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Many brain imaging modalities reveal interpretable patterns after the data dimensionality
is reduced and summarized via data-driven approaches. In functional magnetic
resonance imaging (fMRI) studies, such summarization is often achieved through
independent component analysis (ICA). ICA transforms the original data into a relatively
small number of interpretable bases in voxel space (referred to as ICA spatial
components, or spatial maps) and corresponding bases in the time domain (referred
to as time-courses of corresponding spatial maps) In this work, we use the word
“basis” to broadly refer to either of the two factors resulting from the transformation.
A precise summarization for fMRI requires accurately detecting co-activation of voxels
by measuring temporal dependence. Accurate measurement of dependence requires
a proper understanding of the underlying temporal characteristics of the data. One
way to understand such characteristics is to study the frequency spectrum of fMRI
data. Researchers have argued that information regarding the underlying neuronal
activity might be spread over a range of frequencies as a result of the heterogeneous
temporal nature of the neuronal activity, which is reflected in its frequency spectrum.
Many studies have accounted for heterogeneous characteristics of the frequency of
the signal by either directly inspecting the contents of frequency domain-transformed
data or augmenting their analyses with such information. For example, studies on
fMRI data have investigated brain functional connectivity by leveraging frequency-
adjusted measures of dependence (e.g., when a correlation is measured as a function
of frequency, as with “coherence”). Although these studies measure dependence
as a function of frequency, the formulation does not capture all characteristics
of the frequency-based dependence. Incorporating frequency information into a
summarization approach would enable the retention of important frequency-related
information that exists in the original space but might be lost after performing a
frequency-independent summarization. We propose a novel data-driven approach
built upon ICA, which is based on measuring dependence as a generalized function
of frequency. Applying this approach to fMRI data provides evidence of existing
cross-frequency functional connectivity between different areas of the brain.

Keywords: resting-state fMRI, time-frequency analysis, dimension reduction, canonical correlation analysis,
independent component analysis, functional connectivity, Hilbert transform
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INTRODUCTION

Neuronal activity is highly dynamic and covers a range of
temporal scales (Jensen and Colgin, 2007; Baria et al., 2011). The
dynamic activity results from the anatomy of the brain itself, as
well as the nature of external and internal stimuli in the brain
(Von Stein et al., 2000). Brain imaging can be thought of as a
modulated observation of neuronal activities. That is, different
modalities are subject to different modulation characteristics due
to the physical and physiological principles of the brain and the
imaging modality. To be able to link the observed signals with
the underlying neuronal activities accurately, we need complete
knowledge of the modulation characteristics.

However, comprehensive knowledge of such characteristics
is seldom available. For example, in fMRI, modulation
is characterized by a hemodynamic response function
(HRF; Logothetis et al., 2001). The modulated signal is
modeled as the convolution of the HRF with the underlying
neuronal activities, referred to as blood-oxygenation-level
dependent (BOLD) signal. Because the HRF is a slow-
varying function relative to the underlying neuronal
oscillation, information regarding the neuronal activity is
assumed to be in the lower frequency part of the BOLD
signal spectrum.

However, the assumptions of the HRF function conflict with
available evidence (Chang and Glover, 2010; Gohel and Biswal,
2015; Yaesoubi et al., 2015a). For example, considering HRF as a
slow-varying function does not explain all the spectral variation
of fMRI data (Gohel and Biswal, 2015). Additionally, research
has called into question traditional models of HRF as a time-
invariant modulation filter. There have been observations of
neuronal-related activity in the higher frequency part of the
spectrum, including evidence that such activity varies in time
(Chang and Glover, 2010; Yaesoubi et al., 2015a). For example,
in the latter study, given the repetition time (TR) of scanner
being 2 s, evidence of dynamic functional connectivity occurring
at frequencies higher than 0.15 Hz has been provided. Because
neuronal activity can have different rates of change, we expect
that different parts of the BOLD signal spectrum will carry
different information regarding the underlying neuronal activity.
Figure 1A illustrates these considerations.

Consequently, an accurate summarization of fMRI data
needs to consider the frequency spectrum of the BOLD
signal. For example, a standard analysis for studying functional
segregation (Tononi et al., 1994) of the brain is determining
collections of voxels with similar activity patterns over time,
which results in parcellation of the brain into functional
regions or units (Wang et al., 2015; Gordon et al., 2017; Iraji
et al., 2019b). When these regions are determined via a data-
driven approach, voxel-level data is summarized into a lower-
dimensional subspace. Figure 2 illustrates this concept: we can
represent the summarization as the transformation of bases of
the data from its original space, followed by dimension reduction.
However, such summarization is independent of the underlying
frequency information of the data.

