches that

produced by the model (blue line) in response to the same paradigm.

Simulating a flocculus lesion in the model (purple line) by removing the four

forward models produces a complete abolishment of adaptation, whereas an

NPH lesion (orange line) left the adaptation intact.

and completely abolishes OKR. However, the gain and phase
measurements do not depict the full nature of the changes in the
response to OKR. When applying low velocity stimuli, the OKR
in our model becomes noisy and dominated by oscillations at the
time points in which stimulus velocity is highest (Figure 12).

In our model, NPH lesions do not affect adaptation to the
sVOR stimulation at 1Hz (Figure 10), because the individual
reflexes at that frequency are relatively unaffected, and the site
of plasticity is not lesioned.

Effect of Lesions on Dynamics
To better understand how the different lesions affect the internal
dynamics of the model, Figure 12 presents the post-VOR slip
and the activity of the visual, vestibular and combined controllers
in each of the lesion conditions for each of the four different
stimulus conditions. There are a number of key findings. First,
both the floccular and NPH lesion have the same effect on the
vestibular command. This is because both lesions impact the
vestibular command by eliminating forward model estimation
of eye eccentricity. This leads to a decreased amplitude and
increased phase lag in the vestibular command. Meanwhile, it
can be clearly seen that the NPH lesion primarily affects the
magnitude of the OKR.

DISCUSSION

Brief Summary of Results
Frens and Donchin (2009) proposed that CEM can be modeled
by an SPFC framework where specific functional roles can
be ascribed to specific nuclei in the CEM circuitry. Here, we
measured—for the first time- VOR, OKR, vVOR, and sVOR

over a large range of frequencies and amplitudes in the same
animals. We then implement the SPFC framework in a detailed
computational model which can, with a single set of parameters,
mimic the behavior of OKR and VOR (Figures 3, 4, 7). With
the same set of parameters, the model also reproduces vVOR,
sVOR (Figures 5–7) and non-periodic SoS-stimuli (Figure 9).
Furthermore, it successfully predicts the effects of lesions
(Figures 11, 12) and has adaptive behavior, similar to VOR
learning (Figure 10).

The strength of this model is that it has relatively few critical
parameters (see Table 1) and that the critical parameters can be
straightforwardly experimentally derived. This is an advantage
over other SPFC-like models that address other motor systems
(Shadmehr and Krakauer, 2008). However, it is important to
recognize that although our model is in a tradition of modeling
the motor system called optimal feedback models (Todorov,
2004; Shadmehr and Krakauer, 2008), this modeling approach
does not assume that themotor system is actually optimal. Firstly,
in biological motor control the correct cost function is unknown.
Even if it were known, the biological motor system does not meet
the criteria required for the optimization problem to be solved
with available methods. Finally, optimal theories are difficult to
falsify, as noted by the seminal paper of Shadmehr and Krakauer
(2008). What the optimal control models in the neural control
of movement share with true optimal feedback controllers is the
basic structure of a feedback controller using forward modeling
and a Kalman-like filter to produce state estimates that can be
used to generate sensory prediction error. They also generally
rely on an explicit or implicit cost function that balances control
costs with target costs (Todorov, 2004). In the development of
this model, we used a plausible cost function that could match
the experimental behavior. We include both eye velocity and eye
eccentricity. In combination with the signal dependent noise, the
cost function penalizes larger movements. It is almost certainly
not an accurate description of the real underlying cost function
(see Harris and Waddington, 2013 for a more detailed approach
at producing an accurate form), if indeed such a cost function
exists. Our cost function follows Robinson (1981) in making
the assumption that the system minimizes retinal slip. This
assumption, reasonable in the afoveate, lateral eyed mouse, may
not be appropriate for foveate species with saccadic systems or
binocular vision. The expansion of the current model into other
species is a worthy goal for future work but our aim in the current
paper was to match the model to wealth of available data on the
neuroanatomy and behavior for the mouse.