In this work, we propose a novel method to incorporate the
frequency spectrum of the data into independence component

analysis (ICA) as a commonly used summarization approach for
studying fMRI data.

Independence component analysis consists of a bases
transformation and dimension reduction via principal
component analysis (PCA), followed by the next bases
transformation via ICA (Calhoun et al., 2001). The transformed
spatial bases correspond to collections of voxels with similar
activity patterns, widely referred to as spatial maps. These spatial
bases parcel the brain into spatially independent (segregated)
components, and each component includes a network of spatially
distributed voxels with similar activity patterns (referred to as a
functional network; Calhoun and Adali, 2012).

Independence component analysis is a blind source separation
method formulated as a low-rank matrix decomposition of the
input data matrix XT×V into two matrices, M(t)T×C and SV×C as
follows:

X(t) ∼= M(t)× S> (1)

where T is the time dimension, V is the voxel dimension, and
C is the reduced dimension (a.k.a., the subspace dimension or
number of components). C is also the rank of the decomposition,
and typically C� T and V. This decomposition is solved based
on maximizing the independence across the columns of S (the
spatial maps). The spatial maps are referred to as the underlying
independent sources of the observed data. M(t) is referred to as
the mixing matrix, which represents the temporal profiles of the
spatial maps, referred to as the time-courses (TCs). C is also the
rank of the decomposition, and typicallyC� T and V.

The input fMRI data are voxel-wise time-series, expressed as
X(t) = [X(t)1, X(t)2, . . . , X(t)V

]. ICA is used to find maximally
independent spatial maps (hence referred to as spatial ICA
or sICA)1 and a mixing matrix M(t) representing TCs. This
decomposition can estimate temporal dependence between
functionally segregated functional regions (i.e., functional
connectivity), as reflected in M(t). Figure 2B depicts how such
decomposition translates into functional parcellation of the brain.

Based on the fact that the BOLD signal has heterogeneous
frequency characteristics, any particular summarization could be
modified to account for its frequency content. Since an essential
element in these analyses is to measure the dependence of activity
among voxels or collections of voxels, any modification should
also measure dependence as a function of frequency. Various
studies are addressing this goal by leveraging Fourier or time-
frequency transformation (Cordes et al., 2001; Chang and Glover,
2010). In these studies, the input signal is transformed into
Fourier or wavelet domains, and further analyses, including
dependence estimation, are performed therein. For example,
coherence has been used to study activity dependence between
different regions of the brain as a function of frequency (Cordes
et al., 2001), and it has enabled the detection of varying
dependence characteristics across various regions of the brain.
However, coherence lacks the notion of time and, consequently,
it is unable to characterize the dynamics of dependence. More
recent studies have leveraged time-frequency transformation to
measure dependence as a function of both time and frequency

1Throughout this work, by ICA we are referring to spatial ICA.
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FIGURE 1 | Three regions of the brain (represented by colored circles) has a unique modulation process modeled as the convolution of the shared neuronal activity
with its corresponding HRF. As it is shown in panel (A), each HRF has a unique frequency spectrum, which would lead each region to capture different frequency
spectrum portions of the same neuronal activity. Moreover, in a more general scheme, the communication between different regions of the brain can also occur at
different frequency bands (shown by blue waves with different frequencies connecting the circles) (Baria et al., 2011). Any study to investigate the actual
characteristics of the underlying neuronal activity should consider such heterogeneous aspects of the captured activities with respect to the frequency. For example,
when it is required to measure dependence between two regions, it would be beneficial to measure such dependence as a function of frequency. (B1) Two regions
share the same neuronal activity and the same HRF (represented as a low-pass filter). Hence, dependence should be measured as a function of one shared
frequency between the regions (in-between frequency) and (B2) as a function of different frequencies between the regions (cross-frequency dependence).

FIGURE 2 | Conceptual depiction of summarization procedure. (A) fMRI captures the data at voxel-level. However, groups of voxels correspond to specific
functional regions of the brain and, hence, have similar activation patterns. Summarization approaches such as ICA aim at finding these groups and the
corresponding activation patterns. (B) Here, the summarization is formulated as a blind low-rank matrix decomposition (“blind” means that neither of the underlying
multiplicative factors is known). In the case of spatial ICA, the major constraint of such decomposition is that the “bases” in voxel space (i.e., the spatial maps) are
maximally statistically independent from each other. It is shown that the spatial independence assumption yields spatial maps that parcel the brain into functionally
related networks (or groups) of voxels.

(Chang and Glover, 2010; Yaesoubi et al., 2015a; Faghiri
et al., 2019). These studies enable studying the time-varying
characteristics of functional network connectivity (referred to

as “dynamic connectivity”) along with frequency characteristics.
For example, Yaesoubi et al., used wavelet transform coherence
to measure dynamic connectivity between ICA-driven functional
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networks as a function of frequency (Yaesoubi et al., 2015a).
Such an approach is useful when two different networks of the
brain share the same underlying neuronal activity, and both
modulate the activity with the same narrow-band modulation
kernel (Figure 1B1 illustrates this). In such a scenario, traditional
approaches that do not consider frequency information (e.g.,
correlation-based analyses) would blur the actual dependence
with unrelated variations in other parts of the frequency spectrum
of the networks’ TCs. In another reasonable scenario, the
two networks might have different modulation process on the
shared neuronal activity (Figure 1B2). In such a situation,
when dependence is measured as a function of the same shared
frequency for both TCs, the actual dependence might not be
estimated correctly. Consequently, to capture the true nature
of the dependence of underlying neuronal activity, dependence
should be measured as a generalized function of two frequencies.
Dependence as a function of one frequency is usually referred
to as in-between frequency dependence (Figure 1B1), and
when dependence is a function of two unequal frequencies,
it is commonly referred to as cross-frequency dependence
(Figure 1B2); the latter is largely missing in fMRI studies.

In this study, we propose a new approach to summarize
resting-state fMRI data based on measuring the in-between and
cross-frequency dependence and use both types of dependence
estimations to estimate spatial maps as summarization bases
in voxel space. For the time-frequency transformation of
the input resting-state fMRI (rs-fMRI) data, we use the
Hilbert transform. The Hilbert transformation estimates the
instantaneous frequency content of the signal. Next, we use
multiset canonical correlation analysis (MCCA; Li et al., 2009)
to summarize voxel-level fMRI data (via basis transformation
and data reduction) into several spatial maps and corresponding
TCs. Because MCCA is applied in the time-frequency transform
domain, our summarization approach accounts for existing in-
between and cross-frequency estimations of the dependence of
the spatial maps.

MATERIALS AND METHODS

We estimate spatial maps by modifying the ICA-based
summarization approach to incorporate frequency
information of BOLD signal. We adjust the ICA-based
summarization approach by measuring dependence as a
general function of frequency, accounting for both in-between
and cross-frequency dependences.

Naturally, the first step is to augment the voxel-level
time-series with frequency information. This augmentation
can be achieved by time-frequency transformation of the
input time-series. There are a few choices for this step,
including whether to use the wavelet transform, the short-
time Fourier transforms (STFT), and the Hilbert transform
(Bruns, 2005). Among these three, the wavelet transform is a
multi-resolution-based transformation, which means that for
different frequencies (or scales in wavelet’s terminology), we
have different time-resolutions. However, that would make the
estimation of cross-frequency dependence less straight-forward.

STFT is basically the Fourier transform of a windowed signal,
which means that the bases in the frequency domain are pre-
defined by the Fourier bases. The Hilbert transform, on the
other hand, by-passes the windowing operation and instead
requires narrow band-pass filtering of the signal before Hilbert
domain mapping. Each band-pass filtered version of the signal
(over different frequency bands) leads to a different Hilbert
transformation at the same temporal resolution of the original
signal. Combined, the Hilbert transformations constitute a
convenient time-frequency representation of the input signal.

Because Hilbert transformations have the same temporal
resolution at different frequency bands and do not require
windowing, in contrast to STFT, we adopt it as the time-frequency
transformation of choice for this work.

Initially, the input time-series of voxel v (X(T)(v)) is band-
pass filtered in selected “narrow” frequency bands, and each
band-passed version is transformed to the analytic form A(t)e∅(t),
where A(t) is the instantaneous amplitude of the filtered signal
and ∅(t) is its instantaneous phase.

Mathematically speaking, let Xnbp(t)(v) represent a narrow
band-passed version of original input time-series X(t)(v)

belonging to voxel v. Hilbert transform of this time-series is
defined as:

H[Xnbp (t)(v)
] = p.v.