Another area in which we a priori limited our model was the
investigation of only the steady state horizontal component of the
CEM system. Other models have been developed to simulate the
interaction of multi-dimensional stimuli (Laurens and Droulez,
2007; Laurens and Angelaki, 2017). The expansion of the current
model to incorporate more degrees of freedom or translational
stimuli is an important goal. The data presented here are all
collected after the transient responses at the initialization of
stimulation have abated. However, experimental data on the
initialization and the termination of the CEM reflexes has
previously been modeled (Raphan et al., 1979). Investigating if
the current model can reproduce these effects is an important
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FIGURE 11 | The effect of simulated lesions of the flocculus (A) and NPH (B) in the model on compensatory eye movements. The intact (blue line) and lesioned model

response are summarized in Bode plots for the four conditions with the gain and phase presented in the left and right columns, respectively. Following a simulated

flocculus lesion removal of the forward model stage produces an increase in the VOR gain and phase and an almost complete loss of the OKR response. Due to the

loss of the OKR component the response in the vVOR and sVOR conditions is almost identical. Similarly, the greatest effect of a lesion of the NPH was on the OKR

response with a large decrease in gain and decrease in phase lag.

FIGURE 12 | Summary of the dynamics of key components of the model in all four stimulation conditions (VOR, OKR, vVOR, and sVOR) for the full model (blue) and

the simulated Flocculus (purple) and NPH lesions (orange). The first column of plots represents the output of the VOR controller, second column displays the forward

model of Post-VOR Slip, the third and fourth columns depict the commands produced by the OKR controller and the Plant, respectively. In all plots the relevant

stimulus is also displayed. The high frequency content of the control signals is due to the signal dependent noise in the sensory and motor stages of the model.
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area for research. Despite these limitations, the range of stimuli
we have tested and the publication of all data, model, and
analysis code online means that we have provided a framework
that people can work with to investigate more esoteric issues
and expansions.

Key to the model are two distinct circuits for VOR and OKR.
The VOR loop is relatively simple, and mainly consists of an
integration step. In traditional models (for review see Glasauer,
2007), the OKR responds to actual retinal slip. However, due
to the relatively long delay of the visual processing, the OKR
response would then typically respond late. OKR state estimation
in our model resolves this by predicting retinal slip. Both the
VOR and the OKR loop contribute to this internal estimate
of (uncompensated) retinal slip. This combined contribution is
necessary, since the OKR assumes that the vestibular system will
only partially resolve the retinal slip. While the reality may be
more complex, the idea that the OKR models the VOR was the
only way that we could explain the relatively high gains of both
the OKR and VOR systems in isolation with the veridical gain of
the two systems combined.

Finally, our model implements adaptation as a recalibration of
this OKR estimate of VOR slip compensation. This helps explain
why floccular lesions have a stronger direct effect on OKR but
also disrupt VOR adaptation.

The Non-linear Response to SoS
Stimulation
In addition to reproducing the response to sinusoidal stimulation
in a wide range of conditions, the model also matched responses
to SoS-stimuli that are identical to those previously used by
Sibindi et al. (2016). Strikingly, two non-linearities reported
in the results of that study were reproduced: The first is that
when confronted with a visual stimulus that consists of two
non-harmonic sinusoids (e.g., the summation of 0.6 and 1.0Hz
sinusoids), the amplitude of the lower frequency is suppressed,
independent of the absolute value of the constituent frequencies.
This then also results in changes in the amplitudes in vVOR
and sVOR conditions. The second is that the lag of the
response to the lower frequency is larger, resulting in a delayed
overall response. This can be seen for both VOR, OKR, and
its combinations.

The model has one non-linearity specifically built in: the
saturation of the visualmotion sensitive neurons in the retina (see
Equation 8 in the Supplementary Material, parameter Rmax).
Explicitly removing this saturation eliminated the gain decrease
and delay increase of the OKR and vVOR, but left the increased
delays in the VOR and sVOR unaffected (Figure 9).

These modeling results support the hypothesis that Sibindi
et al. used to explain their results: increased delays may
be a result of the circuit properties. That is, they suggest
the forward model fails to predict upcoming retinal slip in
complex stimuli. Our results also support their hypothesis
that the gain changes are probably the result of non-linear
retinal processing.