+∞

∫
−∞

Xnbp(t−τ)(v)

πτ
∂τ

(2)

where p.v. is the Cauchy principal value of above convolution.
For more information you can refer to Hildebrand (1949). For
our application, we used MATLAB implementation of Hilbert
transform for discrete time-series, which used the algorithm
proposed in Marple (1999) to estimate the above integration for
a discrete time-series.

The analytic form of the band-passed time-series Xnbp(t)(v) is
now defined as following:

Xnbp(t)(v)
+ jH[Xnbp(t)(v)

] = A(t)e∅(t) (3)

The derivative of the instantaneous phase (i.e., d∅
dt (t)) is

the instantaneous frequency, which we use as temporal
representation of the original time-series at the given frequency-
band (Figure 3A). For band-pass filtering, we used a seventh
order Butterworth digital filter at six different narrow frequency
ranges, all in Hz: 0.0025–0.0375, 0.0375–0.0750, 0.0750–0.1125,
0.1125–0.1500, 0.1500–0.1875, and 0.1875–0.2250.

Having a time-frequency representation of the time-series of
each voxel as the input data, the next step is to summarize
the data using spatial ICA. In general, the summarization step
can be considered as a low-rank matrix decomposition (as
in Eq. 1), A naïve way to apply this decomposition into the
augmented data is to treat each band-specific time-series as a
new set of voxel time-series and perform the summarization on
the concatenated data across voxel-space (Figure 3B). However,
the primary assumption of this approach is that cross-frequency
and in-between frequency dependence measurements are directly
comparable. However, t in-between and cross-frequency might
explain very different amounts of variance in the data. For
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FIGURE 3 | (A) Frequency information is added to the temporal activation pattern of each voxel via Hilbert-based band-passed time-frequency transformation and
instantaneous frequency estimation. (B) In a naïve approach, we can treat the instantaneous frequency representation of each band as a new set of independent
voxel measurements and perform summarization on the spatially concatenated data. The main draw-back of this approach is that it barely captures any dependence
between instantaneous frequencies across different bands.

example, the power of the underlying neuronal activity may
vary as a function of frequency, and the HRF can change
over different regions of the brain, which imply that cross-
frequency and in-between frequency dependence measures might
not be in a comparable scale. Hence, the significance level of
dependence would vary across frequency bands, rendering this
approach inadequate. Unless an accurate adjustment is made
to the measure of dependence such that all the dependence
measurements are directly comparable, this naïve approach
would be equivalent to running ICA separately on each band-
specific data.

Therefore, instead of concatenating band-specific data across
voxel-space, we consider the concatenation of the data along
the temporal domain (Eq. 4 and Figure 4A). This allows us
to find a common space (shared bases in voxel space) across
different frequency bands. However, this approach only leverages
the in-between frequency (not cross-frequency) information
to estimate the shared bases. In other words, the estimated
spatial map reflects the degree to which voxels in that map
show some in-between dependence. Essentially, this step outputs
summarization bases in voxel space (i.e., spatial maps) that
are shared across bands, whereas the corresponding temporal
signatures (TCs) carry band-specific information. Post hoc
analysis can be used to inspect the temporal signature of each
frequency band from the aggregate time-course corresponding
to a given spatial map. For example, estimating the amount of

power in each band allows us to indicate whether dependence
occurring at any of the bands dominates over the others, or if
the dependence is more evenly distributed over bands. When the
power of a given spatial map’s time-course is concentrated within
a specific band, it indicates that the spatial map and its associated
regions correspond to that specific band and share the same
in-between frequency. Likewise, when the power of the time-
course is spread over multiple bands, the spatial map highlights
areas which in-between dependence co-occurs over multiple
bands. Moreover, cross-correlating these band-specific TCs can
also yield extra information about cross-frequency dependence.
However, because all bands share the same spatial map, this
assessment is restricted to the areas contained in that map. This
considerably limits the approach and prevent assessments outside
the shared spatial map. Nonetheless, the ability to identify bases
according to aggregate in-between frequency dependence justifies
further experimentation of this approach as follows:

Assuming, for ease of explanation, that we only use three
frequency bands for the time-frequency Hilbert transformation,
namely, low, mid, and high2 bands. The transformed data is a
temporal concatenation of the original data as follows:

X(t) =
[

X(t)>low band, X(t)>mid band, X(t)>high band

]>
(4)

2For real data we are using 6 separate frequency bands, as indicated previously.
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FIGURE 4 | Outline of the proposed summarization approach incorporating in-between and cross-frequency dependence among voxel activation patterns. (A) First,
band-specific data are concatenated along with the time domain, and the first summarization step is applied to find shared spatial bases formed based on their
frequency properties. (B) Second, band-specific bases in the time domain are transformed such that corresponding bases across bands are maximally correlated.
(C) Finally, the two transformations (A, B) are blended to find bases along with voxel domain (spatial maps), which are derived from both in-between and
cross-frequency dependence.

This temporally concatenated data is then approximated by ICA
with a low-rank decomposition as follows:

X(t) ∼=[
M(t) >low band, M (t) >mid band, M (t) >high band

]>
× S> (5)

Just as in Eq. 1, M(t)i represent the mixing matrices (or
summarization bases in temporal domain) and S represents a
matrix containing C (C� T, V) independent spatial sources.

Thus far, we have captured spatial maps as bases in voxel
space based on dependence as function of one frequency
(i.e., in-between dependence). An important contribution of
this work is also incorporating cross-frequency dependence
into the formation of the spatial maps. This is achieved by
leveraging MCCA. The goal of MCCA is to find underlying
correlated sources across multiple data-sets. Thus, one dimension
must match across data-sets in order to measure correlations
(linear dependence) among them. Satisfying this requirement,
MCCA finds a separate transformation for each data-set such
that corresponding bases along the matching dimension have
maximum correlation across data-sets and, at the same time, are
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uncorrelated with other bases both within and across data-sets.
In this study, we treat the mixing matrices M(t)i as the multi
data-sets in MCCA, which solves for blind decomposition of each
M(t)i as follows (Figure 4B):

M (t)>i = Bi × S (t)
′
>

i (6)

i ∈ {low band, mid band, high band}

Similar to Eq. 1, S(t)
′

i
> are the sources (but here along temporal

domain) with properties enforced by MCCA as follows:
∀i E

[
S(t)

′

i>S(t)
′

i

]
= I, where I is the identity matrix,

meaning the temporal sources are uncorrelated within each data-
set, and ∀i 6= j E

[
S(t)

′

j>, S(t)
′

i

]
= 3 , where 3 is a diagonal

matrix and the diagonal elements represent the degree of
dependence across corresponding sources for each pair of
data-sets. Thus, temporal sources are only correlated with
their corresponding temporal sources from other bands. This
temporal dependence effectively captures the desired cross-
frequency dependence, which then drives the formation of
the temporal bases.

Finally, we combine the two summarization steps to estimate
spatial maps which are formed based on both in-between and
cross-frequency dependence as follows:

X(t)i = M(t)i × S> = S(t)
′

i × B>i × S>

In the results section below, we report B>i × S> as band-
specific spatial maps (Figure 4C).

Data
We analyzed resting-state scans of 200 all healthy participants
ages 12–35 years (mean = 21). Participants reported their gender
as either “men” (n = 90) or “women” (n = 110). Subjects
were given written informed consent, following institutional
guidelines approved by the Institutional Review Board of the
University of New Mexico. Scans had a minimum duration of
5 min and 4 s with a TR of 2 s, resulting in 152 volumes. Excess
volumes of subjects with longer duration were discarded. Also,
the first four volumes were discarded to avoid T1 equilibration
effect. All participants have maximum translation less than
1.5 mm and with spatial correlation to EPI template greater than
0.93. All subjects were instructed to keep their eyes open.

fMRI Acquisition and Pre-processing
Same 3-T Siemens Trio scanner with a 12-channel
radiofrequency coil, was used for all the subjects. Gradient
echo-planar imaging (EPI) sequence with echo time (TE) of
29 ms and TR of 2 s were used. Other scanning parameters
were flip angle = 75◦ with a slice thickness of 3.5 mm and
a slice gap of 1.05 mm. The field of view was 240 mm, and
voxel size was 3.75 mm3

× 3.75 mm3
× 4.55 mm3. A standard

SPM pre-processing pipeline3 was used for pre-processing of
the functional images. Steps included realignment, motion

3http://www.fil.ion.ucl.ac.uk/spm/

correction using the INRIAlign, slice-timing correction, spatial
normalization to Montreal Neurological Institute space and
resampling to 3 mm3

× 3 mm3
× 3 mm3, and finally, a Gaussian

kernel was used for spatial smoothing (σ = 2 mm).