The Role of the Flocculus
The flocculus acts as a forward model for both the VOR
and the OKR loop. However, the role it plays in each reflex

is completely different. The flocculus is not critical for VOR
performance, as animals lacking Purkinje cells do have an intact
VOR although the amplitude of the response is significantly
higher (van Alphen et al., 2001). While our model does include
a forward model and state estimator for head velocity, this
is only a formal result of the structure of the model. In
fact, our model ignores the results of the forward model and
uses the sensory information exclusively to determine head
velocity. Thus, the role of the forward model (green hexagon
in Figure 1) in this system is actually only to integrate eye
velocity into eye position. For the OKR loop the forward model
helps to overcome the delay in the OKR feedback loop, and
it is crucial to provide information about the estimated post-
VOR slip.

We mimicked lesioning the flocculus by removing the
output of the forward models. This removed the capability of
the system to predict upcoming retinal slip. As a result, the
optokinetic response was virtually abolished whereas VOR gain
substantially increased (Figure 11A). Lurcher-mice, a mutant
strain that lacks Purkinje cells, have substantially lower OKR
gains than their wild type littermates (van Alphen et al.,
2002). Lurcher-mice results are also similar to a floccular
lesion in our model in that VOR-gain is increased. Results
on VOR gain in acute, non-genetic floccular lesions are
mixed (Rambold et al., 2002).

We can understand the results showing increased VOR gain
in Lurcher mice using our model: the OKR generally acts to
suppress the VOR and a floccular lesion releases this suppression.
This interpretation leads to the further prediction that floccular
lesions will reduce the effect of visual suppression of the VOR,
increasing gains in the sVOR. This is true in our model as well as
being compatible with the literature (Takemori and Cohen, 1974;
Zee et al., 1981; Belton and McCrea, 2000).

The change in phase of VOR response that is seen in Lurcher
mice (van Alphen et al., 2002) can be modeled only if we include
the VOR integration stage in the flocculus. This supports the view
of Green et al. (2007) that the NPH provides an efference copy
that is integrated in the flocculus (see below).

The Role of the NPH
Our model provides a potential resolution to a debate about the
role of the NPH in eye movement generation. In Robinson’s
inverse-model framework, the NPH is thought to act as the
neural integrator for horizontal eye position. Such an integrator
is necessary to provide the abducens nucleus with both velocity
and position commands that are needed to overcome the low-
pass filtering properties of the plant (Robinson, 1981). This
view has been widely adopted by researchers in the oculomotor
system. A critical finding supporting this view is from Cannon
and Robinson (1987) showing that lesions of the NPH cause
the eye to drift toward the center of the oculomotor range.
This is compatible with the loss of an integrator that opposes
the elastic restoring forces of the plant. However, more recently
Green et al. (2007) showed that the burst tonic neurons of
the NPH have activity that is nearly identical to that of the
motor neurons in the abducens nucleus. Furthermore, these
neurons have direct projections to the flocculus (Langer et al.,
1985; McCrea and Baker, 1985; Belknap and McCrea, 1988).
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On the basis of these findings, they proposed that the NPH
provides efference copy input to a cerebellar forward model
(Green et al., 2007; Ghasia et al., 2008). This view was also
incorporated in our SPFC (Frens and Donchin, 2009). Thus,
in our model, an NPH lesion removes input to the forward
models. However, when we lesion the NPH projection in our
simulation (by removing efferent copy to the forward model
or by removing its output), we found that we had reproduced
the Cannon and Robinson (1987) result: the time constant of
the drift was reduced. Hence, a lesion of the efference copy
projection produces the same results as those thought to support
the idea that NPH is an integrator. It seems that the Cannon and
Robinson (1987) results are compatible with both models while
recent anatomical and physiological findings support the idea of
efferent copy.