RESULTS

Our approach provides a unique opportunity to study brain
functional segregation and integration across different frequency
ranges, which enables a more precise model of brain function
concerning different HRF modulations. The key contribution
of this work is the estimation of frequency-specific spatial
maps corresponding to the summarized bases of input data
in the frequency-augmented voxel space. Here, each basis
constitutes six band-specific spatial maps. Figure 5 demonstrates
an example of such a basis obtained from the proposed
approach. First, decomposition was set to solve for 75 of
such a basis. Because we are working in the time-frequency
domain, the activation level of each voxel in a given spatial
map is a complex value. The magnitude of the complex-
valued activation represents the intensity of activation. At
the same time, its phase encodes degree of relative delay or

FIGURE 5 | An example of summarization bases in voxel space comprising
six frequency-specific spatial maps. Each spatial map depicts maps of voxels
with a significant level of activation, which is determined by thresholding
voxels activity amplitudes using cluster-level threshold. In addition to the
amplitude, each voxel has an estimation of phase of the activity which when is
compared to the phase of another voxel, it determines the relative synchrony
of co-activation of the two voxels. For example, when two voxels have the
same phase (i.e., their phase is encoded with the same color derived from the
provided color-coding), it implies zero-lagged co-activation (a.k.a., positive
correlation). Similarly, when the phase difference is at its maximum, it implies a
negative correlation. In the middle of the figure, we represent the color map
we use to encode the phase information.
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advance of the activation with respect to a reference activity
which is defined by the choice of zero in the time domain.
Because the choice of reference along time domain is arbitrary,
phase information becomes meaningful when compared between
multiple activities.

Two voxels that have the same phase value implies a positive
correlation between their temporal activity patterns. If these two
voxels have different phases of activation, the temporal activity
of one voxel is delayed/advanced with respect to the other voxel.
When the phase difference between the two voxels is at its
maximum (180◦), an anti-correlative relationship exists between
them. In the provided spatial maps that represent the phase, we
use a circular color-coding presented in the center of Figure 5.

MCCA enables the estimation of frequency-specific spatial
maps of each basis in a way that maximizes the dependence
between their corresponding TCs. However, a maximum
dependence criterion does not guarantee that the temporal
dependence between spatial maps is significant. To evaluate
the significance of temporal dependence between these spatial
maps, we represent the null distribution of the dependence
as zero dependence by randomly shuffling each time-course’s
time-point and estimating pair-wise correlation of these band-
specific TCs over 100 repetitions. Note that TCs are complex-
valued and the correlation is estimated as the conjugate inner
product of two TCs and the null-distribution is created by
taking the absolute value of the inner product. We mark
dependence between spatial maps as significant if their pair-
wise temporal correlation value is greater than 99% of the
null-distribution. Pair-wise dependence, which surpasses this
significance test, is indicated with a solid line between the
corresponding spatial maps. As seen in Figure 5, spatial
maps with neighboring bands have a significant temporal
dependency with each other, a general observation across all
estimated bases.

However, ambiguity exists regarding the nature of the
temporal dependence between neighboring frequency bands, due
to overlap in the frequency spectrum. The overlapping spectrum
causes the neighboring spatial maps to contain a degree of shared
temporal information across separated parts of the spectrum,
thereby resembling cross-frequency dependence. Nevertheless,
adjacent frequency bands enable us to observe the evolution of
spatial maps in frequency at a higher resolution.

Our analysis further identifies two instances of significant
cross-frequency dependence between pairs of spatial maps
belonging to the same basis that occur between non-overlapping
frequency bands, which we have shown in Figure 6A. For
each spatial map, we only show a map of voxels whose
estimated amplitude survive significance threshold as well as
cluster-level threshold (details of thresholding step is provided
at the end of this section). We also provide color-coded
phase information of these voxels along with the labeling
of groups of voxels by their identified corresponding large-
scale brain networks. Twelve large-scale brain networks were
identified using low-order ICA on the dataset, following the
same analysis steps and choice of parameters as our earlier
works (Iraji et al., 2016; Iraji et al., 2019a). To identify the
voxel associated with brain networks, the threshold was set at

Z > 1.96. The identified brain networks include the default
mode network (DMN), salience network, (dorsal) attention,
subcortical, auditory, cerebellar, left and right frontoparietal,
somatomotor (MTR), primary visual, and secondary visual. If the
overlap between a given spatial map and each of these twelve
networks was greater than 60%, we assign the corresponding label
to that spatial map.