VOR Adaptation
Within our framework, VOR adaptation happens through
adaptive changes in the forward model of VOR used by OKR.
OKR assumes that VOR will correct a certain fraction of
sensed head velocity. Determining the proportionality constant
robustly led to the same value regardless of stimulus amplitude
over a wide range of frequencies. When challenged with an
adaptation stimulus, the model gradually changed its gain. Of
course, the rate of adaptation could be set arbitrarily. Our
setting led to an adaptation speed that is very similar to what
we experimentally found in mice under identical experimental
conditions. To our knowledge, we are the first to suggest
that VOR adaptation reflects adaptation of a forward model
of VOR output. However, the idea is compatible with the
recent suggestion that VOR adaptation is driven by the motor
consequence of retinal slip rather than the slip itself (Shin et al.,
2014). Floccular lesions in our model abolish VOR adaptation,
which is in line with the literature (Schonewille et al., 2010).
NPH lesions do not affect adaptation at 1Hz in our model, but
to the best of our knowledge there is no literature to corroborate
this finding.

Although our model is capable of adaptation, we believe that
adaptation in the biological system is probably more complex
than that in our model. Biological adaptation seems to reflect
plasticity at multiple sites with multiple time constants (Porrill
and Dean, 2007; Gao et al., 2012; Clopath et al., 2014). The
introduction of more realistic adaptation and testing adaptation
at higher and lower frequencies is an important future extension
of the current model.

Relationship to Other Models
The CEM system is a popular candidate for computational
modeling due to the known anatomical substrates and the
restricted degrees of freedom. Theories of motor control are
primarily based on one of two main architectures. One theory
suggests that the motor system relies on generating an ideal
“desired movement” or “desired trajectory” that serves as a basis
for subsequent control. Such an architecture faces a number
of key challenges: generating the desired trajectory, translating
it into motor commands, and correcting for deviations during
online control. At the heart of such a system is an “inverse model”

which translates desired movement into motor commands
(Jordan and Rumelhart, 1992). For the CEM system, the desired
movement is always the one which will fixate the gaze in
space, minimizing retinal slip. The literature in the CEM system
contains a long tradition of such models (for example: Robinson,
1981; Kawato and Gomi, 1992; Glasauer, 2007; Lisberger, 2009;
Clopath et al., 2014). In general, a desired motor command
is fed to the brainstem, which then acts as an “inverse plant,”
i.e., it processes the command in order to overcome the low-
pass properties of the extraocular muscles and tissues that are
connected to the eye.

Our model shares the use of internal models and sensory
prediction with the Merfeld Observer Model (Merfeld and
Young, 1995; Karmali and Merfeld, 2012) and the models of
Laurens and Angelaki (2017). However, we concern ourselves
mainly with the interaction of the VOR and OKR. Raphan
et al. (1979) have also modeled the interaction of these reflexes
and our model shares many elements with theirs. However,
we place the notion of internal models at the forefront of
our approach. The key innovation in our model is the use of
recurrent cerebellar-vestibular nuclei loops which enable the
model to function correctly in the presence of considerable motor
and sensory noise and in the presence of significant delays in
sensory feedback. There exists anatomical evidence for such loops
(Büttner-Ennever and Büttner, 1992) and proposals for their
functional significance have been made previously (Porrill et al.,
2004).

Since the optimal control framework was originally proposed
as an approach to understanding vertebrate motor systems,
models of this sort have been implemented in the control
of various motor tasks. The implementations closest to our
model are those that attempt to describe coordinated head and
eye movements during gaze shifts (Todorov and Jordan, 2002;
Sağlam et al., 2011, 2014). One somewhat similar model has been
proposed to describe the CEM system (Haith and Vijayakumar,
2007). The Haith model is built largely to address adaptation
to changing dynamics, an issue not addressed by our data or
our model. Additionally, the Haith model is not confronted with
actual data. In sum, our model is unique in a number of respects:
(1) the extensive data with which it is challenged, including lesion
data and non-sinusoidal data, (2) the idea that one of the main
drivers of adaptation is compensation of the OKR system for
predicted VOR error, (3) the development of a fully realized
recurrent model of the CEM system in the spirit of the optimal
control feedback framework.
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