Before making a further interpretation of the estimated
bases and corresponding spatial maps, we investigated the
relative delayed functional connectivity at a better resolution
by using phase information, in contrast to modeling positive
and negative correlation. For instance, in Figure 6A and
more visible in Figure 6B, the area that has been labeled
as the DMN has an evident variation of phase within
itself (varying along z-axis), which provides evidence of
lagged activation of different areas of the DMN. Without
the phase information, such intra-network lagged activations
could not be observed. Moreover, there is interesting evidence
of cross-frequency dependence between the visual network
(occurring at relatively lower frequency band i.e., 0.003–
0.037 Hz) and the DMN (occurring at relatively higher
frequency band, 0.075–0.113 Hz) (Figure 6A and more visible in
Figure 6C).

The cross-frequency dependence between the visual
network provides evidence of variation in the phase of cross-
frequency dependence. Although existing studies report negative
correlation between the visual network and the DMN (Uddin
et al., 2009; Allen et al., 2011; Iraji et al., 2019a), our study
provides new information on the true nature of such dependence
in respect to both the frequency at which such dependence
occurs as well as the degree of the actual lag in the dependence
which varies over different parts of both the visual network and
the DMN. Similar observations can be made from the second
pair of spatial maps with significant cross-frequency dependence
shown in Figure 7. However, future research should attend to
understand neurobiological grounds of the observed lagged and
cross-frequency connectivity, as this was outside of the scope of
the current study.

We observe many instances of cross-frequency dependence
between neighboring frequency bands and cross-frequency
dependence between non-neighboring and more distant
bands. Thus, we sought to determine whether cross-frequency
dependence varied across subjects. To assess variation in age and
gender, we perform multivariate comparisons as described in
Allen et al. (2011) while controlling for motion parameters.

More precisely, we measure the cross-frequency dependence
between each pair of spatial maps that met the threshold of
significance for each subject. Each individual’s data provides
a sample for a multivariate response variable, in which the
dimensions of the variables are the selected measured cross-
frequency dependence. Since this multivariate response variable
is low-rank, we perform a PCA-based dimension reduction on
this data (Allen et al., 2011) and reduce the dimension to 70
(retaining 80% of all variations in the data). We then employ the
MANCOVAN toolbox implementation4 of stepwise backward

4http://www.mathworks.com/matlabcentral/fileexchange/27014-mancovan
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FIGURE 6 | (A) Here we present one out of the two pairs of spatial maps with a significant cross-frequency dependence belonging to non-adjacent frequency bands
(the one on the left belongs to the frequency range of 0.003–0.037 Hz and the one on the right belongs to the frequency range of 0.075–0.113 Hz) as an evidence of
cross-frequency dependence between different areas of the brain captured by fMRI. (B) Spatial variation of the phase within the DMN. (C) Varying degree of lagged
and the cross-frequency correlation between DMN (bottom) and visual networks (top) captured by the phase information.

explanatory variable selection which includes age, gender, and
motion parameters. The reduced set of variables includes gender
and motion parameters.

Next, we assess whether gender moderated each cross-
frequency dependence after regressing out motion parameters
and after correcting for multiple comparisons based on FDR
adjustments of estimated p-values. We identified two pairs
of spatial maps depicted in Figure 8 with cross-frequency
dependence being strongly correlated to the gender with
FDR-adjusted p-values of 0.007 and 0.008. In both cases, women
showed stronger cross-frequency dependence than men.

Finally, each spatial map shows only the voxels with
amplitudes that survive the significance threshold as well
as the cluster-level threshold of size 40. To estimate the
significance threshold, we use back-reconstruction to derive
subject-level spatial maps from group-level bases (Erhardt
et al., 2011). Initially, our proposed summarization approach
estimates spatial maps as bases in voxel space that are
shared among all subjects. Using back-reconstruction allows
us to assess subject-specific spatial maps and, consequently,
the distribution of each voxel’s activation level within each
spatial map. From this distribution, we estimate the F-score
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FIGURE 7 | The second pair of spatial maps exhibiting significant dependence with regard to their corresponding temporal activity occurring at non-overlapping
frequency bands.

to determine the region of significance. We use the F-score
for each voxel because the values are in the complex domain
and are represented by both real and imaginary parts as a
2-d vector. For each spatial map, we multiply 0.25 with the
maximum F-score to threshold the F-score and remove clusters
less than 40 voxels.

DISCUSSION

In this work, we propose a novel summarization approach based
on dependence as a general function of frequency. Previous work
in fMRI has captured dependence between the activity of different
areas of the brain as a function of frequency but was limited to in-
between frequency dependence (Cordes et al., 2001; Chang and
Glover, 2010).

Methods for summarization of brain data in the augmented
time and frequency domain have been lacking across fMRI
studies, as well as other imaging modalities, such as EEG and
MEG. EEG and MEG studies have utilized cross-frequency
dependence, referred to as cross-frequency coupling (Cohen,
2008; Canolty and Knight, 2010), but these analyses have not
yet been extended to summarization approaches. A strength of
the proposed approach lies in its applicability. Specifically, our
approach does not restrict any assumptions on the nature of the
data and thus also has a strong potential of being leveraged for
brain research in modalities beyond fMRI.

The technical novelty of the proposed approach is the way
we concatenate the frequency-specific data for the first step of
summarization. Explicitly, we model dependence as a function
of one frequency, which covers both in-between frequency
dependence as well as dependence that occurs over a range of
frequencies (aggregate in-between dependence). Additionally, we

adjust the summarization step to also account for cross-frequency
dependence by using MCCA.

Employing MCCA during summarization represents a novel
technical approach. As explained earlier, this step finds a new
set of bases (BT

i ), one for each frequency band for the subspace
originally derived from the preceding ICA. Consequently, MCCA
transforms bases in voxel space estimated by ICA. The main
property of this transformation lies in the following two
equations:

1. ∀i E
(

S(t)
′

i, S(t)
′

iT
)
= I where I is identity matrix.

2. ∀i 6= j E
(

S(t)
′

i, S(t)
′

jT
)
= 3 where 3 a diagonal matrix

(please refer to Eq. 6 for detailed formulation).

The first equation indicates that MCCA transforms the initial
spatial parcellation of the brain, which is derived from the
spatial ICA and is shared between frequency bands, into new
spatial maps which are band-specific and whose time-courses
are uncorrelated with other spatial maps’ time-courses at the
corresponding band. This property resembles work referred
to as meta-state analysis (Cohen, 2008; Miller et al., 2015;
Yaesoubi et al., 2015b), which assumes that connectivity of
the brain constitutes of multiple stationary (temporally-static)
connectivity patterns. Simultaneously, (temporally) dynamic
connectivity (also referred to as dynamic coupling) exists
across these stationary connectivity patterns. In the context
of static analysis, dependence is minimized, consistent with
constraining the correlation matrix with a diagonal constant. The
second constraint is simply an extension of the first constraint,
accounting for the cross-frequency connectivity between
corresponding transformed spatial maps across frequency bands.
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FIGURE 8 | Here, we present two pairs of spatial maps (A, B), in which each pair represents two spatial maps (left and right) belonging to two different frequency
intervals but with a significant dependence between each other. Furthermore, cross-frequency dependence varies significantly between women and men. In both
pairs, women have a stronger degree of dependence across labeled areas of each spatial map.

Limitations and Future Work
The major limitation of our work stems from the fact that
dependence and summarization, in general, is computed
in linear space. Both PCA and ICA in the first step of
the proposed framework as well as the MCCA from the
second step measure linear dependence (i.e., correlation).
Additionally, our choice of parameters could influence
the results. We relied on prior studies (Allen et al.,
2014; Yaesoubi et al., 2015a) to choose the dimension
of the subspace derived from the PCA-based dimension
reduction step. Future research should investigate whether
different number of dimensions could impact results.

Similarly, we chose six frequency bands to resemble
the bands used in Yaesoubi et al. (2015a) in order to
estimate frequency-specific and dynamic connectivity
states of fMRI. However, in prior work time-frequency
transformation was applied to the ICA spatial map TCs,
which is integrated over a weighted collection of voxel
time-series. This is in contrast with the current study,
in which we applied the transformation directly to voxel
time-series to provide more detailed resolution of the
frequency bands.

Currently, we capture spatial maps based on stationary
dependence. One important direction for future research is to
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capture dynamic dependence similar to sliding-window
approaches or as mentioned meta-states analyses
(Calhoun et al., 2014).

Our work is based on minimal assumptions regarding the
nature of the input data and is easily applicable to other
imaging modalities such as EEG or MEG. Also, our observation
that cross-frequency dependence varies based on participant
characteristics (e.g., gender) demonstrates the potential of the
approach. This can be extended in future application to clinical
research studies to investigate the potential of these frequency-
dependent effects across other types of participant characteristics,
such as differences in mental and physical health.
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